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ITERATIVE METHODS WITH PRECONDITIONERS FORINDEFINITE SYSTEMS�1)Wei-qing Ren Jin-xi Zhao(Department of Mathemati
s, Nanjing University, Nanjing 210008, China)Abstra
tFor the sparse linear equations Kx = b, where K arising from optimization anddis
retization of some PDEs is symmetri
 and inde�nite, it is shown that the LLTfa
torization 
an be used to provide an \exa
t" pre
onditioner for SYMMLQ andUZAWA algorithms. \Inexa
t" pre
onditioner derived from approximate fa
tor-ization is used in the numeri
al experiments.Key words: Generalized 
ondition number, Inde�nite systems, Fa
torizationmethod1. Introdu
tionSymmetri
 inde�nite systems of linear equations arise in many areas of s
ienti�

omputation. In this paper, we will dis
uss the solution of sparse inde�nite system ofthe form �A BTB �C �� up� = � fg � ; (1)where A 2 Rn�n is a symmetri
 positive de�nite matrix, B 2 Rm�n has full row rankm � n, C 2 Rm�m is symmetri
 positive semide�nte, f 2 Rn and g 2 Rm. In this
ase, the linear equations has the unique solution[8�10℄. For simpli
ity, we denote theequations as Kx = b.Dis
retizations of the Stokes equations or other PDEs produ
e the linear equationsas (1). In optimization, when barrier or interior-point methods are applied to somelinear or nonlinear programs, the Karush-Kuhn-Tu
ker optimality 
onditions also leadto a set of equations as (1). The system often need not to be solved exa
tly, thereforeit is appropriate to 
onsider iterative methods and pre
onditioners for the inde�nitematrix K.Our main aim is to present a simple result that shows how to use the LLT fa
-torization of K [8℄ to 
onstru
t a pre
onditioner for iterative methods. The iterativemethods to be dis
ussed are the Paige-Saunders algorithm named as SYMMLQ[7℄ andthe UZAWA method[1℄.The rest of the paper is organized as follows. In se
tion 2, we derive the exa
tpre
onditioner from the LLT fa
torization and take inexa
t pre
onditioner from ap-proximate fa
torization into a

ount. In se
tion 3, two iterative methods, SYMMLQ� Re
eived August 13, 19961)Proje
t supported by the 863-plan of national High Te
hnology of China



90 W.Q. REN AND J.X. ZHAOand UZAWA algorithms with pre
onditioners, are presented. In se
tion 4, we presentthe numeri
al results and show the e�e
tiveness of the pre
onditioners.2. Pre
onditioning Inde�nite System Using LLT Fa
torizationThe inde�nite system Kx = b arising from optimization and PDEs is often ill-
onditioned. It is appropriate to take a positive de�nite matrix M = CCT as pre-
onditioner for K so that C�1KC�T has lower 
ondition number or better eigenvaluedistribution.The following theorem presents the LLT fa
torization of K. For more detail, see[8℄.Theorem 2.1. Given any symmetri
 inde�nite matrixK = �A BTB �C � ; (2)where A, B and C are the same as that de�ned in (1). Then we haveK = LLT ; (3)L = � l11l21 l22 � ; LT = � lT11 lT21�lT22 � ; (4)where l11 2 Rn�n and l22 2 Rm�m are lower triangular matri
es, l21 2 Rm�n.The matri
es l11; l21 and l22 
an be easily 
al
ulated from the following matrixequations: A = l11lT11; (5)B = l21lT11; (6)C + l21lT21 = l22lT22: (7)If we take LLT as the pre
onditioner of K, it is easily veri�ed thatK = L�1KL�T = � I11 �I22 � � J; (8)where I11 2 Rn�n and I22 2 Rm�m are identity matri
es. This means the \perfe
t"pre
onditioner for K is the matrix M = LLT ; (9)sin
e the pre
onditioned matrix K has at most two distin
t eigenvalues and the Paige-Saunders algorithm 
onverges in at most two iterations[2℄. The matrix LLT is namedas the exa
t pre
onditioner for K.In pra
ti
e, we will use \inexa
t" pre
onditioner, whi
h is derived from the LLTfa
torization of an approximation to K. For the inexa
t pre
onditioner, we have thefollowing results. Let �max(K) denote the maximum eigenvalue of K, �min(K) the min-imum eigenvalue. �1(K), �2(K) is the maximum and minimum of j�(K)j respe
tively.The generalized 
ondition number of K is de�ned by �(K) = j�1(K)=�2(K)j.
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onditioners for Inde�nite Systems 91Theorem 2.2. Let K;L and L be as those in Theorem 2:1 and let M = LLT .Then for any symmetri
 positive de�nite matrix C, we have�(C�1K) � �(C�1M): (10)Proof. In the following, A � B means A is similar to B.C�1K = C�1(LJLT ) � (LTC�1L)J = (L1LT1 )J � LT1 JL1; (11)where L1LT1 is the Cholesky fa
torization of the poisitive de�nite matrix LTC�1L. LetL1 = � ~l11~l21 ~l22 � ;where ~l11 2 Rn�n, ~l22 2 Rm�m and ~l21 2 Rm�n. ThenLT1 JL1 =� ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �� � ~l11~l21 ~l22 �T � 0 2I22 �� ~l11~l21 ~l22 �=� ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �� 2� ~lT21~l21 ~lT21~l22~lT22~l21 ~lT22~l22 � � LT1 L1 �H1:A simple 
al
ulation shows that H1 is a positive semide�nite matrix. It is followed fromWeyl theorem[4℄ that �max(LT1 JL1) � �max(LT1 L1): (12)On the other hand,LT1 JL1 =� � ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �+ 2� ~l11~l21 ~l22 �T � I11 0�� ~l11~l21 ~l22 �=� � ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �+ 2� ~lT11~l11 0� � �LT1 L1 +H2;here H2 is positive semide�nite, then�min(LT1 JL1) � �min(�LT1 L1): (13)From (11), (12) and (13), we have�1(C�1K) = �1(LT1 JL1) � �max(LT1 L1) = �max(C�1M): (14)Similarly, K�1C = (L�TJL�1)C � (L�1CL�T )J = (L2LT2 )J � LT2 JL2; (15)where L2LT2 is the Cholesky fa
torization of L�1CL�T . LetL2 = � l̂11l̂21 l̂22 � ;



