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STABILITY ANALYSIS OF FINITE ELEMENT METHODS FOR
THE ACOUSTIC WAVE EQUATION WITH ABSORBING
BOUNDARY CONDITIONS (PART I)*!
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Abstract

In Part I and Part II of this paper initial-boundary value problems of the
acoustic wave equation with absorbing boundary conditions are considered. Their
finite element-finite difference computational schemes are proposed. The stability
of the schemes is discussed and the corresponding stability conditions are given.
Part I and Part II concern the first- and the second-order absorbing boundary
conditions, respectively. Finally, numerical results are presented in Part II to show
the correctness of theoretical analysis.
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1. Introduction

In the numerical simulation of wave propagation in unbounded or semi-unbounded
medium it is necessary to introduce artificial boundaries to obtain finite computational
regions. Then some boundary conditions have to be imposed on these boundaries, which
should eliminate the reflection of waves at artificial boundaries, so that the obtained
solutions rather accurately simulate the solutions in the unbounded domains. (That is
why they are called absorbing boundary conditions). The conditions on the artificial
boundaries should also guarantee the well-posedness of solutions to the differential
equations, which is a necessary condition for the stability of the finite difference or the
finite element approximations.

In recent thirty years, a variety of absorbing boundary conditions for wave equations
have been developed (see [1]). What is most widely used was given by Clayton and
Engquistm, Engquist and Majda [3:4] based on the pseudodifferential operator theory.
A hierarchy of differential boundary conditions was derived to approximate the bound-
ary conditions of the pseudodifferential operator forms. Let the artificial boundary be
z = 0, and the domain be ¢ > 0,z < 0. For the acoustic wave equation

_____ =0, (1.1)

the mentioned conditions are the followings:

ou Ou
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0?u  0*u  10%u
BQU‘I:O = (W — —8t8$ — 58—312) 0 = 0’ (1.2)
0 1 02
By y1ulz=0 = (EBNU - Za—yQBNflu)‘ .= 0.

The corresponding conditions for the elastic wave equations are complicated, and we
are not going to write them here.

In [3], the well-posedness of (1.2) (i.e., the Clayton-Engquist-Majda conditions for
the acoustic wave equation) when N < 3 has been proved. In [5], the authors of this
paper generalize (1.2) to the anisotropic elastic wave equations and have proved that the
Clayton-Engquist-Majda conditions for the elastic wave equations are ill posed when
N > 2.

In this paper, only the acoustic wave equation

0’u  0’u 1 0%u

- :f(.’E,’y,t) (13)

L = — JRE— R
() Ox? + oy? C?(z,y) Ot?

is discussed. But some conclusions are significant also for other wave equations.

In numerical computations, the equation (1.3) with absorbing boundary conditions
is approximated usually by finite difference schemes, and seldom by finite element ap-
proaches. The author of [6] affirmed that the main difficulty comes from the order of
the boundary conditions for which it is not easy to derive a weak formulation which
provides a suitable energy estimate. In [6], therefore, a third-order energy is intro-
duced, and a first-order hyperbolic system of 7 unknowns is derived, for which finite
element methods can be applied. Obviously, this approach is not desirable for practical
computation.

In this paper, finite element-finite difference schemes for the equation (1.3) with
the first and second order absorbing boundary conditions of (1.2) are proposed. Their
stability is discussed, and the stability conditions are given. The Part I is devoted
to the first order absorbing boundary condition, and the Part II to the second order
boundary condition. The numerical results are presented in the Part II, which show
the correctness of the theoretical conclusions.

For the sake of simplicity, we shall restrict ourselves to the two-dimensional case.
The three-dimensional case can be discussed similarly without any difficulty.

2. Finite Element-Finite Difference Schemes

Let the computational domain be Q,Q = {(z,9) : —a < z < a,0 < y < b};
I'y = {(z,y): —a < z < a,y = 0} be a natural boundary, and 9Q' = 99/T"; be the
artificial boundary.

