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Abstract

We prove the convergence of the Chorin-Marsden product formula for solv-
ing the initial-boundary value problems of the Navier-Stokes equations on convex
domains. As a particular case we consider the case of the half plane.
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1. Introduction

Different kinds of fractional step methods have been applied to solve the initial-
boundary value problems of the Navier-Stokes equations for viscous incompressible
flow. The vortex method developed in [5] by Chorin is a scheme with three intermediate
steps where the effects of convection and viscosity are separated, and vortex sheets are
created along the boundary. A set of vortex blobs is introduced to approximate the
vorticity field. These vortex blobs move along the particle trajectories in the convection
step, and they move randomly in the diffusion step. The convergence of the scheme is
an interesting problem which has called the attention of many authors.

Related to this scheme, the splitting of the initial-boundary value problems of the
Navier-Stokes equations to the corresponding problems of the Euler equations and the
Stokes equations has been extensively studied, see [2] [3] [7] [9] [10] [11] [12] [13] [14]
and the references therein. By the results a simple splitting converges in L”,p < oo,
and in H% s < g, and if the vortex sheets are smeared out such that the vorticity is
smooth, then the scheme with some modification still converges.

Marsden gave one mathematical formulation of Chorin’s scheme which is a product
of three operators,

uy(ik) = (Hy o ¢ o Eg)"uo,

where wug is the initial data, Fj is the local flow defined by the Euler equations with
temporal step k, ¢ is the “vorticity creation operator”, and Hy is the solver of the
heat equation with step k. This formula is known as the Chorin-Marsden formulalf.
It involves a further approximation beyond the splitting. In [6] the velocity field is
extended oddly to the exterior of the domain and the Cauchy problem of the heat
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equation for the velocity is solved in the diffusion step rather than the initial-boundary
value problem of the Stokes equation . This approximation is consistent to the random
walk procedure. Convergence of the linear problems was proved in [6]. Benfatto and
Pulvirenti studied the Chorin-Marsden formula in the case of the half plane for the
Navier-Stokes equations and proved the convergencel?). The scheme in [4] is different
from that in [6] by two respects: The tangential component of the velocity is also
extended oddly but the normal component is extended evenly, and an explicit Euler
scheme is applied in the convection step rather than using the particle method. The
first modification bears the advantage that the velocity field keeps incompressible after
the extension.

The purpose of this paper is to prove the convergence of the Chorin-Marsden for-
mula for arbitrary two dimensional convex domains. In the convection step we use
the velocity of the previous step to slove the particle trajectories, making the step in
fact linear. In the diffusion step we use a modified approach to extend the velocity.
Particularly if the domain is the half plane then the extension here is the same as that
in [6].

In section 2 we state the scheme in details and introduce some notations. In section
3 we prove the convergence of the scheme for convex domains, where for simplicity we
assume that the domains are bounded. In section 4 we apply our approach to the case of
the half plane, and we will show that both approaches of extension, by Chorin-Marsden
and by Benfatto and Pulvirenti, yield the results of convergence.

2. Scheme

Let Q C R? be a domain with sufficiently smooth boundary 9 and = = (1, z3) be
the points in R%. We consider the following initial-boundary value problems,

1
%—i—(u-V)u—l—;szuAu—i—f,

(1)
V.-u=0, (2)
(3)
(4)

3
4

ulpn =0,

u‘t:[] = uog,
where u = (uq,u9) is the velocity, p is the pressure, f is the external force, p is the

constant density, v is the constant kinematic viscosity, and V = (3%1, 3%2). We intro-
duce the vorticity w = —V A u and the stream function ¢ such that u =V A4, where

VA = (8%2, —8%1), then the vorticity-stream function formulation of the problems is
0
8—j+u-Vw:VAw+F, (5)
0
7Aw:wa Waﬂ =0, a_w =0, (6)
o0
u=VAy, (7)

w|t:0 = Wo, (8)
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where F' = —V A f, wg = —V A ug, and n is the unit exterior normal vector on the
boundary.

