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CONVERGENCE OF CHORIN-MARSDEN FORMULA FOR THENAVIER-STOKES EQUATIONS ON CONVEX DOMAINS�Lung-an Ying(Resear
h Institute for Mathemati
al S
ien
es, Kyoto University, Japan;Department of Mathemati
s, Peking University, Beijing 100871, China)Abstra
tWe prove the 
onvergen
e of the Chorin-Marsden produ
t formula for solv-ing the initial-boundary value problems of the Navier-Stokes equations on 
onvexdomains. As a parti
ular 
ase we 
onsider the 
ase of the half plane.Key words: Navier Stokes equation, Vortex method, Fra
tional step method, Con-vergen
e 1. Introdu
tionDi�erent kinds of fra
tional step methods have been applied to solve the initial-boundary value problems of the Navier-Stokes equations for vis
ous in
ompressible
ow. The vortex method developed in [5℄ by Chorin is a s
heme with three intermediatesteps where the e�e
ts of 
onve
tion and vis
osity are separated, and vortex sheets are
reated along the boundary. A set of vortex blobs is introdu
ed to approximate thevorti
ity �eld. These vortex blobs move along the parti
le traje
tories in the 
onve
tionstep, and they move randomly in the di�usion step. The 
onvergen
e of the s
heme isan interesting problem whi
h has 
alled the attention of many authors.Related to this s
heme, the splitting of the initial-boundary value problems of theNavier-Stokes equations to the 
orresponding problems of the Euler equations and theStokes equations has been extensively studied, see [2℄ [3℄ [7℄ [9℄ [10℄ [11℄ [12℄ [13℄ [14℄and the referen
es therein. By the results a simple splitting 
onverges in Lp; p < 1,and in Hs; s < 52 , and if the vortex sheets are smeared out su
h that the vorti
ity issmooth, then the s
heme with some modi�
ation still 
onverges.Marsden gave one mathemati
al formulation of Chorin's s
heme whi
h is a produ
tof three operators, uk(ik) = (Hk Æ � ÆEk)iu0;where u0 is the initial data, Ek is the lo
al 
ow de�ned by the Euler equations withtemporal step k, � is the \vorti
ity 
reation operator", and Hk is the solver of theheat equation with step k. This formula is known as the Chorin-Marsden formula[6℄.It involves a further approximation beyond the splitting. In [6℄ the velo
ity �eld isextended oddly to the exterior of the domain and the Cau
hy problem of the heat� Re
eived July 10, 1996.



74 L.A. YINGequation for the velo
ity is solved in the di�usion step rather than the initial-boundaryvalue problem of the Stokes equation . This approximation is 
onsistent to the randomwalk pro
edure. Convergen
e of the linear problems was proved in [6℄. Benfatto andPulvirenti studied the Chorin-Marsden formula in the 
ase of the half plane for theNavier-Stokes equations and proved the 
onvergen
e[4℄. The s
heme in [4℄ is di�erentfrom that in [6℄ by two respe
ts: The tangential 
omponent of the velo
ity is alsoextended oddly but the normal 
omponent is extended evenly, and an expli
it Eulers
heme is applied in the 
onve
tion step rather than using the parti
le method. The�rst modi�
ation bears the advantage that the velo
ity �eld keeps in
ompressible afterthe extension.The purpose of this paper is to prove the 
onvergen
e of the Chorin-Marsden for-mula for arbitrary two dimensional 
onvex domains. In the 
onve
tion step we usethe velo
ity of the previous step to slove the parti
le traje
tories, making the step infa
t linear. In the di�usion step we use a modi�ed approa
h to extend the velo
ity.Parti
ularly if the domain is the half plane then the extension here is the same as thatin [6℄.In se
tion 2 we state the s
heme in details and introdu
e some notations. In se
tion3 we prove the 
onvergen
e of the s
heme for 
onvex domains, where for simpli
ity weassume that the domains are bounded. In se
tion 4 we apply our approa
h to the 
ase ofthe half plane, and we will show that both approa
hes of extension, by Chorin-Marsdenand by Benfatto and Pulvirenti, yield the results of 
onvergen
e.2. S
hemeLet 
 � R2 be a domain with suÆ
iently smooth boundary �
 and x = (x1; x2) bethe points in R2. We 
onsider the following initial-boundary value problems,�u�t + (u � r)u+ 1�rp = � 4 u+ f; (1)r � u = 0; (2)uj�
 = 0; (3)ujt=0 = u0; (4)where u = (u1; u2) is the velo
ity, p is the pressure, f is the external for
e, � is the
onstant density, � is the 
onstant kinemati
 vis
osity, and r = ( ��x1 ; ��x2 ). We intro-du
e the vorti
ity ! = �r^ u and the stream fun
tion  su
h that u = r^  , wherer^ = ( ��x2 ;� ��x1 ), then the vorti
ity-stream fun
tion formulation of the problems is�!�t + u � r! = � 4 ! + F; (5)�4 = !;  j�
 = 0; � �n �����
 = 0; (6)u = r^  ; (7)!jt=0 = !0; (8)