Introduce the inner product notations

(u,v) = //uvd:z:dy, (u,v) :/ uvds.
J JQ oY

Define the space H"*(Q) = {v(z,y) € H'(Q) : v|p, = 0}. It is obvious that H"?(Q) is
a closed subspace of H!(Q).

In the following discussion, let n denote outer normal direction, and s tangential
direction of the boundary 9€2'. Suppose that in (1.3), C(z,y) € L>®(2) and C(z,y) > 0;
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f(z,y,t) € HJ(Q) x C([0,7]). Consequently, f(z,y,t) € L*(Q) x C([0,T]). Hence
fz,y,t) € L*(Q) x C([0,T]). For convenience of computation, we write f(z,y,t) as

flz,y.1)/C*(z,y), where f(z,y,t) = C*(z,y)f(2,y.1).

Corresponding to the first-order absorbing boundary condition in (1.2), consider the
following generalized solution of initial-boundary value problem of the equation (1.3).

Problem I. Find a function u(z,y,t) which is second-order continuously differen-
tiable with respect to ¢ when (z,y) € Q and belongs to H'*(Q) for any fixed ¢ € [0, 77,
and satisfies the following equations
(/1 d%u Ju 1 -

(Ew,v) + (Vu, vv) — <%,v) + (Ef,v) =0
(Ju Louy
on  C Ot’
(u,v)[t<0 =0
ou
[ (Gerv)leso =0
for every v(z,y) € H'0(Q).

Remark. Replacing the homogeneous Dirichlet boundary condition on I'y in the
problem I, we can consider the boundary condition u|p, = g(x,t). In this case, u should
be replaced by u — ug, f by f + L(ug), where ug(z,y,t) is a function such that

1) ug € H'(Q2) with respect to = and y;

2) wolr, — gl 1),

Discretise the spatial variables £ and y by using the finite element method. Denote
the nodes by P; (i = 1,---,m). Suppose that S” is a finite element space, S" € H'(Q),
and its basis functions are ¢; (i = 1,---,m) which possess the feature ¢;(P;) = d;;.
Take ¢; as the function v in (2.1) (except those ¢; which correspond to the nodes on
I'1). Find the solution of the problem I in the subspace S”. Then the problem is
reduced to the following initial value problem of ODEs

=0 (2.1)

MU +SU - W = MG(t)
I''§ W+ MU =0 (2.2)

U(0) = U (0) =W(0)=0
where U is the nodal unknown vector, M the mass matrix, S the stiffness matrix, Mp
the boundary mass matrix, and W the vector related with the normal derivative on

the artificial boundary. The elements of the matrices M, S, Mp and the vector W are,
respectively,

1
Mi; ://Q@‘Pi‘ﬂjd-fdya Sij Z//Qvgoi-v%dmdy,

1 ..
oY
Joqy On

and G(t) is a vector which consists of the values of the function f(z,v,t) at nodes.
In the next section, the following finite element spaces will be concerned:
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1) Triangle elements and linear basis functions: Let (z;,v;) (i = 1,2,3) be the
vertices of the triangle. Then the basis functions ¢;(z,y) (i = 1,2,3) of the element
are the followings:

1
E(m,y) = p1(z,y) = oA (y2 — y3)x — (w2 — 23)y + Toyz — T3Y2},

1

n(z,y) = pa(z,y) = A (yz3 —y1)r — (23 — 1)y + 23y1 — T1Y3}, (2.5)

1
C(z,y) = gs(@,y) = 511 = y2)o — (21 — 22)y + 212 — 22t },
where A is the directive area of triangle, £,n and ¢ are usually called barycentric
coordinates. The mapping (2.5) transforms the element e in (z,y) coordinates into the
canonical right triangle é in (£,7) coordinates.
2) Isoparametric quadrilateral elements and bilinear basis functions: Let

piln) = L+ &1 +mim) (1 =1,2,39
Gi=&G=m=mp=1 &=8=p=mn=-1 (2.6)