Following [6] we define a mapping ® from the interior of {2 to the exterior. We take
a positive constant d, then consider the set of all straight line segments through 9%
and normal to it, the length of each segment is d inside and d outside. The union of
line segments is a tubular neighborhood of 92, denoted by S. ® : S — S is the map
which reflects across the boundary relative to these line segments, then @ is a smooth
mapping. Let J(z) be the Jacobian of ® at point z.

The three steps scheme is the following: Let & > 0 be the length of temporal steps,
t=0,k,---,ik,---. If the approximate solutions wyg, ug, @k, U are already known for
t €10,ik), then on [ik, (i + 1)k) the approximate solutions are solved by:

Step 1. Extension. Define an extension operator F as

g (x, ik — 0), z € Q,
uj(w,ik) = Bug(z,ik — 0) = { —|J(z)|ax(®(z),ik — 0), z € S\Q,
0, z ¢ SUQ.
Then we set wi(z,ik) = —V Auj(z,ik). In general 4 does not vanish on the boundary,

so wj(z,1k) is a distribution composed by a piecewise smooth function and a vortex
sheet.
Step 2. Diffusion. Solve the heat equation

Ow
8—;:qu;€

on R? x [ik, (i + 1)k) with the initial data wy(z,ik). The velocity uy is obtained by

- AP = wg, T €,
Yrloa = 0,
up =V A Yy.

Step 3. Convection. Solve the following problem

%—i—uk-vak = Fy,

— Ny, = Gy,

Plweon =0,

g =V Ay,

w(z,ik) = wg(z, (1 + 1)k — 0)

on § x [ik, (i + 1)k), where F}, is the approximate right hand side to be defined later.
Then repeat the procedure. u,(—0) is understood as ug.

In fact the above scheme is a semi-discretization scheme. The vorticities w; and @y,
can be further approximated by linear combinations of vortex blobs, then the particle
method and the random walk procedure can be applied.
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To meet the need of our convergence proof, we derive an equivalent form of the above
scheme. As usual we define a subspace of (L?(2))? as X = {u € (L2(2))%;V -u = 0,u-
nlsa = 0}. The Helmholtz operator P is an orthogonal projection P : (L%*(Q))? — X.
At the second step we solve the heat equation for the velocity,

Ouy,
Ot

with the initial data u}(z,ik). Applying the operator —VA to (9) we find that w, =
—V Awy. Since uj, and uy, correspond to the same vorticity wg, we have u, = Puy. In

= v A, (9)

the velocity-pressure form, Step 3 can be written as

Okt (Pup - V)i + %Vﬁk - /. (10)

V -up =0, (11)

Uk -nlogg =0, (12)

Ug|i=ik = Puj(z, (i + 1)k —0). (13)
Then we set

ugli=(i+1)k = Bz, (i + 1)k = 0) (14)

and repeat the fractional step procedure at the next temporal step. From (10) it is
deduced that

O(ur)r  O(ag)
F,=F — ox1 Oz
Yk Yk
where ~ ~
_ 8(Uk)1 + a(uk)g 5 B(Uk)l + 8(Uk)2
b 8.T2 8.T1 ’ K 8.T2 8:131

are the velocities of shear strain and ( ); and ( ) are the components in the z1 and x4
direction. We will prove the convergence of the scheme (9)—(14).
If (10) is replaced by the Euler equation

Oy, 1
o (g - V)iig + Vg = 15
5+ (@ )Uk+p P = [, (15)
then accordingly we have
%% | V= F (16)
—_— u . w e
ot k k

in the convection step. We will prove that for the case of the half plane the scheme (9)
(15) (11)—(14) also converges.

3. Convergence for Bounded Domains

In this section we first prove some estimates for the approximate solutions, then
prove the convergence. The usual notations of the Sobolev spaces H*(2) are applied

throughout the paper, and the norms and seminorms are denoted by || - ||s,0 and |- |50

respectively. We will always denote by C' a generic constant. For simplicity we assume
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that € is bounded. For notational convenience sometimes we omit the spatial variable
and simply write the solutions as uj (), @k (t), - - -. To study the property of the functions
uy,, we consider an auxiliary problem

h
%:yAh, z € R%t>0, (17)
hli=o = Ehg, (18)

where FE is the extension operator defined in the previous section.
Lemma 1. If hg € L%(2) and ho > 0, then there exists T* > 0, such that

oh
h>0, — <0
- ) 8” —
on 082 x (0, T*], where h is the solution to the problem (17) (18).

