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Abstract

For the sparse linear equations Kz = b, where K arising from optimization and

discretization of some PDEs is symmetric and indefinite, it is shown that the LT
factorization can be used to provide an “exact” preconditioner for SYMMLQ and
UZAWA algorithms. “Inexact” preconditioner derived from approximate factor-
ization is used in the numerical experiments.
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1. Introduction

Symmetric indefinite systems of linear equations arise in many areas of scientific
computation. In this paper, we will discuss the solution of sparse indefinite system of

(3 ") ()= (3) 2

where A € R™*"™ is a symmetric positive definite matrix, B € R™*" has full row rank

m < n, C € R™*™ is symmetric positive semidefinte, f € R"™ and ¢ € R™. In this
[8—10]

the form

case, the linear equations has the unique solution . For simplicity, we denote the
equations as Kz = b.

Discretizations of the Stokes equations or other PDEs produce the linear equations
as (1). In optimization, when barrier or interior-point methods are applied to some
linear or nonlinear programs, the Karush-Kuhn-Tucker optimality conditions also lead
to a set of equations as (1). The system often need not to be solved exactly, therefore
it is appropriate to consider iterative methods and preconditioners for the indefinite
matrix K.

Our main aim is to present a simple result that shows how to use the LT fac-
torization of K8 to construct a preconditioner for iterative methods. The iterative
methods to be discussed are the Paige-Saunders algorithm named as SYMMLQ!" and
the UZAWA method!!.

The rest of the paper is organized as follows. In section 2, we derive the exact
preconditioner from the LT factorization and take inexact preconditioner from ap-
proximate factorization into account. In section 3, two iterative methods, SYMMLQ
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and UZAWA algorithms with preconditioners, are presented. In section 4, we present
the numerical results and show the effectiveness of the preconditioners.

2. Preconditioning Indefinite System Using LT" Factorization

The indefinite system Kz = b arising from optimization and PDEs is often ill-
conditioned. It is appropriate to take a positive definite matrix M = CC” as pre-
conditioner for K so that C~'KC~T has lower condition number or better eigenvalue
distribution.

The following theorem presents the LT" factorization of K. For more detail, see
8].

Theorem 2.1. Given any symmetric indefinite matriz

A BT
k=(3 %) 2)
where A, B and C are the same as that defined in (1). Then we have

K=1LT", (3)

- 111 =TI - l{l l%ﬂl
L_<121 122>’ L _< lzTQ>’ @)

where l11 € R™*™ and lyg € R™*"™ are lower triangular matrices, la; € R™*"™,
The matrices l11,l91 and l99 can be easily calculated from the following matrix
equations:

A=1yl], (5)
B =Inlf), (6)
C + Ioy 1T, = 1991%,,. (7)

If we take LL" as the preconditioner of K, it is easily verified that

Iy )
=J, 8
Iy (8)

where I1; € R™*™ and Iyy € R™*™ are identity matrices. This means the “perfect”

K=L'KLT= (

preconditioner for K is the matrix
M =LL", (9)

since the preconditioned matrix K has at most two distinct eigenvalues and the Paige-
Saunders algorithm converges in at most two iterations/2. The matrix LL? is named
as the exact preconditioner for K.

In practice, we will use “inexact” preconditioner, which is derived from the LT"
factorization of an approximation to K. For the inexact preconditioner, we have the
following results. Let Apax(K) denote the maximum eigenvalue of K, A\pin(K) the min-
imum eigenvalue. A1 (K), Ag(K) is the maximum and minimum of |A\(K)| respectively.
The generalized condition number of K is defined by x(K) = [\ (K)/A2(K)].
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Theorem 2.2. Let K,L and L be as those in Theorem 2.1 and let M = LL”.
Then for any symmetric positive definite matrixz C, we have

k(CT'K) < k(C™'M). (10)
Proof. In the following, A ~ B means A is similar to B.
C'K=C " LJL") ~(L"C'L)J = (L,.LT)J ~ LT JL,, (11)

where Ly L1 is the Cholesky factorization of the poisitive definite matrix LT C ' L. Let

i )
L= (" - ),
! <l21 l22
where l~11 € Rnxn7 l~22 € R™*™ and [21 € R™*"_ Then
o= () () -G ) (Ca) (B0)
! lor oo lor 199 lo1 199 2199 lor 199
I )T <l~11 ) <i§1521 gﬂé) T
= (2 AU ) gtz i) g o
(zgl YR yloy 1ylas .
A simple calculation shows that H; is a positive semidefinite matrix. It is followed from

