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STABILITY ANALYSIS OF FINITE ELEMENT METHODS FORTHE ACOUSTIC WAVE EQUATION WITH ABSORBINGBOUNDARY CONDITIONS (PART I)�1)Xiu-min Shao Zhi-ling Lan(Institute of Mathemati
s, A
ademy of S
ien
es, Beijing 100080, China)Abstra
tIn Part I and Part II of this paper initial-boundary value problems of thea
ousti
 wave equation with absorbing boundary 
onditions are 
onsidered. Their�nite element-�nite di�eren
e 
omputational s
hemes are proposed. The stabilityof the s
hemes is dis
ussed and the 
orresponding stability 
onditions are given.Part I and Part II 
on
ern the �rst- and the se
ond-order absorbing boundary
onditions, respe
tively. Finally, numeri
al results are presented in Part II to showthe 
orre
tness of theoreti
al analysis.Key words: Stability, Finite element methods, Wave equation, Absorbing boundary
onditions 1. Introdu
tionIn the numeri
al simulation of wave propagation in unbounded or semi-unboundedmedium it is ne
essary to introdu
e arti�
ial boundaries to obtain �nite 
omputationalregions. Then some boundary 
onditions have to be imposed on these boundaries, whi
hshould eliminate the re
e
tion of waves at arti�
ial boundaries, so that the obtainedsolutions rather a

urately simulate the solutions in the unbounded domains. (That iswhy they are 
alled absorbing boundary 
onditions). The 
onditions on the arti�
ialboundaries should also guarantee the well-posedness of solutions to the di�erentialequations, whi
h is a ne
essary 
ondition for the stability of the �nite di�eren
e or the�nite element approximations.In re
ent thirty years, a variety of absorbing boundary 
onditions for wave equationshave been developed (see [1℄). What is most widely used was given by Clayton andEngquist[2℄, Engquist and Majda [3;4℄, based on the pseudodi�erential operator theory.A hierar
hy of di�erential boundary 
onditions was derived to approximate the bound-ary 
onditions of the pseudodi�erential operator forms. Let the arti�
ial boundary bex = 0, and the domain be t � 0; x � 0: For the a
ousti
 wave equation�2u�t2 � �2u�x2 � �2u�y2 = 0; (1:1)the mentioned 
onditions are the followings:B1ujx=0 = ��u�t � �u�x����x=0 = 0;� Re
eived May 14, 1996.1) Supported By National Natural S
ien
e Foundation of China.