Proof. By the change of variables we have

1 e—g|?
Wz, 1) = /u4wtu€4J W Eh(¢) d¢
1 o—¢?
ey - P h d
Jas At T ho(§) d€
1 g e’
- -/Qms 4drty <e eo—e A > ho (&) d€. (19)

Since € is convex, |z — ®(§)| > |z — &| for x € 002 and £ € 2. The integrants are
positive, hence Al c90 > 0.

It is easy to see that the normal derivative of the first term of (19) is non-positive.
Let us consider the second term and set

p(r) =e aw,
then .
¢'(r) = *%—USD(T), (20)
We intend to prove
<; - Z*OI("” —&) - iiiggd(:r - <I>(§))) n<0, zed.
By (20) it is
((z = ez — &) — (= — 2))e(lz — 2()])) - n =0, z €. (21)

We take an arbitrary o € 92 and construct local coordinates (0,&;,&2) with the origin
o and the &3 coordinate axis pointing to the interior normal direction. Locally the
boundary 92 can be expressed in terms of a function & = f(&1), a < & < b, a < 0,
b > 0. Since the domain is convex, f” > 0. We assume that there is a constant 6 > 0
such that

f@)l>6  If' (B >0, (22)
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otherwise we can expand the interval (a,b) to achieve it. Denote by 99 the subset of
0Q lying in (a, b), then we set 92y = 92\ 0. Let € be on the &y-axis, then & = (0, &)
and &(€) = (0, &),

We consider d€), first. Let z € 0§29, then we have

T lz—g% | Je—2(0)?
2 BT T

=—=8e 4tv
tv
e (12 - €)
AT >4 2y, 23
et - e 2
We may assume that (z — ®(£)) - n > 0, otherwise (21) is obvious, then we have
(@ ®©) n (€ ®E)n _ (0.26)n
G On @O @ooom
The inequality (22) implies
R
(-8 -n~
consequently
=P n gy g, (24)
(—¢&)-n

We take T small enough such that 72 > C for all z € 9 and t € (0,7*], then (23)
and (24) imply (21).

Next let us consider 994. Let ny = (f'(z1), 1) for 2 € 9Q4, then n = ‘Z—h We
have

(= &)-n=(x1f'(z1) = (z2 — &))/|n1]
= (z1f'(21) — flz1) + &) /|na],

and
(z = @(§) -n = (z1f'(z1) — f(z1) — &)/|ma].
Therefore
(z—¢)-n>(z—2(¢) n
Besides

o(lz —&)) > p(lz = 2(5))).
So (21) holds. m

Lemma 2. If hg € L*(Q), and h is the solution to the problem (17) (18), then

t
1R ()15 0 +V/0 h(r) [ qdr < [hO)5q. t€ (0,77,

where T is given in Lemma 1.
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Proof. Let hy = max(0,hg), hy = max(0, —hg), then hg = hy — hy. The solutions
with initial data Eha' and Fh, are denoted by h™ and h~ respectively, then h =
h*t — h~. We have

+
SN
ot
Taking integration we obtain
1 1 t t oh™T
SR @15 = S I1h* 011 + V/ [P (7) [t dr = V/ h*—— dsdr.
2 2 0 0 Jao  On

By Lemma 1 we have

Lo e Loz L2

310 O1F = 510+ OIF +v [ b* () ar <o,
Analogously

1, _ 1

S @1 = 5 In )1 +v [ () <o,

Thus we obtain the estimate for h,

I+ v [ 1) dr = 070~ b @1+ [ ) () dr

:/(h*(t) —h(t))QdaH—u/t/ VAt (r) = VA (7)|? dadr

/ dm—l—/ d:v—l—ZU// (IVAT ()2 + VA (7)) dadr

< [ () do+ [ (b (0))* do = (O]

We turn now to estimate the solutions of the scheme (9) (14). m
Lemma 3. Ifuy € X, f € L'(0,7; X), and k < T*, then the following estimates
hold for t € [0,T):

llax ()]lo,0 < C. (25)