Convergen
e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 75where F = �r ^ f , !0 = �r ^ u0, and n is the unit exterior normal ve
tor on theboundary.Following [6℄ we de�ne a mapping � from the interior of 
 to the exterior. We takea positive 
onstant d, then 
onsider the set of all straight line segments through �
and normal to it, the length of ea
h segment is d inside and d outside. The union ofline segments is a tubular neighborhood of �
, denoted by S. � : S ! S is the mapwhi
h re
e
ts a
ross the boundary relative to these line segments, then � is a smoothmapping. Let J(x) be the Ja
obian of � at point x.The three steps s
heme is the following: Let k > 0 be the length of temporal steps,t = 0; k; � � � ; ik; � � �. If the approximate solutions !k, uk, ~!k, ~uk are already known fort 2 [0; ik), then on [ik; (i + 1)k) the approximate solutions are solved by:Step 1. Extension. De�ne an extension operator E asu�k(x; ik) = E~uk(x; ik � 0) = 8><>: ~uk(x; ik � 0); x 2 �
;�jJ(x)j~uk(�(x); ik � 0); x 2 S n �
;0; x =2 SS
:Then we set !k(x; ik) = �r^u�k(x; ik). In general ~uk does not vanish on the boundary,so !�k(x; ik) is a distribution 
omposed by a pie
ewise smooth fun
tion and a vortexsheet.Step 2. Di�usion. Solve the heat equation�!k�t = � 4 !kon R2 � [ik; (i + 1)k) with the initial data !k(x; ik). The velo
ity uk is obtained by�4 k = !k; x 2 
; kj�
 = 0;uk = r^  k:Step 3. Conve
tion. Solve the following problem�~!k�t + uk � r~!k = Fk;�4 ~ k = ~!k;~ kjx2�
 = 0;~uk = r^ ~ k;~!k(x; ik) = !k(x; (i+ 1)k � 0)on 
� [ik; (i + 1)k), where Fk is the approximate right hand side to be de�ned later.Then repeat the pro
edure. ~uk(�0) is understood as u0.In fa
t the above s
heme is a semi-dis
retization s
heme. The vorti
ities !k and ~!k
an be further approximated by linear 
ombinations of vortex blobs, then the parti
lemethod and the random walk pro
edure 
an be applied.



76 L.A. YINGTo meet the need of our 
onvergen
e proof, we derive an equivalent form of the aboves
heme. As usual we de�ne a subspa
e of (L2(
))2 as X = fu 2 (L2(
))2;r �u = 0; u �nj�
 = 0g. The Helmholtz operator P is an orthogonal proje
tion P : (L2(
))2 ! X.At the se
ond step we solve the heat equation for the velo
ity,�u�k�t = � 4 u�k; (9)with the initial data u�k(x; ik). Applying the operator �r^ to (9) we �nd that !k =�r^ u�k. Sin
e u�k and uk 
orrespond to the same vorti
ity !k, we have uk = Pu�k. Inthe velo
ity-pressure form, Step 3 
an be written as�~uk�t + (Pu�k � r)~uk + 1�r~pk = f; (10)r � ~uk = 0; (11)~uk � nj�
 = 0; (12)~ukjt=ik = Pu�k(x; (i+ 1)k � 0): (13)Then we set u�kjt=(i+1)k = E~uk(x; (i+ 1)k � 0) (14)and repeat the fra
tional step pro
edure at the next temporal step. From (10) it isdedu
ed that Fk = F � ���� �(uk)1�x1 �(~uk)1�x1
k ~
k ���� ;where 
k = �(uk)1�x2 + �(uk)2�x1 ; ~
k = �(~uk)1�x2 + �(~uk)2�x1are the velo
ities of shear strain and ( )1 and ( )2 are the 
omponents in the x1 and x2dire
tion. We will prove the 
onvergen
e of the s
heme (9){(14).If (10) is repla
ed by the Euler equation�~uk�t + (~uk � r)~uk + 1�r~pk = f; (15)then a