The same polynomials ¢;(&,n) (i = 1,2,3,4) of second degree are used for the trans-
formation of coordinates as for the basis functions within each element. That is,

4 4 4
=Y zigi&n), y=Y vipi(&m), u="Y uipi(&,n). (2.7)
i=1 =1 i=1

Then (2.7) maps the square é with the vertices (1,1),(—1,1),(—1,—1) and (1,—1) in
the (£,7n) plane onto the quadrilateral element e with the vertices (z;,y;) (1 = 1,2,3,4)
in the (z,y) plane.

We consider the wave speed C' as a constant in each element. Through a lumping
process the matrices M and Mp are replaced by diagonal matrices. In the case of
triangle elements mentioned above, the entrices of element mass matrix are

A
— =
Mif} = 3C? . ' (28)
0 L F 7,
and the entrices of element boundary mass matrix are
h
e 5~ =1
(Mp)j; =4 2C (2.9)
0 i#7

where h is the mesh size of a boundary element. In the case of isoparametric quadri-
lateral elements, the corresponding entrices are

e ) g 1=
M = { 102 (2.10)

and (2.9), respectively.
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Discretise the time variable in (2.3) by using the finite difference scheme

Un-l—l —_yn _ Vn—|—1

At

ntl _yn 2.11
WV sy = g @1

Wntl 4 MVt = 0.

That is,
MV = MV — ALSU™ + AtW™ + AtMG"
untt =gn + Atynt! (2.11)’
Wl — —MpVHL

The initial values U, V? and W? are zero. Utilizing the formulas (2.11), U»+! ynt!
and W"*! can be obtained successively from U™, V" and W".

3. Stability of the Schemes (2.11)

In this section we will give the stability condition of the scheme (2.11) for the general
finite element spaces and then for two concrete finite element spaces mentioned in the
last section.

When finite element methods are used, the choice of mesh size h mainly depends
on the accuracy requirement. For example, ten or more grid points per wavelength are
necessary. After h has been determined, the stability conditions are, in fact, conditions
which At should satisfy.

In the following discussions, Apax and Api, denote the maximum and minimum
eigenvalues of a matrix, hpax and hpi, the maximum and minimum element sizes,
Chax and Chyi, the maximum and minimum wave speeds, respectively. F : (§,n) €
¢ — (z,y) € e is a mapping from a canonical element é onto a element e in (z,y)-
coodinates, which has the formula (2.5) and (2.7) for the triangle and isoparametrix
quadrilateral elements, respectively. Jp is the Jacobian of F., and |Jp| = det(Jy). We
use the following notations as usual:

|JFl0,00,6 = sup |JF|,

(&mee
Or Oxr dy Oy
Flice= sup max{ —, —, —, — -
Flicos = oo, Ve o' 06 on )

Similar notations |Jg-1g 00, and |F71‘1,oo,e will be used for the inverse of F. Denote

u(z(&,m),y(&,m)) by a(&n).

Lemma 1. For the finite element space of triangle elements and linear basis func-
tions, the following inequalities

6qhmax h2. sinf Bimax
Amax(S) < —d0max_ -y (M) > tminTRT oy (Mp) < 3.1
ma ( ) > hmin sin O mln( ) = 6012113)( ma ( B) > Cmin ( )

are valid, where q is the mazimum number of elements which meet at any node, and 0
s the minimum interior angle of triangle elements.
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Proof. First, consider the maximum eigenvalue of the stiffness matrix S. As is well
known,

ur'su

Amax(S) = Jax T (3.2)
For the unknown function u(z,y,t) and the nodal unknown vector U, we have
UTSU => " juli,. (3.3)
e