Weyl theorem!¥ that
Amax (LT JL1) < Amax (LT Ly). (12)

On the other hand,
- - - T -
== 1) (o) =2 (e ) (M o) (8 5)
= () () () = e,
lor a2 lor a2 0 ’
here H, is positive semidefinite, then
Amin (LT JL1) > Ain(— L7 Ly). (13)
From (11), (12) and (13), we have
M(CTK) = M (LT JTL1) < Amax(L1 L1) = Amax(C~ 1 M). (14)
Similarly,
K'c=w"tir He ~ @ 1tcr ™) J = (LoL)J ~ LY JL,, (15)

where Ly L1 is the Cholesky factorization of L~'CL~T. Let

I >
Ly= (' . ),
2 <121 lo
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where [1] € R ™ lyo € R™*™ and [y € R™*". Then we have
Amax (K 'C) = Amax (L3 T L3) < Amax (L3 L) = Amax (M ~'C). (16)

and
Amin(K 7 'C) = Amin (L2 JL3) > Amin(—LY Ly) = Amin(—M ~10). (17)
It is followed from (16) and (17) that

1 1

— = MK '0) < dpax(MC) = ————. 18
(@ Tw) Ml ) S Amax( )= N CTA) (18)
The result is derived from (14) and (18) immediately:
K max(C~ M
w0 1K) = 2O K A C7 M) gy

A(CTK) = Ain(C~1M)

Theorem 2.3. Let M and C be positive definite such that |1 —C M|y < €, where

e < 1. Then )
K(CTTM) < 1“. (19)

e

Proof. see [5].
The following result can be easily derived from (10) and (19).
Corollary 2.4. Let K be the same as that in theorem 2.1. LJLT is the LT"

factrization of K, M = LL", and the positive definite matriz C is an approzimation
to M satisfying |[I — C'M||y < e < 1. Then

[a—y

k(CTIK) < re (20)

m

[a—y

m

3. Iterative Methods with Preconditioners

In this section, we present two algorithms with preconditioners for the indefinite
system (1).

3.1 The Preconditioned Paige-Saunders Method

This algorithm known as SYMMLAQ is a conjugate-gradient-like method which can
be applied to indefinite system. To solve Kz = b with preconditioner M = LL”, we
apply SYMMLQ to the system

L 'KL Ty=L"»,

accumulating approximations to the solution z = L~"y. In fact, it need not approxi-
mate, using the transformationz = L~"y, we can have the following implementation.
Algorithm 3.1. (SYMMLQ)
Bo = L 1bll2,q0 = 0,q1 = M 1b/fy,
S 1 =80 — 0,671 = Cy = *1,
z1=z=1Lw =q,r9g=0,75=1.
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step 1. a; = q;‘-Fqu,
rj=(M"'K — a;I)q; — Bj-14j-1,

Bi = IL 2,
if 3; = 0 then stop.
gj+1 = 13/Bj;
step 2. € = ijg/ﬁjfl,
0j = —¢j—2¢j—1Bj—1 + sj—10y,
¥ = —¢j—28j-18j-1 — ¢j—105,

v = (72 + B2)7;
step 3. ¢; =7;/7j
sj = Bi/vji
step 4. z; = —(€5zj—2+ 0;2j-1) /75,
(wj, Wj1) = (W, qj41) <§] Sé) ,
J J
T; = T; 1+ Zjwy;
step 5. if 5 = m + n then stop,
else 7 = j + 1, goto step 1.

To improve the convergence of SYMMLQ), the transformed matrices K = L' KL~
should have a better condition than K, or a more favorable distribution of eigenvalues
(clustered £1). In the next section, we will present the numerical results.