ordingly we have �~!k�t + ~uk � r~!k = F (16)in the 
onve
tion step. We will prove that for the 
ase of the half plane the s
heme (9)(15) (11){(14) also 
onverges.3. Convergen
e for Bounded DomainsIn this se
tion we �rst prove some estimates for the approximate solutions, thenprove the 
onvergen
e. The usual notations of the Sobolev spa
es Hs(
) are appliedthroughout the paper, and the norms and seminorms are denoted by k � ks;
 and j � js;
respe
tively. We will always denote by C a generi
 
onstant. For simpli
ity we assume



Convergen
e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 77that 
 is bounded. For notational 
onvenien
e sometimes we omit the spatial variableand simply write the solutions as u�k(t), ~uk(t); � � �. To study the property of the fun
tionsu�k, we 
onsider an auxiliary problem�h�t = � 4 h; x 2 R2; t > 0; (17)hjt=0 = Eh0; (18)where E is the extension operator de�ned in the previous se
tion.Lemma 1. If h0 2 L2(
) and h0 � 0, then there exists T � > 0, su
h thath � 0; �h�n � 0on �
� (0; T �℄, where h is the solution to the problem (17) (18).Proof. By the 
hange of variables we haveh(x; t) = Z 14�t� e� jx��j24t� Eh0(�) d�= Z
nS 14�t� e� jx��j24t� h0(�) d�+ Z
\S 14�t� �e� jx��j24t� � e� jx��(�)j24t� �h0(�) d�: (19)Sin
e 
 is 
onvex, jx � �(�)j � jx � �j for x 2 �
 and � 2 
. The integrants arepositive, hen
e hjx2�
 � 0.It is easy to see that the normal derivative of the �rst term of (19) is non-positive.Let us 
onsider the se
ond term and set'(r) = e� r24t� ;then '0(r) = � r2t� '(r); (20)We intend to prove� x� �jx� �j'0(jx� �j)� x� �(�)jx� �(�)j'0(jx� �(�)j)� � n � 0; x 2 �
:By (20) it is((x� �)'(jx� �j)� (x��(�))'(jx � �(�)j)) � n � 0; x 2 �
: (21)We take an arbitrary o 2 �
 and 
onstru
t lo
al 
oordinates (o; �1; �2) with the origino and the �2 
oordinate axis pointing to the interior normal dire
tion. Lo
ally theboundary �
 
an be expressed in terms of a fun
tion �2 = f(�1), a < �1 < b, a < 0,b > 0. Sin
e the domain is 
onvex, f 00 � 0. We assume that there is a 
onstant Æ > 0su
h that jf 0(a)j > Æ; jf 0(b)j > Æ; (22)



78 L.A. YINGotherwise we 
an expand the interval (a; b) to a
hieve it. Denote by �
1 the subset of�
 lying in (a; b), then we set �
2 = �
n�
1. Let � be on the �2-axis, then � = (0; �2)and �(�) = (0;��2).We 
onsider �
2 �rst. Let x 2 �
2, then we have���2 � '(jx� �j)'(jx� �(�)j)� = ���2 �e� jx��j24t� + jx��(�)j24t� �=x2t� e� jx��j24t� + jx��(�)j24t� ;hen
e '(jx� �j)'(jx� �(�)j) � 1 + x2t� �2: (23)We may assume that (x� �(�)) � n � 0, otherwise (21) is obvious, then we have(x� �(�)) � n(x� �) � n = 1 + (� � �(�)) � n(x� �) � n = 1 + (0; 2�2) � n(x� �) � n:The inequality (22) implies 1(x� �) � n � C;
onsequently (x� �(�)) � n(x� �) � n � 1 + C�2: (24)We take T � small enough su
h that x2t� � C for all x 2 �
2 and t 2 (0; T �℄, then (23)and (24) imply (21).Next let us 
onsider �
1. Let n1 = (f 0(x1);�1) for x 2 �
1, then n = n1jn1j . Wehave (x� �) � n = (x1f 0(x1)� (x2 � �2))=jn1j= (x1f 0(x1)� f(x1) + �2)=jn1j;and (x� �(�)) � n = (x1f 0(x1)� f(x1)� �2)=jn1j:Therefore (x� �) � n � (x� �(�)) � n:Besides '(jx � �j) � '(jx � �(�)j):So (21) holds.Lemma 2. If h0 2 L2(
), and h is the solution to the problem (17) (18), thenkh(t)k20;
 + � Z t0 jh(�)j21;
 d� � kh(0)k20;
; t 2 (0; T �℄;where T � is given in Lemma 1.