4Bl < C. (26)
t

[ it dr < c, @)
t

[ 1Puin)qdr <. (28)

where the constant C is independent of k.
Proof. Multiplying (10) by @ and taking integration we get

1d, . . -
S plaelio = [ -1 do < lxlos - 17 loo.

which gives

Zrlakllo.e < M flloe,
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hence

t
lar (D)oo < llax (k)]0 + /k 1f(T)lloodr, &€ [ik, (i +1)k). (29)
13
Since P is an orthogonal operator, we have
[k (iF) 0.0 < [lug(( + 1)k = 0)[log (30)

by (13). We apply Lemma 2 to the components of u}, and get

t
lui()]13.0 + V/k up(T)f o dr < |lup(ik)l[5 o, t € [ik. (i + 1)k) (31)
by (9) (14), which implies

lur(B)llo.o < llag(ik = 0)llo, T € [ik, (i + 1)k). (32)

The combination of (29) (30) (32) gives
t
lan(®)llo.a < [k (ik — 0)]o.q + /k 1F (Tl dr, T € [ik, (i + 1)k).
13
By induction we obtain

t
[ () llo.2 < lluollo. + /0 L () llo.q dr, (33)

thus (25) is proved. Then (32) implies (26). By (29) we have
t
1k (®) 3.0 — la(ik)Ig o < (lak @)oo + lax(ik)log) /k 1 (T)llo.cd7
)

t
<c [ 1o

together with (31) (13) (14) which gives

(i+1)k ik
o, WORadr <l DRI+ [ 1@ londr — IaRlE o

Summing them up with respect to i, we obtain

(i+1)k . 9 9 o 9 ik
v [ i) Radr < 2lullfe — 5 #)Ee+C [ 17 (Dloadr <.

which gives (27). (27) implies (28) since P is bounded in H'(2).5/ m
Applying the above estimates we obtain the following results of convergence.
Lemma 4. Ifug € X, f € L?(0,T;X), then for a sequence of approzimate so-
lutions with k — 0, there ewizts a subsequence, such that uy, uj and u converge in
L>®(0,T; (L*(2))?) weak *, iy converges in L?(0,T; (HY(2))?),v < 0, strongly, u} and
ug, converge in L2(0,T; (H*(Q))?),s < 1, strongly and in L*(0,T; (H'(Q))?) weakly.
The limits of them are equal, and are the weak solution to the equations (1) (2).
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Proof. Since uy, are uniformly bounded in L?(0,7; (H"(2))?), uj and iy are uni-
formly bounded in L>(0,T;(L?(2))?), we can extract subsequences such that they
converge weakly and weak * respectively. Let v and @ be the limits. We define

t —ik), t € [2ik, (20 + 1)k), ,
vk(t):{uk( ik) [2ik, (2i + 1)) P01

an(t — (i + DE), te[(2i+ 1)k 2(i + DE),
then vy € C([0,27T]; (L2(92))?). By Lemma 3 v, are uniformly bounded in L>(0, 27T; (L2(£2))?).

Let us estimate vj, = %Lt’“ The Stokes operator A is defined as A = —PA with domain

{u € (HXQ)2 N (HY Q)% V-u = 0}, Let B € (1,2), we set W = D(A?), then
D = {u € (C$(2))% V-u =0} is dense in W. Let x € D be an arbitrary test function,
then by (10) we have

i
ﬂ-Xd:I:—i—/(uk-V)ﬂk-xdac:/f-xd:r:. (34)
o Ot Q Q
Let us estimate the terms of (34) as the following:

oo

‘/(Uk'v)ﬂk'xdiv
Q

< flollxllo < Lfllollx !l

:‘/(uk-V)x-akdx
Q

< Cllaxlollurlly, 2 1Vxllo, ;2 < Cllakllolluxllilixlls < Clluklllxlls,

where we have applied the imbedding theorem!! and Lemma 3. Tt follows from (34)
that

< C(Ifllo + llukllr)- (35)