3.2 The UZAWA Method

The algorithm using preconditioner () is presented in the following, which starts
with an arbitray guess pg.

Algorithm 3.2. (UZAWA)

for 4 = 0 untill convergence,do
uiy1 = A7'(f — BTp;)
pit1 = pi + aQ ' (Buiy1 — Cp; — g)
enddo
here, a is a scalar parameter that must be determined prior to the iteration.

The convergence factor of the algorithm is p(I — aQ ' (BA~ !B’ + C)), which has
the smallest value (k — 1)/(k + 1) for the choice a = 2/(A; + A2), where £, A\; and
A2 denote the generalized condition number, maximum and minimum eigenvalues of
Q "(BA BT +C) respectively!'. From (5), (6) and (7), we can derive BA~'B"4+C =
loold,, so if Igold, is taken as preconditioner @ and a = 2/(A\; + Az), the UZAWA
algorithm will converge one step.

In practice, once have got an approximative factorization of K, we can take Q;ll =
(11117)) 7! to replace A~! in the algorithm. Then, we get the following “inexact” version
of the UZAWA algorithm, which starts with uy = 0 and an arbitrary initial guess py:

for ¢+ = 0 until convergence,do
witr = ui + Q' (f — (Au; + B'p;))
pit1 =pi + aQ '(Bu;y1 — Cp; — g)
enddo
In the next section, we will use the “inexact” version of UZAWA algorithm.
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4. Numerical Examples

Here we investigate the effectiveness of the preconditioner described in section 2.
For test purposes, we have used MATLAB in PC486 to implement the SYMMLQ and
UZAWA algorithms.

A special type of matrix K is considered, where n = 200 and m = 100. A is
pentadiagonal and the nonzero entries are given by

Aji41 = Qi1 = -1 fori=1:n— 1,

A i4+10 = Aj4+10,4 = -1 fori=1:n-— 10,
the diagonals are random between 4 and 50. Entries of A that are not defined should be
replaced by zeros. The matrices B and C' are chosen with all entries random between
0 and 1 except that the diagonals of C are between 0 and 30.

We have computed all the eigenvalues of K, M, 'K and My 'K. The eigenvalues
of K range from —103.75 to 63.23, and those of MJIK, M?TIK cluster around =£1
as we have expected. It is evident that the tranformed systems have more favorable
eigenvalue distributions than K. The generalized condition number is given in the
following;:

k(K) = 1.0375e + 7,
K(My 'K) = 1.1654,
w(My 'K) = 1.0073.
Fig.1 and Fig.2 illustrate the behaviors of SYMMLQ and UZAWA on the precon-

ditioned systems respectively. It is evident that for the preconditioned systems, less
number of SYMMLQ and UZAWA iterations is required to reach a certain precision.
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Fig.1. SYMML () method

In the process of LT factorazition of K , two different incomplete cholesky fac-
torizations introduced in [6] are applied to A. The corresponding preconditioners are
denoted as My = LOL;‘)F and M3 = L3L;§F, respectively.
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Fig.2. UZAWA method

The convergence factor of UZAWA without preconditioner(Q) = I) is close to 1, so
the algorithm converges very slowly. The use of preconditioners My and M3 accelerates
the convergence significiantly and the convergence factors are 0.07, 0.003 respectively.

Finally, we point out that in SYMMLQ algorithm, the LANCZOS vector will be
computed. For ill-conditioned system, large number of iterations will lead to orthog-
onality loss and the reothogonalization is necessary. This makes the algorithm more
complicated. For the preconditioned system, the algorithm converges after several it-
erations and the orthogonal loss is trivial, so the reorthogonalization is avoided.

The UZAWA method depends on the choice of parameter «. This makes it more
difficult to implement the algorithm. For preconditioned system, we can take a = 1 as
an estimation.

5. Conclusion

For symmetric indefinite systems of linear equations of the form of (1), we have

shown that the LT, factorization can be used to provide a preconditioner for the Paige-
Saunders algorithm SYMMLQ and UZAWA algorithm. The effect of the preconditioner
is significiant in accelerating the convergence.
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