294 X.M. SHAO AND Z.L. LANB2ujx=0 = ��2u�t2 � �2u�t�x � 12 �2u�y2 ����x=0 = 0; (1.2)BN+1ujx=0 = � ��tBNu� 14 �2�y2BN�1u����x=0 = 0:The 
orresponding 
onditions for the elasti
 wave equations are 
ompli
ated, and weare not going to write them here.In [3℄, the well-posedness of (1.2) (i.e., the Clayton-Engquist-Majda 
onditions forthe a
ousti
 wave equation) when N � 3 has been proved. In [5℄, the authors of thispaper generalize (1.2) to the anisotropi
 elasti
 wave equations and have proved that theClayton-Engquist-Majda 
onditions for the elasti
 wave equations are ill posed whenN � 2:In this paper, only the a
ousti
 wave equationL(u) = �2u�x2 + �2u�y2 � 1C2(x; y) �2u�t2 = f(x; y; t) (1:3)is dis
ussed. But some 
on
lusions are signi�
ant also for other wave equations.In numeri
al 
omputations, the equation (1.3) with absorbing boundary 
onditionsis approximated usually by �nite di�eren
e s
hemes, and seldom by �nite element ap-proa
hes. The author of [6℄ aÆrmed that the main diÆ
ulty 
omes from the order ofthe boundary 
onditions for whi
h it is not easy to derive a weak formulation whi
hprovides a suitable energy estimate. In [6℄, therefore, a third-order energy is intro-du
ed, and a �rst-order hyperboli
 system of 7 unknowns is derived, for whi
h �niteelement methods 
an be applied. Obviously, this approa
h is not desirable for pra
ti
al
omputation.In this paper, �nite element-�nite di�eren
e s
hemes for the equation (1.3) withthe �rst and se
ond order absorbing boundary 
onditions of (1.2) are proposed. Theirstability is dis
ussed, and the stability 
onditions are given. The Part I is devotedto the �rst order absorbing boundary 
ondition, and the Part II to the se
ond orderboundary 
ondition. The numeri
al results are presented in the Part II, whi
h showthe 
orre
tness of the theoreti
al 
on
lusions.For the sake of simpli
ity, we shall restri
t ourselves to the two-dimensional 
ase.The three-dimensional 
ase 
an be dis
ussed similarly without any diÆ
ulty.2. Finite Element-Finite Di�eren
e S
hemesLet the 
omputational domain be 
;
 = f(x; y) : �a < x < a; 0 < y < bg;�1 = f(x; y): �a � x � a; y = 0g be a natural boundary, and �
0 = �
=�1 be thearti�
ial boundary.Introdu
e the inner produ
t notations(u; v) = Z Z
 uvdxdy; hu; vi = Z�
0 uvds:De�ne the spa
e H1;0(
) = fv(x; y) 2 H1(
) : vj�1 = 0g. It is obvious that H1;0(
) isa 
losed subspa
e of H1(
):In the following dis
ussion, let n denote outer normal dire
tion, and s tangentialdire
tion of the boundary �
0. Suppose that in (1.3), C(x; y) 2 L1(
) and C(x; y) > 0;
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) � C([0; T ℄). Consequently, f(x; y; t) 2 L2(
) � C([0; T ℄). Hen
ef(x; y; t) 2 L1(
) � C([0; T ℄). For 
onvenien
e of 
omputation, we write f(x; y; t) asf(x; y; t)=C2(x; y); where f(x; y; t) = C2(x; y)f(x; y; t):Corresponding to the �rst-order absorbing boundary 
ondition in (1.2), 
onsider thefollowing generalized solution of initial-boundary value problem of the equation (1.3).Problem I. Find a fun
tion u(x; y; t) whi
h is se
ond-order 
ontinuously di�eren-tiable with respe
t to t when (x; y) 2 
 and belongs to H1;0(
) for any �xed t 2 [0; T ℄;and satis�es the following equations8>>>>>>>>><>>>>>>>>>:
� 1C2 �2u�t2 ; v�+ (5u;5v) � h�u�n; vi+ � 1C2 f; v� = 0D�u�n + 1C �u�t ; vE = 0(u; v)jt�0 = 0��u�t ; v�jt�0 = 0 (2.1)

for every v(x; y) 2 H1;0(
):Remark. Repla
ing the homogeneous Diri
hlet boundary 
ondition on �1 in theproblem I, we 
an 
onsider the boundary 
ondition uj�1 = g(x; t). In this 
ase, u shouldbe repla
ed by u� u0, f by f + L(u0), where u0(x; y; t) is a fun
tion su
h that1) u0 2 H1(
) with respe
t to x and y;2) u0j�1 = g(x; t):Dis
retise the spatial variables x and y by using the �nite element method. Denotethe nodes by Pi (i = 1; � � � ;m). Suppose that Sh is a �nite element spa
e, Sh 2 H1(
),and its basis fun
tions are 'i (i = 1; � � � ;m) whi
h possess the feature 'i(Pj) = Æij .Take 'i as the fun
tion v in (2.1) (ex
ept those 'i whi
h 
orrespond to the nodes on�1). Find the solution of the problem I in the subspa
e Sh. Then the problem isredu
ed to the following initial value problem of ODEsI 0 : 8>><>>: M ��U +SU �W =MG(t)W +MB _U = 0U(0) = Ut(0) =W (0) = 0 (2.2)where U is the nodal unknown ve
tor, M the mass matrix, S the sti�ness matrix, MBthe boundary mass matrix, and W the ve
tor related with the normal derivative onthe arti�
ial boundary. The elements of the matri
es M;S;MB and the ve
tor W are,respe
tively, Mij = Z Z
 1C2'i'jdxdy; Sij = Z Z
5'i � 5'jdxdy;(MB)ij = Z�
0 1C'i'jds (i; j = 1; 2 � � � ;m); (2.3)Wi = Z�
0 �u�n'idS (i = 1; � � � ;m); (2.4)and G(t) is a ve
tor whi
h 
onsists of the values of the fun
tion f(x; y; t) at nodes.In the next se
tion, the following �nite element spa
es will be 
on
erned:
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tions: Let (xi; yi) (i = 1; 2; 3) be theverti
es of the triangle. Then the basis fun
tions 'i(x; y) (i = 1; 2; 3) of the elementare the followings:�(x; y) = '1(x; y) = 124f(y2 � y3)x� (x2 � x3)y + x2y3 � x3y2g;�(x; y) = '2(x; y) = 124f(y3 � y1)x� (x3 � x1)y + x3y1 � x1y3g; (2.5)�(x; y) = '3(x; y) = 124f(y1 � y2)x� (x1 � x2)y + x1y2 � x2y1g;where 4 is the dire
tive area of triangle, �; � and � are usually 
alled bary
entri