WI

|2
ot

We apply the operator P to the equation (9) and get

8’U,k %
W:VPAUIC’
hence 5 5
U U
— <(C|— < Clluils. 36
1% <c| 5| | <ot (36)

By Lemma 3 we get the upper bound of the right hand sides of (35) and (36), which

yields
2T
J

1
Thus v}, is uniformly bounded in L?(0,2T; W'). We define the Hélder space C2 ([0, 2T;
W') equipped with the norm

v, |12

—— dt < C.
ot ¢

w

1
vl = max |v()llw + sup |t — 7| 2[jv(t) — v(7)|lw
t€[0,277 t,7€[0,2T] ’
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then by the Schwarz inequality

t Juy, L Quy,
o) = ()l = | [ Gae| < [5G a
1
t 2 2 1
g(/ i dt) t—1)2, t>r, (37)
el [

so vy is uniformly bounded in ok ([0,27]; W'). We extract a convergent subsequence in
C([0,2T); W'), still denoted by {vg}. Let us consider the functions uy and @y on [0, T].
For two different temporal steps k and &’ we have

oe([e] #+0) e (]l

t t L Il
k k WI

Therefore u(t) converges in the norm | - ||y uniformly with respect to ¢ € [0,7]. In
general uy is not continuous in ¢, so ug converges in L>(0,T; W'). The same is true

g (2) — upe () || =

<

for 4. By the interpolation inequality we have for v € (—1,0) that

T 9 T 2(B+7) _2y
|l <o [Ca -y T a - s de

B+y
T B T
gc(/na—m%dQ (/|W—am%dQ ,
0 0

consequently i, converges in L2(0,T;(H?(Q))?). Because uy, is bounded in L?(0,T;
(H'(2))?), by the same reason u; converges in L?(0,7T; (H*(Q))?) for s < 1.

We notice that (37) implies |Jug(t) — g (t)|lw < Ck%, S0 u = 4.

To study the convergence of uj, we derive an analogue of (37) from the equation
(9) that

@R

() — ug (i) [wr < Clt — k|2, t€ [ik, (i +1)k).
Applying the interpolation inequality we get
Jug(t) — uk (k) [ly < Cllug(t) — wp(ik) [y luk () — ug(@k) o

< C(t—ik)7?.
We notice that uj (ik) = uy(ik), hence
_
lug(8) — ur(B)ll, < Ck B,

Therefore uj also converges to u in L*(0,7; (H7(2))?). Following the same lines we
can prove that u; possesses the same convergent property as uy,.
Finally let us prove that u is a solution to the equations (1) (2). We take x € D,

d
—/uz-xdzzy/u};-Axdz,
dt Ja Q

then we have
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which gives

/Q(u;;(t) —ul(r) - xdz :u/Tt/Quz-Axdmdt, tr € [ik, (i + 1)k).

Analogously

[ttt awo) o — [ [ unxmdedt = [ [ - dnat.

Taking the initial conditions (13) (14) into account, we get for ¢ > 7,¢,7 € [0, T], that

| itt) — i) o - / [ s 9)x g

1k
:1// /u,’;-AXd:L*dt—l-/k /ak-fd:z:dt.
T JQ FALAEAY

Letting & — 0, we obtain

/(u(t)—u( ) - Xd:r:—/ / u-V)x - udzdt

—y/ /u Axdzr:dt+/ /u f dwdt,

which is the weak form of (1) in the sense of Leray. It is clear that (2) holds, because
both uy and uy satisfy this equation. m

We turn now to prove that u satisfies the boundary condition (3).

Lemma 5. Under the conditions of Lemma 4 the limit function u belongs to
L2(0,7; (HL(2))?).

Proof. We use the formula (19) for uj,

. 1 e,
uh (1) = /Q S (€, ik) de

\s 4mTV

1 e—gl? i 2
+ / (e 45‘ — 67‘ 44:(5)‘ ) u;‘; (&,ik) dE, (38)
Q

ns 4nTv

where 7 =t — ik, t € (ik, (i + 1)k). Let € 0Q be an arbitrary point and € > 0 be a
small positive constant. We construct a disc €2y with center z and radius €, then

oo o
Qns (2NSH\ QN

If € ¢ O, then |z —&| > ¢, |z — ()| > e. Therefore if £ is small enough, then we have

vl
(QNS)\

for 7 < k. It remains to consider the integral on 2N Q. Let £ € QN Q;. We construct
the same local coordinates as in the proof of Lemma 1, then

&= @) — |z — € = (a1 + (22 + &)*) = (a1 + (22 — &)?)