Convergen
e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 79Proof. Let h+0 = max(0; h0), h�0 = max(0;�h0), then h0 = h+0 � h�0 . The solutionswith initial data Eh+0 and Eh�0 are denoted by h+ and h� respe
tively, then h =h+ � h�. We have h+�h+�t = h+� 4 h+:Taking integration we obtain12kh+(t)k20 � 12kh+(0)k20 + � Z t0 jh+(�)j21 d� = � Z t0 Z�
 h+�h+�n dsd�:By Lemma 1 we have12kh+(t)k20 � 12kh+(0)k20 + � Z t0 jh+(�)j21 d� � 0:Analogously 12kh�(t)k20 � 12kh�(0)k20 + � Z t0 jh�(�)j21 d� � 0:Thus we obtain the estimate for h,kh(t)k20 + � Z t0 jh(�)j21 d� = kh+(t)� h�(t)k20 + � Z t0 jh+(�)� h�(�)j21 d�= Z
(h+(t)� h�(t))2 dx+ � Z t0 Z
 jrh+(�)�rh�(�)j2 dxd�� Z
(h+(t))2 dx+ Z
(h�(t))2 dx+ 2� Z t0 Z
(jrh+(�)j2 + jrh�(�)j2) dxd�� Z
(h+(0))2 dx+ Z
(h�(0))2 dx = kh(0)k20:We turn now to estimate the solutions of the s
heme (9){(14).Lemma 3. If u0 2 X, f 2 L1(0; T ;X), and k � T �, then the following estimateshold for t 2 [0; T ℄: k~uk(t)k0;
 � C; (25)ku�k(t)k0;
 � C; (26)Z t0 ju�k(�)j21;
 d� � C; (27)Z t0 jPu�k(�)j21;
 d� � C; (28)where the 
onstant C is independent of k.Proof. Multiplying (10) by ~uk and taking integration we get12 ddtk~ukk20:
 = Z
 ~uk � f dx � k~ukk0;
 � kfk0;
;whi
h gives ddtk~ukk0:
 � kfk0;
;



80 L.A. YINGhen
e k~uk(t)k0;
 � k~uk(ik)k0;
 + Z tik kf(�)k0;
 d�; t 2 [ik; (i + 1)k): (29)Sin
e P is an orthogonal operator, we havek~uk(ik)k0;
 � ku�k((i + 1)k � 0)k0;
 (30)by (13). We apply Lemma 2 to the 
omponents of u�k, and getku�k(t)k20;
 + � Z tik ju�k(�)j21;
 d� � ku�k(ik)k20;
; t 2 [ik; (i + 1)k) (31)by (9) (14), whi
h impliesku�k(t)k0;
 � k~uk(ik � 0)k0;
; t 2 [ik; (i + 1)k): (32)The 
ombination of (29) (30) (32) givesk~uk(t)k0;
 � k~uk(ik � 0)k0;
 + Z tik kf(�)k0;
 d�; t 2 [ik; (i + 1)k):By indu
tion we obtaink~uk(t)k0;
 � ku0k0;
 + Z t0 kf(�)k0;
 d�; (33)thus (25) is proved. Then (32) implies (26). By (29) we havek~uk(t)k20;
 � k~uk(ik)k20;
 � (k~uk(t)k0;
 + k~uk(ik)k0;
) Z tik kf(�)k0;
 d�� C Z tik kf(�)k0;
 d�;together with (31) (13) (14) whi
h gives� Z (i+1)kik ju�k(�)j21;
 d� � k~uk((i� 1)k)k20;
 + C Z ik(i�1)k kf(�)k0;
 d� � k~uk(ik)k20;
:Summing them up with respe
t to i, we obtain� Z (i+1)k0 ju�k(�)j21;
 d� � 2ku0k20;
 � k~uk(ik)k20;
 + C Z ik0 kf(�)k0;
 d� � C;whi
h gives (27). (27) implies (28) sin
e P is bounded in H1(
).[8℄Applying the above estimates we obtain the following results of 
onvergen
e.Lemma 4. If u0 2 X, f 2 L2(0; T ;X), then for a sequen
e of approximate so-lutions with k ! 0, there exixts a subsequen
e, su
h that ~uk, u�k and uk 
onverge inL1(0; T ; (L2(
))2) weak *, ~uk 
onverges in L2(0; T ; (H
(
))2); 
 < 0, strongly, u�k anduk 
onverge in L2(0; T ; (Hs(
))2); s < 1, strongly and in L2(0; T ; (H1(
))2) weakly.The limits of them are equal, and are the weak solution to the equations (1) (2).