oordinates. The mapping (2.5) transforms the element e in (x; y) 
oordinates into the
anoni
al right triangle ê in (�; �) 
oordinates.2) Isoparametri
 quadrilateral elements and bilinear basis fun
tions: Let'i(�; �) = 14(1 + �i�)(1 + �i�) (i = 1; 2; 3; 4)�1 = �4 = �1 = �2 = 1; �2 = �3 = �3 = �4 = �1: (2.6)The same polynomials 'i(�; �) (i = 1; 2; 3; 4) of se
ond degree are used for the trans-formation of 
oordinates as for the basis fun
tions within ea
h element. That is,x = 4Xi=1 xi'i(�; �); y = 4Xi=1 yi'i(�; �); u = 4Xi=1 ui'i(�; �): (2.7)Then (2.7) maps the square ê with the verti
es (1; 1); (�1; 1); (�1;�1) and (1;�1) inthe (�; �) plane onto the quadrilateral element e with the verti
es (xi; yi) (i = 1; 2; 3; 4)in the (x; y) plane.We 
onsider the wave speed C as a 
onstant in ea
h element. Through a lumpingpro
ess the matri
es M and MB are repla
ed by diagonal matri
es. In the 
ase oftriangle elements mentioned above, the entri
es of element mass matrix areM eij = 8<: 43C2 i = j0 i 6= j; (2.8)and the entri
es of element boundary mass matrix are(MB)eij = 8<: h2C i = j0 i 6= j; (2.9)where h is the mesh size of a boundary element. In the 
ase of isoparametri
 quadri-lateral elements, the 
orresponding entri
es areM eij = ( 24C2 i = j0 i 6= j (2.10)and (2.9), respe
tively.
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retise the time variable in (2.3) by using the �nite di�eren
e s
heme8>>>>>><>>>>>>: Un+1 � Un4t = V n+1MV n+1 � V n4t + SUn �W n =MGnW n+1 +MBV n+1 = 0: (2.11)That is, 8><>: MV n+1 =MV n �4tSUn +4tW n +4tMGnUn+1 = Un +4tV n+1W n+1 = �MBV n+1: (2:11)0The initial values U0; V 0 and W 0 are zero. Utilizing the formulas (2.11)0, Un+1; V n+1and W n+1 
an be obtained su

essively from Un; V n and W n.3. Stability of the S
hemes (2.11)In this se
tion we will give the stability 
ondition of the s
heme (2.11) for the general�nite element spa
es and then for two 
on
rete �nite element spa
es mentioned in thelast se
tion.When �nite element methods are used, the 
hoi
e of mesh size h mainly dependson the a

ura
y requirement. For example, ten or more grid points per wavelength arene
essary. After h has been determined, the stability 
onditions are, in fa
t, 
onditionswhi
h 4t should satisfy.In the following dis
ussions, �max and �min denote the maximum and minimumeigenvalues of a matrix, hmax and hmin the maximum and minimum element sizes,Cmax and Cmin the maximum and minimum wave speeds, respe
tively. F : (�; �) 2ê ! (x; y) 2 e is a mapping from a 
anoni
al element ê onto a element e in (x; y)-
oodinates, whi
h has the formula (2.5) and (2.7) for the triangle and isoparametrixquadrilateral elements, respe
tively. JF is the Ja
obian of F , and jJF j = det(JF ): Weuse the following notations as usual:jJF j0;1;ê = sup(�;�)2ê jJF j;jF j1;1;ê = sup(�;�)2êmaxn�x�� ; �x�� ; �y�� ; �y��o:Similar notations jJF�1 j0;1;e and jF�1j1;1;e will be used for the inverse of F . Denoteu(x(�; �); y(�; �)) by û(�; �):Lemma 1. For the �nite element spa
e of triangle elements and linear basis fun
-tions, the following inequalities�max(S) � 6qhmaxhmin sin � ; �min(M) � h2min sin �6C2max ; �max(MB) � hmaxCmin (3.1)are valid, where q is the maximum number of elements whi
h meet at any node, and �is the minimum interior angle of triangle elements.