It is easy to prove that |ulf , < 4|F*1\%’OO’C|JF|0’OO,é|a\%7é. From (2.5),

e

Py e < o,
Since |Jp| = 2A > h%, . hé s, sinf, we obtain
4he 4he A L
2 max ~12 max e\T qérré
— , = — 2% _(U)' S¢U
Wlﬂ-h;nana‘hﬁ h;mﬁnﬁ( )
4he 5 N . 4he .
< A ax (SO (UO)TUS = 22 X (SO) (US)T U,
h¢ ;. sin6 a he s, sinf a

where U¢ is the nodal unknown vector of element e, S¢ is the stiffness matrix of canon-

ical element é,
o ( 1 -1 0 )
Sée=—-1-1 2 -1 (3.4)
2 0 -1 1

(or the matrices which are obtained from the above matrix by permulations). It is easy
to get that Amax(S¢) = 3/2. Therefore,

6ht
2 < max Ue TUe.
1ﬂ—-h;nmn9( )

lu

From (3.2) and (3.3), we can get

6ghmax
Amax(s) S m,
which is the first inequality of (3.1).

The mass matrix M and the boundary mass matrix Mg are both diagonal matrices.
A node is at least a vertex of one element and a boundary node is at most vertex of
two elements. Considering this fact and utilizing the expressions (2.8) and (2.9) for the
entries of M and Mp, we have the last two inequalities of (3.1), which completes the
proof.

Lemma 2. For the finite element space of isoparametric quadrilateral elements and
bilinear basis functions, the following inequalities

40’2q h2~ hmax
AmxS S p ) >\minM ZLHI; >\me S 3.5
w(8) ST Ain(M) > G Aa(Mp) < (35)
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are valid, where q is the maximum number of elements which meet at any node, 0 is
the minimum interior angle of elements, and

he

0 = mMax o, = max —= (3.6)
e e he.
min
e e . _ . .
hiax and he . are the mazimum and minimum mesh sizes of the element e, respectively.

Proof. First, discuss the maximum eigenvalue of the stiffness matrix S. For each
element e, we have

oxr 1 dy 1
9 (b + b Y by +b
0¢ 4( 11 + bi2n), ¢ 4( 91 + boan),
or 1 dy 1
— = —(b b — = —(b b 3.7
an 4(31+ 32€), n 4(41+ 12€), (3.7)
where
bi1 =11 — T2 — T3 + T4, big =11 — T2 + T3 — T4,
bo1 = Y1 — Y2 — Y3 + Y4, bas = y1 — Y2 + Y3 — Y4,
b31 =1 + 22 — T3 — T4, b3o = T1 — T2 + T3 — T4,
byt =y1 + Y2 — Y3 — ya, big =y1 — Y2 +ys —ya (3.8)

from (2.6) and (2.7). The direct computation by using (3.7) and (3.8) can derive that
the Jacobian determinant |J| of the transformation F' is a linear function of ¢ and 7, so
that its maximum and minimum must be at the vertices of the quadrilateral. Denote the
vertices of the quadrilateral element by P;(i = 1,2,3,4) and the corresponding interior
angles by 6;(i = 1,2,3,4). Let P; = P;. It can be obtained from direct computation
that

1 . )
‘JF(B” = Z|PZB,1‘ . |P2Pz+1| sm@i (Z == 1,2, 3,4) (39)
Therefore,
1
\Jp| > Z(hfnin)Qsine. (3.10)

The Jacobian of the transformation F~! is

g 1 ( bar + ba2é  —(ba +b32§)>
E 41Jp| \ —(b21 + baan) b11 + b1an ’
which implies
ou 1 ou ou
U 2 L bay + bao€) 2L (b1 + baam) 22
92 4\JF\{( 41 + 426)85 (b31 + 327’)87)}’
ou ou ou
U 2L oy + ban€) 22 4 (biy + bram) 22\, 3.11
oy 4\JF\{ (ba1 + 225)8§+(11+ 1277)877} (3.11)
It is obvious that
bin + biog| < 2hf. (1= 3,4),
‘bil + bi2ﬁ| < thlax (1=1,2) (3.12)
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when —1 < ¢,n < 1. From (3.10) (3.12),