92 W.Q. REN AND J.X. ZHAOwhere l̂11 2 Rn�n, l̂22 2 Rm�m and l̂21 2 Rm�n. Then we have�max(K�1C) = �max(LT2 JL2) � �max(LT2 L2) = �max(M�1C): (16)and �min(K�1C) = �min(LT2 JL2) � �min(�LT2 L2) = �min(�M�1C): (17)It is followed from (16) and (17) that1�2(C�1K) = �1(K�1C) � �max(M�1C) = 1�min(C�1M) : (18)The result is derived from (14) and (18) immediately:�(C�1K) = �1(C�1K)�2(C�1K) � �max(C�1M)�min(C�1M) = �(C�1M):Theorem 2.3. Let M and C be positive de�nite su
h that kI�C�1Mk2 � �, where� < 1. Then �(C�1M) � 1 + �1� � : (19)Proof. see [5℄.The following result 
an be easily derived from (10) and (19).Corollary 2.4. Let K be the same as that in theorem 2:1. LJLT is the LLTfa
trization of K, M = LLT , and the positive de�nite matrix C is an approximationto M satisfying kI � C�1Mk2 � � < 1. Then�(C�1K) � 1 + �1� � : (20)3. Iterative Methods with Pre
onditionersIn this se
tion, we present two algorithms with pre
onditioners for the inde�nitesystem (1).3.1 The Pre
onditioned Paige-Saunders MethodThis algorithm known as SYMMLQ is a 
onjugate-gradient-like method whi
h 
anbe applied to inde�nite system. To solve Kx = b with pre
onditioner M = LLT , weapply SYMMLQ to the system L�1KL�T y = L�1b;a