298 X.M. SHAO AND Z.L. LANProof. First, 
onsider the maximum eigenvalue of the sti�ness matrix S. As is wellknown, �max(S) = maxU2Rm UTSUUTU : (3:2)For the unknown fun
tion u(x; y; t) and the nodal unknown ve
tor U , we haveUTSU =Xe juj21;e: (3:3)It is easy to prove that juj21;e � 4jF�1j21;1;ejJF j0;1;êjûj21;ê. From (2.5),jF�1j1;1;e � hemax24 :Sin
e jJF j = 24 � hemaxhemin sin �, we obtainjuj21;e � 4hemaxhemin sin � jûj21;ê = 4hemaxhemin sin � (U ê)TS êU ê� 4hemaxhemin sin ��max(S ê)(U ê)TU ê = 4hemaxhemin sin ��max(S ê)(U e)TU e;where U e is the nodal unknown ve
tor of element e, S ê is the sti�ness matrix of 
anon-i
al element ê, S ê = 12 0� 1 �1 0�1 2 �10 �1 1 1A (3:4)(or the matri
es whi
h are obtained from the above matrix by permulations). It is easyto get that �max(S ê) = 3=2. Therefore,juj21;e � 6hemaxhemin sin � (U e)TU e:From (3.2) and (3.3), we 
an get�max(S) � 6qhmaxhmin sin � ;whi
h is the �rst inequality of (3.1).The mass matrixM and the boundary mass matrixMB are both diagonal matri
es.A node is at least a vertex of one element and a boundary node is at most vertex oftwo elements. Considering this fa
t and utilizing the expressions (2.8) and (2.9) for theentries of M and MB , we have the last two inequalities of (3.1), whi
h 
ompletes theproof.Lemma 2. For the �nite element spa
e of isoparametri
 quadrilateral elements andbilinear basis fun
tions, the following inequalities�max(S) � 4�2qsin � ; �min(M) � h2min4C2max ; �max(MB) � hmaxCmin (3.5)
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h meet at any node, � isthe minimum interior angle of elements, and� = maxe �e = maxe hemaxhemin ; (3:6)hemax and hemin are the maximum and minimum mesh sizes of the element e, respe
tively.Proof. First, dis
uss the maximum eigenvalue of the sti�ness matrix S. For ea
helement e, we have �x�� = 14(b11 + b12�); �y�� = 14(b21 + b22�);�x�� = 14(b31 + b32�); �y�� = 14(b41 + b42�); (3.7)where b11 = x1 � x2 � x3 + x4; b12 = x1 � x2 + x3 � x4;b21 = y1 � y2 � y3 + y4; b22 = y1 � y2 + y3 � y4;b31 = x1 + x2 � x3 � x4; b32 = x1 � x2 + x3 � x4;b41 = y1 + y2 � y3 � y4; b42 = y1 � y2 + y3 � y4 (3.8)from (2.6) and (2.7). The dire
t 
omputation by using (3.7) and (3.8) 
an derive thatthe Ja
obian determinant jJF j of the transformation F is a linear fun
tion of � and �, sothat its maximum and minimummust be at the verti
es of the quadrilateral. Denote theverti
es of the quadrilateral element by Pi(i = 1; 2; 3; 4) and the 
orresponding interiorangles by �i(i = 1; 2; 3; 4). Let P5 = P1. It 
an be obtained from dire
t 
omputationthat jJF (Pi)j = 14 jPiPi�1j � jPiPi+1j sin �i (i = 1; 2; 3; 4): (3:9)Therefore, jJF j � 14(hemin)2 sin �: (3:10)The Ja
obian of the transformation F�1 isJF�1 = 14jJF j � b41 + b42� �(b31 + b32�)�(b21 + b22�) b11 + b12� � ;whi
h implies �u�x = 14jJF jn(b41 + b42�)�u�� � (b31 + b32�)�u��o;�u�y = 14jJF jn� (b21 + b22�)�u�� + (b11 + b12�)�u�� o: (3.11)It is obvious that jbi1 + bi2�j � 2hemax (i = 3; 4);jbi1 + bi2�j � 2hemax (i = 1; 2) (3.12)