<e€
Q\s
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= dzoby = 4f(21)& < Clz — €%,

hence

Ceg?  pee@?  Clz— €% le-e?
0 < e 4Tv — e A4Tv < _—e v
- - 4Ttv

We take an arbitrary ¢ € C°°(92), then we have

I =

1 _lz—¢? =@\ .
C(x) dx/ e v —e Irv up(&,ik) d¢
a0 Qno, 4nTy

Clz — €%e _lo—se? :
< x)| d: —_— v ug (&, ik)| d€.
S e DI

We extend uj (€, ik) by zero to the exterior of Q, still denoted by uy(&,ik). We notice
that V - uj(&,ik) = 0. By the change of variables £ = z + /77 we have

Inl?
1< (C@)lda [ Celnfe i (o + Vi) dy
JoQ Jnl< ==

T

|
5

_ % x :
= [, CoPe i an [ @) i+ k)| da
P 77 P

a2 .
<[ CelnlPe LNy pnllui -+ VTR oo d
Inj< & X el

. _ a2 .
SIICIIl,aQIIUZ(-,Zk)llo,ﬂ/  Celnl’e™ " dn < Cel[Cl 1 gollui (k) [lo0-
2 ‘H\Sﬁ 2
Due to Lemma 3 we have

(2)ug(z,t)dz) < Ce, V(€ C(IN),

¢
00

where the constant C' depends on (. Consequently

lim ((z)ug(z,t)dz| < Ce.
k=0 /o0
But ¢ is arbitrary, therefore
lim C(z)up(z,t)de =0, V(e C™(090), (39)
k—0 /o0

which implies u}, tends to zero on the boundary d€) in the sense of distributions. By
Lemma 4 uj converges to u in L?(0,T; (H*(2))?) strongly, s < 1. We take s > %
and extract a subsequence such that u}(t) converges to u(t) in (H*(£2))? for almost all

t € [0,T]. By the trace theorem wuj(t)|sn converges to u(t)|sq in (Hsfé(aﬂ))Q. (37)
implies the limit is zero. Therefore u(t) € (HS(Q))? for almost all ¢+ € [0,7]. But
u € L(0,T; (HY(R2))?), so u € L(0,T; (H}(22))?). m

The conclusions of the above lemmas lead to the following theorem.
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Theorem 1. If ug € X, f € L*(0,T;X), then the weak solution u € L*(0,T;
(HH(Q)2)NL>® (0,T; X) to the problem (1)—(4) in the sense of Leray is the limit of
Uy, Uk, uy, in the sense of

up, i — u, (L0, T; X)),
uj, = u, (L0, T5 (L (9))%),
up, up = u, (L2(0,T; (H' (2))%)),
ay, = u, (L*(0, T; (HY(2))%),7 < 0),
ug, uf — u, (L2(0,T; (H*(Q))?),s < 1).

Proof. We have already proved that there exists a subsequence which converges

to u in the above sense. The weak solution to (1)—(4) is unique, therefore the above
results of convergence hold for the whole £ — 0. m

4. Convergence for the Half Plane

If 2 is the half plane {z;z9 > 0}, then the absolute value of the Jacobian |J(z)| = 1.
The extension operator ¥ is the same as that in [6]. Since u} is an odd function with
respect to zg, it is not only the solution to the Cauchy problem of (9), but also the
solution to the initial-boundary value problem with the Dirichlet boundary condition

uplag = 0. (40)

We notice that (40) does not imply uy = uj, because generally speaking V - uj # 0.
However, Lemma 1 and Lemma 2 become trivial at this case. Lemma 3 holds without
any change. Since the domain is unbounded, the results of strong convergence in
Lemma 4 should be changed to be locally. By (40) Lemma 5 is also trivial. We have
the following theorem by analogy to Theorem 1.