402 402 R L
2 < e |\nl2 . — e Ué TSeUe
‘u|1,8 — lne‘uh,e Sine( )
402 5 . . 402 R
< e Amax é exTrre _ e )\max é e\T'rre
< T s (ST = =0 (S5)(U) U,

where the notation o, is defined by (3.6), and S¢ is the stiffness matrix of canonical
element é,
4 -1 -2 -1
s 1 -1 4 -1 -2
e __ _
=219 1 a4 1 (3.13)
-1 -2 -1 4

It is easy to find that Apmay(S¢) = 1, so that

2
ufl, < Uy U
It follows that
UrSU => juli, < 4_q—02UTU,
- ’ sin 6
where o = max oe. Finally, we have
4qo?
Ma(8) < 25

From (2.10) and (2.9) we can get the estimates of the minimum and maximum
eigenvalues of the mass matrix M and the maximum eigenvalue of the boundary mass
matrix Mp. They are the second and third inequalities in (3.5). This completes the
proof.

For the uniform right-angled triangle and square elements, by using direct proofs,
rather than considering them as special cases of the Lemma 1 and 2, we can obtain
better results than those in the Lemma 1 and 2.

Lemma 3. For the finite element space of right-angled triangle elements and linear
basis functions, the following inequalities

Amax(S) <9, Apin(M) > (3.14)

are valid.
Proof. For the nodal unknown vector U, we have

UTSU =Y (U)"'SU° < qAmax(S)UT,
e
where ¢ is the maximum number of elements which meet at a node, and S¢ the element
stiffness matrix, as in the Lemma 1. In the present case, ¢ = 6 and S is the matrix
(3.4), so that Amax(S¢) = 3/2. From (3.2), the first inequality of (3.14) can be obtained.
The second and third inequalities are obvious, which completes the proof.
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Lemma 4. For the finite element space of square elements and bilinear basis func-
tions, the following inequalities

(3.15)

h
Amax(S) S 47 Amin(M) > — Amax(MB) S 5

are valid.

Proof. The approach is similar to the Lemma 1. We have only to notice that in
the present case, ¢ = 4 and S is the matrix (3.13), so that Aynax(S¢) = 1. The proof is
completed.

Now we are on the position to investigate the stability properties of the schemes
(2.11).

Define the following inner products and norms of vectors:

(U V), =U"V, |[U|2=/(UU)s,
UV =U"MV, |[U|m =+/(U,U)u,

U V)s=U"SV, |U|s=/(UU)s.

The latter two definitions of norm are reasonable because of the positive-definiteness
of the matrices S and M. Since M is a diagonal matrix, we have

—— U < Ul € ——— U
Amax (M) Amin(M)
Theorem 1. If the condition
Amax(S) A 1% + 2 nax (MB) At — ddpin (M) < —e < 0 (3.16)
or
At < ~Amax(Mp) + VARiux(Mp) + Ahmax () Amin (M) (3.16)

Amax(S)
is satisfied, where € is any given positive number small enough, then for any T € R big
enough and N € Z, 0 < (N +1) At < T, there exists a constant C1(e) such that the
solution of (2.11) is subject to the inequality

n+1 n+1
Jmax U7 g+ max [V as < Gr(@)]1 1 (317)

i.e., the scheme (2.11) is stable.
Proof. From (2.11),

Un+1 U™ + Unfl Um — Unfl
Un+1 o Unfl

At
from 0 to IV with respect to n. Since M is a diagonal matrix, the first term of the

left-hand side can be reduced to
Un—l—l _ Unfl T Un—l—l —oyn Unfl
) M -
YA At?