Convergen
e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 81Proof. Sin
e uk are uniformly bounded in L2(0; T ; (H1(
))2), uk and ~uk are uni-formly bounded in L1(0; T ; (L2(
))2), we 
an extra
t subsequen
es su
h that they
onverge weakly and weak * respe
tively. Let u and ~u be the limits. We de�nevk(t) = ( uk(t� ik); t 2 [2ik; (2i + 1)k);~uk(t� (i+ 1)k); t 2 [(2i + 1)k; 2(i + 1)k); i = 0; 1; � � � ;then vk 2 C([0; 2T ℄; (L2(
))2). By Lemma 3 vk are uniformly bounded in L1(0; 2T ; (L2(
))2).Let us estimate v0k = �vk�t . The Stokes operator A is de�ned as A = �P4 with domainfu 2 (H2(
))2 \ (H10 (
))2; r � u = 0g. Let � 2 (1; 32), we set W = D(A�2 ), thenD = fu 2 (C10 (
))2; r�u = 0g is dense inW . Let � 2 D be an arbitrary test fun
tion,then by (10) we haveZ
 �~uk�t � �dx+ Z
(uk � r)~uk � �dx = Z
 f � �dx: (34)Let us estimate the terms of (34) as the following:����Z
 f � �dx���� � kfk0k�k0 � kfk0k�k� ;����Z
(uk � r)~uk � �dx���� = ����Z
(uk � r)� � ~uk dx����� Ck~ukk0kukk0; 2��1 kr�k0; 22�� � Ck~ukk0kukk1k�k� � Ckukk1k�k� ;where we have applied the imbedding theorem[1℄ and Lemma 3. It follows from (34)that 



�~uk�t 



W 0 � C(kfk0 + kukk1): (35)We apply the operator P to the equation (9) and get�uk�t = �P 4 u�k;hen
e 



�uk�t 



W 0 � C 



�uk�t 



�1 � Cku�kk1: (36)By Lemma 3 we get the upper bound of the right hand sides of (35) and (36), whi
hyields Z 2T0 



�vk�t 



2W 0 dt � C:Thus v0k is uniformly bounded in L2(0; 2T ;W 0). We de�ne the H�older spa
e C 12 ([0; 2T ℄;W 0) equipped with the normkvk = maxt2[0;2T ℄ kv(t)kW 0 + supt;�2[0;2T ℄ jt� � j� 12 kv(t)� v(�)kW 0 ;



82 L.A. YINGthen by the S
hwarz inequalitykvk(t)� vk(�)kW 0 = 



Z t� �vk�t dt



W 0 � Z t� 



�vk�t 



W 0 dt� Z t� 



�vk�t 



2W 0 dt! 12 (t� �)12 ; t > �; (37)so vk is uniformly bounded in C 12 ([0; 2T ℄;W 0). We extra
t a 
onvergent subsequen
e inC([0; 2T ℄;W 0), still denoted by fvkg. Let us 
onsider the fun
tions uk and ~uk on [0; T ℄.For two di�erent temporal steps k and k0 we havekuk(t)� uk0(t)kW 0 = 