Theorem 2. If Q = {z;z9 > 0}, ug € X, f € L*(0,7;X), then the weak solution
u € L2(0,T; (HE(2)2) N L>®(0,T; X) to the problem (1)-(4) in the sense of Leray is
the limit of 1y, ug, uy in the sense of

ug, dig, = u, (L*(0,T; X)),
up = u, (L0, T; (L*())%)),
g, ujp — u, (L*(0, T'( ()
ay — u, (L*(0,T; (H]_(2))?),

gl — 1, (L2(0, T (HZOC(Q))Q),S < 1).

We turn now to study the extension given in [4],

* o (k)i (z, ik — 0), z €

ineio={ TOI T, Ten )
* . _ (ak)Q(Tﬂlk o 0)7 HARSS Q

(up)o(w,ik) = { (i) ik —0), 7¢Q (42)
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The corresponding boundary conditions are

O(uj)2
an o0

(ur)1lan =0, = 0. (43)

Since V-uj = 0, uj, are not only the solutions to (9) but also the solutions to the Stokes

equation
Oup, 1
_v * — A >I<7
ot + P Pp =V AU
V- =0.

The results of Lemma 2 still hold, because we can use the boundary condition (43)
to get the energy estimates for (uj); and (uj)o respectively. The remarks for Lemma
3 and Lemma 4 are the same as the previous case. Lemma 5 is also trivial because
by (43) we get ui1|sn = 0 and by (ug)2]/an = 0 we get us|gg = 0. Therefore for the
extension (41) (42) the result of comvergence also holds.

Theorem 3. Under the extension (41) (42) the conclusion of Theorem 2 holds.

Finally let us study the scheme (9) (15) (11)-(14). From the proof in section 3 we
see that we need an estimate of 4 in the form of (27).

Lemma 6. Ifuy € X, f € L?(0,T; H'(Q)). k < T*, and if Q' is a compact
subdomain of Q, then for the scheme (9) (15) (11)-(14) the following estimate holds for
(i+1)k < T:

(i+1)k (i+1)k
[ la@Redr<c [ i@l adr +Ck (44)

where the constant C' depends on €.
Proof. Taking the inner product of (9) with Auj we obtain

1d « %
—EE/Q‘VUIC‘QCL’E = I//Q | A up*dz >0,
which gives
(i4+1)k

1
/ Vi (2, (i + 1)k — 0)|% de < _/ dT/ Vi (z, 7|2 da. (45)
Multiplying (16) by @y and taking integration we get

1d [, )
—— dr = Fd
2dt/g‘wk| x /ka T,

d . .
gil@E@loe < IF@)los,

which gives

therefore

t
l@r(®)llo.o < llwox(@k)llo.q + /k IE(T)llodr, € [ik, (i + 1)k),
13
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consequently

(+1)k ) oy (i+1)k )
[ e adr < 2kla@lio+2k [ IFOIEqdr

. , (i+1)k ,
= 2ol + Dk~ Ol +2k [ 1P dr
71
. ) (i+1)k )
<2+ Dk - )R +2% [ 1P qdr
J1

By (45)

(i+1)k , (i+0k (i+1)k ,
[ lenBadr <2 [T imBadr+2k [T IF@Idr. (36)

We take ' such that Q' cC Q" ccC Q. Noting the definition of the stream function 1y,
and the estimate (25), by virtue of the Friedrichs inequality we get

[9klo,n < C- (47)

Then applying the interior estimate of elliptic equations we have

k1.0 < Cl[¥klloor + l@kllonl,

which together with (46) (47) yields (44). m
Following the same lines as section 3 we get the convergence theorem as follows.
Theorem 4. If Q = {z;15 > 0}, ug € X, f € L*(0,T; H'(Q)), then the solutions
to the scheme (9) (15) (11)—(14) converge to u in the sense of

g, i, = u, (L(0,T; X)),

up = u, (L0, T (L)),

g, uj, = u, (L*(0,T; (H' (2))%)),

g, uj, G, = u, (L2(0,T; (Hj, . (Q))?),s < 1).

Remark For the extension (41) (42) we can obtain the same result. Since the
argument is just the same, it is omitted here.
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