T
Multiply the equation (3.18) by At( ) , and sum the obtained equation

A
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Un+1 _pyn Un+1 _pyn Un" — Unfl Un" — Unfl
( At )TM At 7( At )TM At

After the summation, we obtain

N Un+1 o Unfl)T Un+1 —_oyn + Unfl (UN+1 o UN)T UN+1 - UN

Atﬂ; ( At M INE - IN] M—

Here the condition UY = U ! = 0 has been used. For the second term of the left-hand
side we have

Un-l—l _ Unfl T 1 - -
At T Su™ :5{(Un+1) SUn+1 _ (Un+1 _ Un) S(Un+1 _ Un)
_ (Unfl)TSUnfl + (Un _ Unfl)TS(Un _ Unfl)}_
After the summation it becomes
N _
Un—|—1 —_yn 1.7 1 1
At n__ N+4+1I\T N+1 - N\T N
;(—At ) su S (UNYISUNT 4 (U™ sU
1
- §(UN+1 o UN)TS(UN-I—I o UN)
:(UN+1)TSUN+1 o (UN+1)TS(UN+1 o UN)

For the third term, it can be proved that

Un+1 o Unfl)TM U — Unfl 1
AL B

A ==
t( At At 2At

(Un-l—l _ Unfl)TMB(Un-I—l _ Unfl)

1

1
Un _ Unfl TM Un _ U”il _
+ 57 )" Mp( ) YN

AT (Un+1 _ Un)TMB(Un+1 _ Un)

It follows that

Ay N (Un+1AtUn1)TMB [
n=0
_At N (Un—H _ Unfl)TMB(Un—H _ Unfl)
_Tnzo T At
At  UN+TL _ N N+l _ N
B Tt( At )TMB( )

Thus the equation (3.18) is reduced to

UN+L _ N1 At UN+L N N+I\T aprN+1

() (M= FMa)——+ W™ sU

B (UN+1)TS(UN+1 - UN) + g i
2

n=0
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(TS e (T
—At i (W)TMG". (3.19)
It is well known that -
() (- —M>—
{1 Qe

(UN-I—I)TS(UN-I—I _ UN) _ (UN-I—I7 UN—H _ UN)S < ||UN+1||S . ||UN—|—1 _ UNHS;

Un+1 Un 1 Un+1 o Unfl
e (Y (20

If we take At such that

and

At Amax(Mp)

ot 3.20
> Ao (M) >0, (3.20)

a=1-

then
N+l _ N 2

left of (3.19) >
eft of (3.19) >« A

UG (U s - UM - U

M
N+1 77N ||2
Sal S| U
M
>\m x S UN-I—I _ UN
_ . a((]w)) At||UN+1||SH ~
min M
N+1 _ 7N ||2
2{1 o Amax(s)}. QH7U el A
\/— mln( ) t M
At )\maX(S) { H UN+1*UN ||UN+1H }2
— | - S
2\/— Amin (M) At o
N+1 _ 77N ||?
. At Amax(S) | U U (3.21)
2va\l Amin (M) At
M
Take At once again such that
At | Amax(S)
>
2\/_ Nenin (M) >e>0,

where € is any given positive number small enough. It implies

Amax(S) At? +2(1 — €)*Amax(Mp) At — 4(1 — €)* Anin(M) < 0, (3.22)
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ie.,

—(1- 5)2)‘maX(MB) + (1 - 5)\/( £)* Max(MB) + 4Amax (S) Amin (M)
Amax (S) '

It is easy to see that (3.22) (consequently, (3.23)) contains (3.20). (3.23) can be replaced
by the following stronger condition:

At < (3.23)

Amax(MB + \/Amax MB) + 4>\max(S)>\min(M)

At<(1-—¢ 3.24
< (1-¢)? —) (3.24)
Introduce the notation
D= )‘max(MB + \/)‘max MB) + 4)\max(S))\min(M)
Amax (S5)
(3.24) can be rewritten into
At<D ¢ = —Amax(Mp) + \//\max (Mp) + 4Amax (S) Amin (M) ¢, (3.25)
Amax(5)
where ¢/ = (26 — £2)D. It is equivalent to
Amax(S) A 12 + 2 max (Mp) At — dpin(M) < —£" <0, (3.26)

where

6 _28 \/Amax MB + 4Amax(S)Amin(M)