300 X.M. SHAO AND Z.L. LANwhen �1 � �; � � 1: From (3.10){(3.12),juj21;e � 4�2esin � jûj21;ê = 4�2esin � (U ê)TS êU ê� 4�2esin ��max(S ê)(U ê)TU ê = 4�2esin ��max(S ê)(U e)TU e;where the notation �e is de�ned by (3.6), and S ê is the sti�ness matrix of 
anoni
alelement ê, S ê = 16 0BB� 4 �1 �2 �1�1 4 �1 �2�2 �1 4 �1�1 �2 �1 4 1CCA (3.13)It is easy to �nd that �max(S ê) = 1; so thatjuj21;e � 4�2esin � (U e)TU e:It follows that UTSU =Xe juj21;e � 4q�2sin � UTU;where � = maxe �e: Finally, we have�max(S) � 4q�2sin � :From (2.10) and (2.9) we 
an get the estimates of the minimum and maximumeigenvalues of the mass matrix M and the maximum eigenvalue of the boundary massmatrix MB : They are the se
ond and third inequalities in (3.5). This 
ompletes theproof.For the uniform right-angled triangle and square elements, by using dire
t proofs,rather than 
onsidering them as spe
ial 
ases of the Lemma 1 and 2, we 
an obtainbetter results than those in the Lemma 1 and 2.Lemma 3. For the �nite element spa
e of right-angled triangle elements and linearbasis fun
tions, the following inequalities�max(S) � 9; �min(M) � h26C2 ; �max(MB) � hC (3.14)are valid.Proof. For the nodal unknown ve
tor U , we haveUTSU =Xe (U e)TSeU e � q�max(Se)UTU;where q is the maximum number of elements whi
h meet at a node, and Se the elementsti�ness matrix, as in the Lemma 1. In the present 
ase, q = 6 and Se is the matrix(3.4), so that �max(Se) = 3=2. From (3.2), the �rst inequality of (3.14) 
an be obtained.The se
ond and third inequalities are obvious, whi
h 
ompletes the proof.
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e of square elements and bilinear basis fun
-tions, the following inequalities�max(S) � 4; �min(M) � h24C2 ; �max(MB) � hC (3.15)are valid.Proof. The approa
h is similar to the Lemma 1. We have only to noti
e that inthe present 
ase, q = 4 and Se is the matrix (3.13), so that �max(Se) = 1: The proof is
ompleted.Now we are on the position to investigate the stability properties of the s
hemes(2.11).De�ne the following inner produ
ts and norms of ve
tors:(U; V )2 = UTV; kUk2 = q(U;U)2;(U; V )M = UTMV; kUkM = q(U;U)M ;(U; V )S = UTSV; kUkS = q(U;U)S :The latter two de�nitions of norm are reasonable be
ause of the positive-de�nitenessof the matri
es S and M . Sin
e M is a diagonal matrix, we have1�max(M)kUk2M � kUk2 � 1�min(M)kUk2M :Theorem 1. If the 
ondition�max(S)4 t2 + 2�max(MB)4 t� 4�min(M) � �" < 0 (3:16)or 4t � ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) � " (3:16)0is satis�ed, where " is any given positive number small enough, then for any T 2 R bigenough and N 2 Z+, 0 < (N + 1)4 t < T , there exists a 
onstant C1(") su
h that thesolution of (2:11) is subje
t to the inequalitymax0�n�N kUn+1kM + max0�n�N kV n+1kM � C1(")kfk1; (3:17)i.e., the s
heme (2.11) is stable.Proof. From (2.11),MUn+1 � 2Un + Un�14t2 + SUn +MBUn � Un�14t =MGn: (3:18)Multiply the equation (3.18) by 4t�Un+1 � Un�14t �T , and sum the obtained equationfrom 0 to N with respe
t to n. Sin
e M is a diagonal matrix, the �rst term of theleft-hand side 
an be redu
ed to4t�Un+1 � Un�14t �TMUn+1 � 2Un + Un�14t2