vk �� tk� k + t�� vk0 �� tk0 � k0 + t�



W 0� 



vk �� tk� k + t�� vk0 �� tk� k + t�



W 0 + Cmax(k 12 ; k0 12 ):Therefore uk(t) 
onverges in the norm k � kW 0 uniformly with respe
t to t 2 [0; T ℄. Ingeneral uk is not 
ontinuous in t, so uk 
onverges in L1(0; T ;W 0). The same is truefor ~uk. By the interpolation inequality we have for 
 2 (�1; 0) thatZ T0 k~u� ~ukk2
 dt �C Z T0 k~u� ~ukk 2(�+
)�0 k~u� ~ukk� 2
�W 0 dt�C  Z T0 k~u� ~ukk20 dt!�+
�  Z T0 k~u� ~ukk2W 0 dt!� 
� ;
onsequently ~uk 
onverges in L2(0; T ; (H
(
))2). Be
ause uk is bounded in L2(0; T ;(H1(
))2), by the same reason uk 
onverges in L2(0; T ; (Hs(
))2) for s < 1.We noti
e that (37) implies kuk(t)� ~uk(t)kW 0 � Ck 12 , so u = ~u.To study the 
onvergen
e of u�k, we derive an analogue of (37) from the equation(9) that ku�k(t)� u�k(ik)kW 0 � Cjt� ikj 12 ; t 2 [ik; (i + 1)k):Applying the interpolation inequality we getku�k(t)� u�k(ik)k
 � Cku�k(t)� u�k(ik)k� 
�W 0 ku�k(t)� u�k(ik)k�+
�0� C(t� ik)� 
� :We noti
e that u�k(ik) = uk(ik), hen
eku�k(t)� uk(t)k
 � Ck� 
� :Therefore u�k also 
onverges to u in L2(0; T ; (H
(
))2). Following the same lines we
an prove that u�k possesses the same 
onvergent property as uk.Finally let us prove that u is a solution to the equations (1) (2). We take � 2 D,then we have ddt Z
 u�k � �dx = � Z
 u�k � 4�dx;
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e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 83whi
h givesZ
(u�k(t)� u�k(�)) � �dx = � Z t� Z
 u�k � 4�dxdt; t; � 2 [ik; (i + 1)k):AnalogouslyZ
(~uk(t)� ~uk(�)) � �dx� Z t� Z
(uk � r)� � ~uk dxdt = Z t� Z
 ~uk � f dxdt:Taking the initial 
onditions (13) (14) into a

ount, we get for t > �; t; � 2 [0; T ℄, thatZ
(u�k(t)� u�k(�)) � �dx� Z [ tk ℄k[ �k ℄k Z
(uk � r)� � ~uk dxdt= � Z t� Z
 u�k � 4�dxdt+ Z [ tk ℄k[ �k ℄k Z
 ~uk � f dxdt:Letting k ! 0, we obtainZ
(u(t)� u(�)) � �dx� Z t� Z
(u � r)� � u dxdt=� Z t� Z
 u � 4�dxdt+ Z t� Z
 u � f dxdt;whi
h is the weak form of (1) in the sense of Leray. It is 
lear that (2) holds, be
auseboth uk and ~uk satisfy this equation.We turn now to prove that u satis�es the boundary 
ondition (3).Lemma 5. Under the 
onditions of Lemma 4 the limit fun
tion u belongs toL2(0; T ; (H10 (
))2).Proof. We use the formula (19) for u�k,u�k(x; t) = Z
nS 14��� e� jx��j24�� u�k(�; ik) d�+ Z
\S 14��� �e� jx��j24�� � e� jx��(�)j24�� �u�k(�; ik) d�; (38)where � = t � ik, t 2 (ik; (i + 1)k). Let x 2 �
 be an arbitrary point and " > 0 be asmall positive 
onstant. We 
onstru
t a dis
 
1 with 
enter x and radius ", thenZ
\S = Z(
\S)n
1 + Z
\
1 :If � =2 
1, then jx� �j � ", jx��(�)j � ". Therefore if k is small enough, then we have�����Z
nS�����+ �����Z(
\S)n
1 ����� < "for � < k. It remains to 
onsider the integral on 
\
1. Let � 2 
\
1. We 
onstru
tthe same lo
al 
oordinates as in the proof of Lemma 1, thenjx� �(�)j2 � jx� �j2 = (x21 + (x2 + �2)2)� (x21 + (x2 � �2)2)