umulating approximations to the solution x = L�T y. In fa
t, it need not approxi-mate, using the transformationx = L�Ty, we 
an have the following implementation.Algorithm 3.1. (SYMMLQ)�0 = kL�1bk2; q0 = 0; q1 =M�1b=�0;s�1 = s0 = 0; 
�1 = 
0 = �1;z�1 = z0 = 1; w1 = q1; x0 = 0; j = 1:
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onditioners for Inde�nite Systems 93step 1. �j = qTj Kqj;rj = (M�1K � �jI)qj � �j�1qj�1;�j = kLT rjk2;if �j = 0 then stop.qj+1 = rj=�j ;step 2. �j = sj�2=�j�1;Æj = �
j�2
j�1�j�1 + sj�1�j;
j = �
j�2sj�1�j�1 � 
j�1�j ;
j = (
2j + �2j ) 12 ;step 3. 
j = 
j=
j ;sj = �j=
j ;step 4. zj = �(�jzj�2 + Æjzj�1)=
j ;(wj ; wj+1) = (wj ; qj+1)� 
j sjsj �
j � ;xj = xj�1 + zjwj;step 5. if j = m+ n then stop,else j = j + 1; goto step 1.To improve the 
onvergen
e of SYMMLQ, the transformed matri
esK = L�1KL�Tshould have a better 
ondition than K, or a more favorable distribution of eigenvalues(
lustered �1). In the next se
tion, we will present the numeri
al results.3.2 The UZAWA MethodThe algorithm using pre
onditioner Q is presented in the following, whi
h startswith an arbitray guess p0.Algorithm 3.2. (UZAWA)for i = 0 untill 
onvergen
e,doui+1 = A�1(f �BTpi)pi+1 = pi + �Q�1(Bui+1 � Cpi � g)enddohere, � is a s
alar parameter that must be determined prior to the iteration.The 
onvergen
e fa
tor of the algorithm is �(I � �Q�1(BA�1BT + C)), whi
h hasthe smallest value (� � 1)=(� + 1) for the 
hoi
e � = 2=(�1 + �2), where �; �1 and�2 denote the generalized 
ondition number, maximum and minimum eigenvalues ofQ�1(BA�1BT+C) respe
tively[1℄. From (5), (6) and (7), we 
an derive BA�1BT+C =l22lT22, so if l22lT22 is taken as pre
onditioner Q and � = 2=(�1 + �2), the UZAWAalgorithm will 
onverge one step.In pra
ti
e, on
e have got an approximative fa
torization of K, we 
an take Q�1A �(l11lT11)�1 to repla
e A�1 in the algorithm. Then, we get the following \inexa
t" versionof the UZAWA algorithm, whi
h starts with u0 � 0 and an arbitrary initial guess p0:for i = 0 until 
onvergen
e,doui+1 = ui +Q�1A (f � (Aui +BTpi))pi+1 = pi + �Q�1(Bui+1 � Cpi � g)enddoIn the next se
tion, we will use the \inexa
t" version of UZAWA algorithm.
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al ExamplesHere we investigate the e�e
tiveness of the pre
onditioner des
ribed in se
tion 2.For test purposes, we have used MATLAB in PC486 to implement the SYMMLQ andUZAWA algorithms.A spe
ial type of matrix K is 
onsidered, where n = 200 and m = 100. A ispentadiagonal and the nonzero entries are given byai;i+1 = ai+1;i = �1 for i = 1 : n� 1;ai;i+10 = ai+10;i = �1 for i = 1 : n� 10;the diagonals are random between 4 and 50. Entries of A that are not de�ned should berepla
ed by zeros. The matri
es B and C are 
hosen with all entries random between0 and 1 ex
ept that the diagonals of C are between 0 and 30.We have 
omputed all the eigenvalues of K, M�10 K and M�13 K. The eigenvaluesof K range from �103:75 to 63:23, and those of M�10 K, M�13 K 
luster around �1as we have expe
ted. It is evident that the tranformed systems have more favorableeigenvalue distributions than K. The generalized 
ondition number is given in thefollowing: �(K) = 1:0375e + 7;�(M�10 K) = 1:1654;�(M�13 K) = 1:0073:Fig.1 and Fig.2 illustrate the behaviors of SYMMLQ and UZAWA on the pre
on-ditioned systems respe
tively. It is evident that for the pre
onditioned systems, lessnumber of SYMMLQ and UZAWA iterations is required to rea
h a 
ertain pre
ision.

Fig.1. SYMML Q methodIn the pro
ess of LLT fa
torazition of K, two di�erent in
omplete 
holesky fa
-torizations introdu
ed in [6℄ are applied to A. The 
orresponding pre
onditioners aredenoted as M0 = L0LT0 and M3 = L3LT3 , respe
tively.
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Fig.2. UZAWA methodThe 
onvergen
e fa
tor of UZAWA without pre
onditioner(Q = I) is 
lose to 1, sothe algorithm 
onverges very slowly. The use of pre
onditionersM0 andM3 a

eleratesthe 
onvergen
e signi�
iantly and the 
onvergen
e fa
tors are 0.07, 0.003 respe
tively.Finally, we point out that in SYMMLQ algorithm, the LANCZOS ve
tor will be
omputed. For ill-
onditioned system, large number of iterations will lead to orthog-onality loss and the reothogonalization is ne
essary. This makes the algorithm more
ompli
ated. For the pre
onditioned system, the algorithm 
onverges after several it-erations and the orthogonal loss is trivial, so the reorthogonalization is avoided.The UZAWA method depends on the 
hoi
e of parameter �. This makes it morediÆ
ult to implement the algorithm. For pre
onditioned system, we 
an take � = 1 asan estimation. 5. Con
lusionFor symmetri
 inde�nite systems of linear equations of the form of (1), we haveshown that the LLT fa
torization 
an be used to provide a pre
onditioner for the Paige-Saunders algorithm SYMMLQ and UZAWA algorithm. The e�e
t of the pre
onditioneris signi�
iant in a

elerating the 
onvergen
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