302 X.M. SHAO AND Z.L. LAN=�Un+1 � Un4t �TMUn+1 � Un4t � �Un � Un�14t �TMUn � Un�14t :After the summation, we obtain4t NXn=0�Un+1 � Un�14t �TMUn+1 � 2Un + Un�14t2 = �UN+1 � UN4t �TMUN+1 � UN4t :Here the 
ondition U0 = U�1 = 0 has been used. For the se
ond term of the left-handside we have4t Un+1 � Un�14t !T SUn =12f(Un+1)TSUn+1 � (Un+1 � Un)TS(Un+1 � Un)� (Un�1)TSUn�1 + (Un � Un�1)TS(Un � Un�1)g:After the summation it be
omes4t NXn=0�Un+1 � Un�14t �TSUn =12(UN+1)TSUN+1 + 12(UN )TSUN� 12(UN+1 � UN )TS(UN+1 � UN )=(UN+1)TSUN+1 � (UN+1)TS(UN+1 � UN ):For the third term, it 
an be proved that4t�Un+1 � Un�14t �TMBUn � Un�14t = 124 t(Un+1 � Un�1)TMB(Un+1 � Un�1)+ 124 t(Un � Un�1)TMB(Un � Un�1)� 124 t(Un+1 � Un)TMB(Un+1 � Un):It follows that 4t NXn=0�Un+1 � Un�14t �TMBUn � Un�14t=4t2 NXn=0 �Un+1 � Un�14t �TMB�Un+1 � Un�14t �� 4t2 �UN+1 � UN4t �TMB�UN+1 � UN4t �:Thus the equation (3.18) is redu
ed to�UN+1 � UN4t �T�M � 4t2 MB�UN+1 � UN4t + (UN+1)TSUN+1� (UN+1)TS(UN+1 � UN ) + 4t2 NXn=0
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 Wave Equation ... 303� �Un+1 � Un�14t �TMB�Un+1 � Un�14t �=4 t NXn=0�Un+1 � Un�14t �TMGn: (3.19)It is well known that�UN+1 � UN4t �T�M � 4t2 MB�UN+1 � UN4t�n1� 4t2 �max(MB)�min(M) o


UN+1 � UN4t 


2M ;(UN+1)TS(UN+1 � UN ) = (UN+1; UN+1 � UN )S � kUN+1kS � kUN+1 � UNkS ;and 4t NXn=0 Un+1 � Un�14t !T MB  Un+1 � Un�14t ! � 0:If we take 4t su
h that � = 1� 4t2 �max(MB)�min(M) > 0; (3:20)then left of (3.19) �� 




UN+1 � UN4t 




2M + kUN+1k2S � kUN+1kS � kUN+1 � UNkS�� 




UN+1 � UN4t 




2M + kUN+1k2S�s �max(S)�min(M) 4 tkUN+1kS 




UN+1 � UN4t 




M�(1� 4t2p�s �max(S)�min(M)) �8<:� 




UN+1 � UN4t 




2M + kUN+1k2S9=;+ 4t2p�s �max(S)�min(M) (p� 




UN+1 � UN4t 




M � kUN+1kS)2�(1� 4t2p�s �max(S)�min(M))� 




UN+1 � UN4t 




2M : (3.21)Take 4t on
e again su
h that1� 4t2p�s �max(S)�min(M) � " > 0;where " is any given positive number small enough. It implies�max(S)4 t2 + 2(1� ")2�max(MB)4 t� 4(1� ")2�min(M) � 0; (3:22)