84 L.A. YING= 4x2�2 = 4f(x1)�2 � Cjx� �j2";hen
e 0 � e� jx��j24�� � e� jx��(�)j24�� � Cjx� �j2"4�� e� jx��j24�� :We take an arbitrary � 2 C1(�
), then we haveI = ����Z�
 �(x) dx Z
\
1 14��� �e� jx��j24�� � e� jx��(�)j24�� �u�k(�; ik) d������ Z�
 j�(x)j dx Z
\
1 Cjx� �j2"16��2�2 e� jx��j24�� ju�k(�; ik)j d�:We extend u�k(�; ik) by zero to the exterior of 
, still denoted by u�k(�; ik). We noti
ethat r � u�k(�; ik) = 0. By the 
hange of variables � = x+p�� we haveI � Z�
 j�(x)j dx Zj�j� 1p� C"j�j2e� j�j24� ju�k(x+p��; ik)j d�= Zj�j� 1p� C"j�j2e� j�j24� d� Z�
 j�(x)j � ju�k(x+p��; ik)j dx� Zj�j� 1p� C"j�j2e� j�j24� k�k 12 ;�
ku�k(�+p��; ik)k� 12 ;�
 d��k�k 12 ;�
ku�k(�; ik)k0;
 Zj�j� 1p� C"j�j2e� j�j24� d� � C"k�k 12 ;�
ku�k(�; ik)k0;
:Due to Lemma 3 we have����Z�
 �(x)u�k(x; t) dx���� < C"; 8� 2 C1(�
);where the 
onstant C depends on �. Consequentlylimk!0 ����Z�
 �(x)u�k(x; t) dx���� < C":But " is arbitrary, thereforelimk!0 Z�
 �(x)u�k(x; t) dx = 0; 8� 2 C1(�
); (39)whi
h implies u�k tends to zero on the boundary �
 in the sense of distributions. ByLemma 4 u�k 
onverges to u in L2(0; T ; (Hs(
))2) strongly, s < 1. We take s > 12and extra
t a subsequen
e su
h that u�k(t) 
onverges to u(t) in (Hs(
))2 for almost allt 2 [0; T ℄. By the tra
e theorem u�k(t)j�
 
onverges to u(t)j�
 in (Hs� 12 (�
))2. (37)implies the limit is zero. Therefore u(t) 2 (Hs0(
))2 for almost all t 2 [0; T ℄. Butu 2 L2(o; T ; (H1(
))2), so u 2 L2(o; T ; (H10 (
))2).The 
on
lusions of the above lemmas lead to the following theorem.
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e of Chorin-Marsden Formula for the Navier-Stokes Equations on Convex Domains 85Theorem 1. If u0 2 X, f 2 L2(0; T ;X), then the weak solution u 2 L2(0; T ;(H10 (
))2)TL1 (0; T ;X) to the problem (1){(4) in the sense of Leray is the limit of~uk, uk, u�k in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));~uk ! u; (L2(0; T ; (H
(
))2); 
 < 0);uk; u�k ! u; (L2(0; T ; (Hs(
))2); s < 1):Proof. We have already proved that there exists a subsequen
e whi
h 
onvergesto u in the above sense. The weak solution to (1){(4) is unique, therefore the aboveresults of 
onvergen
e hold for the whole k ! 0.4. Convergen
e for the Half PlaneIf 
 is the half plane fx;x2 > 0g, then the absolute value of the Ja
obian jJ(x)j = 1.The extension operator E is the same as that in [6℄. Sin
e u�k is an odd fun
tion withrespe
t to x2, it is not only the solution to the Cau
hy problem of (9), but also thesolution to the initial-boundary value problem with the Diri
hlet boundary 
onditionu�kj�
 = 0: (40)We noti
e that (40) does not imply uk = u�k, be
ause generally speaking r � u�k 6= 0.However, Lemma 1 and Lemma 2 be
ome trivial at this 
ase. Lemma 3 holds withoutany 
hange. Sin
e the domain is unbounded, the results of strong 
onvergen
e inLemma 4 should be 
hanged to be lo
ally. By (40) Lemma 5 is also trivial. We havethe following theorem by analogy to Theorem 1.Theorem 2. If 
 = fx;x2 > 0g, u0 2 X, f 2 L2(0; T ;X), then the weak solutionu 2 L2(0; T ; (H10 (
))2)TL1(0; T ;X) to the problem (1)-(4) in the sense of Leray isthe limit of ~uk, uk, u�k in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));~uk ! u; (L2(0; T ; (H
lo
(
))2); 
 < 0);uk; u�k ! u; (L2(0; T ; (Hslo
(
))2); s < 1):We turn now to study the extension given in [4℄,(u�k)1(x; ik) = ( (~uk)1(x; ik � 0); x 2 �
;�(~uk)1(�x; ik � 0); x =2 
; (41)(u�k)2(x; ik) = ( (~uk)2(x; ik � 0); x 2 �
;(~uk)2(�x; ik � 0); x =2 
: (42)