(in which the terms of orders higher than 1 of ' in the Toylor expansion are neglected).
(3.26) and (3.25) are just the conditions (3.16) and (3.16)’, respectively. Denote

D — E’ Amax(MB)
2 Amin(M)

a():l—

Then from (3.21),
UN+1 - UN 2

left of (319) Z EQ A\t

(3.27)

M
For the right-hand side of (3.19) we have

N T 1
[7n+1 un 1 [7n+1 Un
E : n < E : n

n=0 n=0

where the notation ()4 denotes a vector the entries of which are absolute values of
entries of the original vector. Obviously, |G?| < C2,.[fll (i = 1,---,m). Introduce
the m-dimensional vector E = {1,1,---,1}7. Then

Un+1 un 1 T " Un+1 Un T
AtZ(—) MG <2Atz — C2 NflleeME
n=0 +
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n+1 n
—Mtz ((u) ,cfnaxnfnooE)
=+ M

Un+1 Un
Craxllflloo | Bl ar
M
gt —un |t 1 al
ceamry [LEZ0 CoasllF1% B3 1B
n=0 M 0 n=0 (328)

From (3.27) and (3.28), it is obtained that

2 N 2
UN+1 UN Un+1 _yn
<ALy + K flI%
H At M n=0 At M
02
K=" At E
2 ZO 1B

From the discrete Gronwall’s inequality!”! we get

1 [7n+1 Un 9 9
vt = - < K xp{2T} = .
o?afw H H 02n21<)<N At M a ”f”oo ’ p{ } C(g)HfHOO
That is

n+1
[V s < /O 1 (3.29)

Moreover, U™ |y < AV p + IV 0+ + |V} Tt follows

max_[|U" " lar < Ty/CO(e)| floc- (3.30)

0<n<N

Adding (3.29) and (3.30), we obtain (3.17), which completes the proof.
Theorem 2. Consider the finite element space of triangle elements and linear basis
functions. If the condition

Cmax At sinf Cmax hmin < Cmin ) 2
< -1 1+4 — 3.31
hmin - 6(1 Cmin { * \/ * 7 hmax Cmax © ( )

is satisfied, then the scheme (2.11) is stable in the sense of (3.17) . Here 0 is the
minimum interior angle of elements, q is the mazimum number of elements at nodes,
and € is any given positive number small enough.

Proof. The conclusion of theorem can be obtained directly from Theorem 1 and
Lemma 1.

Corollary. If C(z,y) is constant and the domain is subdivided into uniform right-
angled triangle elements with mesh size h, then the stability condition of the scheme
(2.11) becomes

CAt

< 0.18. (3.32)
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Proof. Repeat the proof of Theorem 1 and utilize the inequalities of the Lemma 3.
Then (3.32) can be obtained.

Theorem 3. Consider the finite element space of isoparametric quadrilateral ele-
ments and bilinear basis functions. If the condition

Cmax At Cmax hmax 1 ( C’min > 2 < hmin ) 2
< -1 14+ = —
hmin o ﬁ C'min hmin * * 5 C(max hmax ©

sin 6

0= 107 (3.33)
is satisfied, then the scheme (2.11) is stable in the sense of (3.17). Here 0 is the
minimum interior angle of elements, q is the mazimum number of elements at nodes,
o is defind as in (3.6), and € is any given positive number small enough.

Proof. It is a direct consequence of Theorem 1 and Lemma 2.

Corollary. If C(z,y) is constant and the elements are all squares with mesh size
h, then the stability condition of the schemes (2.11) becomes

CAt
h

<0.3. (3.34)

Proof. If the Lemma 4 is utilized in the proof of Theorem 1, then (3.34) can be
obtained.
The authors thank Zhang Guan-quan for his important opinions after reading the

paper.
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