304 X.M. SHAO AND Z.L. LANi.e.,4t � �(1� ")2�max(MB) + (1� ")p(1� ")2�2max(MB) + 4�max(S)�min(M)�max(S) : (3:23)It is easy to see that (3.22) (
onsequently, (3.23)) 
ontains (3.20). (3.23) 
an be repla
edby the following stronger 
ondition:4t � (1� ")2��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) : (3:24)Introdu
e the notationD = ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) :(3.24) 
an be rewritten into4t � D � "0 = ��max(MB) +p�2max(MB) + 4�max(S)�min(M)�max(S) � "0; (3:25)where "0 = (2"� "2)D. It is equivalent to�max(S)4 t2 + 2�max(MB)4 t� 4�min(M) � �"00 < 0; (3:26)where "00 _=2"0q�2max(MB) + 4�max(S)�min(M)(in whi
h the terms of orders higher than 1 of "0 in the Toylor expansion are negle
ted).(3.26) and (3.25) are just the 
onditions (3.16) and (3.16)', respe
tively. Denote�0 = 1� D � "02 �max(MB)�min(M) :Then from (3.21), left of (3.19) � "�0 




UN+1 � UN4t 




2M : (3:27)For the right-hand side of (3.19) we have4t NXn=0 Un+1 � Un�14t !T MGn � 24 t NXn=0 Un+1 � Un4t !T+MGn+;where the notation ( )+ denotes a ve
tor the entries of whi
h are absolute values ofentries of the original ve
tor. Obviously, jGni j � C2maxkfk1 (i = 1; � � � ;m). Introdu
ethe m-dimensional ve
tor E = f1; 1; � � � ; 1gT . Then4t NXn=0 Un+1 � Un�14t !T MGn � 24 t NXn=0 Un+1 � Un4t !T+ � C2maxkfk1ME
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Un+1 � Un4t 




M � C2maxkfk1kEkM� "�0 4 t NXn=0 




Un+1 � Un4t 




2M + 1"�0C4maxkfk21 4 t NXn=0 kEk2M : (3.28)From (3.27) and (3.28), it is obtained that




UN+1 � UN4t 




2M � 4t NXn=0 




Un+1 � Un4t 




2M +Kkfk21;K = C2max"2�20 4 t NXn=0 kEk2M :From the dis
rete Gronwall's inequality[7℄ we getmax0�n�N kV n+1k2M = max0�n�N 




Un+1 � Un4t 




M � Kkfk21 expf2Tg = C(")kfk21:That is max0�n�N kV n+1kM � qC(")kfk1: (3:29)Moreover, kUn+1kM � 4tfkV n+1kM + kV nkM + � � �+ kV 1kMg. It followsmax0�n�N kUn+1kM � TqC(")kfk1: (3:30)Adding (3.29) and (3.30), we obtain (3.17), whi
h 
ompletes the proof.Theorem 2. Consider the �nite element spa
e of triangle elements and linear basisfun
tions. If the 
onditionCmax 4 thmin � sin �6q CmaxCmin 8<:�1 +s1 + 4q hminhmax �CminCmax�29=;� " (3:31)is satis�ed, then the s
heme (2.11) is stable in the sense of (3.17) . Here � is theminimum interior angle of elements, q is the maximum number of elements at nodes,and " is any given positive number small enough.Proof. The 
on
lusion of theorem 
an be obtained dire
tly from Theorem 1 andLemma 1.Corollary. If C(x; y) is 
onstant and the domain is subdivided into uniform right-angled triangle elements with mesh size h, then the stability 
ondition of the s
heme(2:11) be
omes C 4 th � 0:18: (3:32)



306 X.M. SHAO AND Z.L. LANProof. Repeat the proof of Theorem 1 and utilize the inequalities of the Lemma 3.Then (3.32) 
an be obtained.Theorem 3. Consider the �nite element spa
e of isoparametri
 quadrilateral ele-ments and bilinear basis fun
tions. If the 
onditionCmax 4 thmin � �CmaxCmin hmaxhmin 8<:�1 +s1 + 1� �CminCmax�2 � hminhmax�29=;� ";� = sin �4�2q (3.33)is satis�ed, then the s
heme (2:11) is stable in the sense of (3:17). Here � is theminimum interior angle of elements, q is the maximum number of elements at nodes,� is de�nd as in (3:6), and " is any given positive number small enough.Proof. It is a dire
t 
onsequen
e of Theorem 1 and Lemma 2.Corollary. If C(x; y) is 
onstant and the elements are all squares with mesh sizeh, then the stability 
ondition of the s
hemes (2:11) be
omesC 4 th � 0:3: (3:34)Proof. If the Lemma 4 is utilized in the proof of Theorem 1, then (3.34) 
an beobtained.The authors thank Zhang Guan-quan for his important opinions after reading thepaper. Referen
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