86 L.A. YINGThe 
orresponding boundary 
onditions are(u�k)1j�
 = 0; �(u�k)2�n �����
 = 0: (43)Sin
e r�u�k = 0, u�k are not only the solutions to (9) but also the solutions to the Stokesequation �u�k�t + 1�rp�k = � 4 u�k;r � u�k = 0:The results of Lemma 2 still hold, be
ause we 
an use the boundary 
ondition (43)to get the energy estimates for (u�k)1 and (u�k)2 respe
tively. The remarks for Lemma3 and Lemma 4 are the same as the previous 
ase. Lemma 5 is also trivial be
auseby (43) we get u1j�
 = 0 and by (uk)2j�
 = 0 we get u2j�
 = 0. Therefore for theextension (41) (42) the result of 
omvergen
e also holds.Theorem 3. Under the extension (41) (42) the 
on
lusion of Theorem 2 holds.Finally let us study the s
heme (9) (15) (11)-(14). From the proof in se
tion 3 wesee that we need an estimate of ~uk in the form of (27).Lemma 6. If u0 2 X, f 2 L2(0; T ;H1(
)). k � T �, and if 
0 is a 
ompa
tsubdomain of �
, then for the s
heme (9) (15) (11)-(14) the following estimate holds for(i+ 1)k � T : Z (i+1)kik j~uk(�)j21;
0 d� � C Z (i+1)kik ju�k(�)j21;
 d� + Ck; (44)where the 
onstant C depends on 
0.Proof. Taking the inner produ
t of (9) with 4u�k we obtain�12 ddt Z
 jru�kj2 dx = � Z
 j 4 u�kj2 dx � 0;whi
h gives Z
 jru�k(x; (i + 1)k � 0)j2 dx � 1k Z (i+1)kik d� Z
 jru�k(x; �)j2 dx: (45)Multiplying (16) by ~!k and taking integration we get12 ddt Z
 j~!kj2 dx = Z
 ~!kF dx;whi
h gives ddtk~!k(t)k0;
 � kF (t)k0;
;therefore k~!k(t)k0;
 � k~!k(ik)k0;
 + Z tik kF (�)k0;
 d�; t 2 [ik; (i + 1)k);
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onsequentlyZ (i+1)kik k~!k(�)k20;
 d� � 2kk~!k(ik)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�= 2kk!k((i+ 1)k � 0)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�� 2kkru�k((i+ 1)k � 0)k20;
 + 2k Z (i+1)kik kF (�)k20;
 d�:By (45)Z (i+1)kik k~!k(�)k20;
 d� � 2 Z (i+1)kik ju�k(�)j21;
 d� + 2k Z (i+1)kik kF (�)k20;
 d�: (46)We take 
0 su
h that 
0 �� 
00 �� �
. Noting the de�nition of the stream fun
tion ~ kand the estimate (25), by virtue of the Friedri
hs inequality we getk ~ kk0;
00 � C: (47)Then applying the interior estimate of ellipti
 equations we havej~ukj1;
0 � Cfk ~ kk0;
00 + k~!kk0;
g;whi
h together with (46) (47) yields (44).Following the same lines as se
tion 3 we get the 
onvergen
e theorem as follows.Theorem 4. If 
 = fx;x2 > 0g, u0 2 X, f 2 L2(0; T ;H1(
)), then the solutionsto the s
heme (9) (15) (11){(14) 
onverge to u in the sense ofuk; ~uk �* u; (L1(0; T ;X));u�k �* u; (L1(0; T ; (L2(
))2));uk; u�k * u; (L2(0; T ; (H1(
))2));uk; u�k; ~uk ! u; (L2(0; T ; (Hslo
(
))2); s < 1):Remark For the extension (41) (42) we 
an obtain the same result. Sin
e theargument is just the same, it is omitted here.A
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