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Abstract

In this paper the general finite difference schemes with intrinsic parallelism for
the boundary value problem of the semilinear parabolic system of divergence type
with bounded coefficients are constructed, and the existence and uniqueness of the
difference solution for the general schemes are proved. And the convergence of
the solutions of the difference schemes to the generalized solution of the original
boundary value problem of the semilinear parabolic system is obtained. The multi-
dimensional problems are also studied.
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1. Introduction

In [1] and [2] the general finite difference schemes having the intrinsic character of
parallelism for the boundary value problems of the nonlinear parabolic system of gen-
eral form (i.e., non-divergence type) are discussed under the assumption that there is
an unique smooth solution for the original problem. In [3] and [4] the boundary value
problems of the one-dimensional quasilinear parabolic system and multi-dimensional
semilinear parabolic system of non-divergence type with bounded measurable coeffi-
cients are solved by the finite difference methods of general schemes with intrinsic
parallelism. In these papers the general difference schemes with intrinsic parallelism
are constructed by taking the difference approximations for the derivatives of second
order to be in general the various linear combinations of the four kinds of difference
quotients: the scheme ahead, the backward scheme, the scheme on the top cover of
the grid, and the downward scheme. Since the parameters in the construction of the
general difference schemes have large degree of freedom, in [5] some practical differ-
ence schemes are obtained by suitablely choicing these parameters for the nonlinear
parabolic systems of non-divergence type. The time steplength for these difference
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schemes can be taken at least 8k times the time steplength for the fully explicit finite
difference schemes (k can be any positive integer).

In this paper we solve the boundary value problems of the semilinear parabolic
system of divergence type with bounded measurable coefficients by the finite differ-
ence methods of general schemes with intrinsic parallelism. The existence, uniqueness
and convergence of the discrete vector solution for the general schemes with intrinsic
parallelism are proved. Moreover, we can get some practical schemes with intrinsic
parallelism by suitablely choicing the parameters in the general schemes. For these dif-
ference schemes, the time steplength can be taken at least 8%k times the time steplength
for the fully explicit finite difference schemes (k can be any positive integer), provided
that the discontinuity of the coefficient matrix of the parabolic system does not occur
at the interface of the domain decomposition. In the sections 2-6, we consider the
case of one-dimensional problems. In the section 7 the multi-dimensional problems are
discussed.

2. Difference Schemes with Intrinsic Parallelism

Let us now consider the boundary value problems for the semilinear parabolic sys-
tems of second order of the form

up = (A(z, t)ug)e + B, t, u)ug + f (2,1, u) (1)
where u(z,t) = (u1(z,t), -+, um(z,t)) is the m-dimensional vector unknown function
ou ou

(m > 1), uy = o Uy = Iz are the corresponding vector derivatives. The matrix
A(z,t) is an m x m positive definite coefficient matrix, and B(z,t,u) is the m x m
matrix, and f(z,¢,u) is the m-dimensional vector function. Let us consider in the
rectangular domain Q7 = {0 <z <[, 0 <t < T} with[ > 0 and T > 0, the problem

for the systems (1) with the boundary value condition
u(0,t) = u(l,t) =0 (2)

and the initial value condition
u(z,0) = p(x) (3)

where ¢(z) is a given m-dimensional vector function of variable z € [0,].

Suppose that the following conditions are fulfilled.

(I) For any fixed u € R™, A(z,t), B(z,t,u) and f(z,t,u) are bounded measurable
functions with respect to (z,t) € Qp; for any fixed (z,t) € Qr, B(x,t,u) and f(z,t,u)
are continuous with respect to u € R™; for any fixed z € [0,1], A(z,t) is m x m
symmetric matrix and is Lipschtiz continuous with respect to ¢ € [0, T]; and |A(z,t)| <
Ay, where Ag is a constant; and there are constants A; > 0, By > 0,C > 0 such that
|At($7t)| < Ala ‘B(xutau)‘ < Bo, |f($7t7u)‘ < |f($7t70)| + C|u‘

(IT) There is a constant o > 0, such that, for any vector £ € R™, and for (z,t) €
Qr,

(67 A(:Ea t)g) > UU‘§|2
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(III) The initial value m-dimensional vector function ¢(z) € H}(0,1).

Let us divide the rectangular domain @7 into small grids by the parallel lines
z=ux; (j =0,1,---,J) and t = t" (n = 0,1,---,N) with z; = jh and t" = nr,
where Jh = [ and N7 = T, J and N are integers, and h and 7 are steplengths of
the grids. Denote Q} = {z; < z < 41, t" <t < t"*11 where j = 0,1,---,J — 1;
n=0,1,---,N — 1. Denote va = vj = {v}[j = 0,1,---,J; n = 0,1,--- N} the m-
dimensional discrete vector function defined on the discrete rectangular domain Qa =
{(z;,t")] 7=0,1,---,J;n=0,1,---, N} of the grid points.

Let us now construct the finite difference scheme with intrinsic parallelism for the
mentioned semilinear parabolic system (1) (3) as follows:

n+1l

v; v? 1 n +£" " nta?  n+al
(=12, J—l;n:O,l,---,N—l);

U(Tll: ?:07 (n:0717"'7N)7 (5)

’U?:(pja (7 Oala"'a‘])a (6)

where ¢; = ¢(z;), ( =0,1,---,J), and there are py = p; = 0; and

1
r—T =
ity t— "2

1
n_ _-
Aj = - / ” A(.r,t)w( P . )d.rdt,
T—T 1 ntx
ntaj i 20 ntal jtgy t—1 72
B, = h’T/ ” B(z,t,6 v, )w( b - )d:vdt,
1
r—T. 1 n+s
ntal i z ntaf jty t—1 72
f] - hT/ QJ" f(mataé Uj )UJ( h ’ T )det, (7)
) 1 1
where w(z.t) € C§°(R?), w(z,t) > 0, suppw C B = {|r\ < 2 It] < 5} and
2
1 1 1
//sz(:v,t) dzdt = 1, and :vj+% = (j+§)h, "2 = (n—|—§)7'. If w(z,t) :XB%, the
results in this paper also hold. And
& +nj .
of =21 5 L (G=12-,J-1;n=0,1,-,N—1).

. .. s n+al < ntal .
Define the difference approximations 501);1 “ and 511);-1 “in the following forms:

~ n+ao ~ ~
50 j ] = [6] /6?] ;li_ll + anﬁg] ;H—l + 77] ﬁgj ;H—ll] [/34] J+1 + ﬁgjv;l + ﬂgjv;lfl]a
1 n+1
. ntan Aot A_v" Ao? A_ vy
50 = (e = =]+ [ L+ (8)

n

.. . . . < +
Similarly we can define the difference approximations (501);1 !
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Define the piecewise constant function
f;(l‘,t):f?, for (.T,t)EQ;-l, (j:0,1,"'”]*1;n:0,1,"',N*1).

Similarly we can define the piecewise constant functions nj(z,1), ,@gh(z,t), th(z,t),
(1 <k <6),9,(zt), (1 <m <4), aj(z,t). For these functions, we assume the
following condition holds.

(IV) The piecewise constant functions defined above are bounded functions uni-
formly with repsect to h and 7. There are functions By (z,t), Bk (z,t) € L®(Qr),
(1 < k <6), and v,(z,t) € L®(Qr), (1 < m < 4), such that, as h — 0,7 — 0,
there hold

1€h (2. 1) — &(z, ) |2 (@) + np (2. ) — (2, D)2 (@p) — 0,

6 6

S 1Bz, t) = Be(z. )2y = 0, D 1B (z,t) = Bz, t)llr2(@qp) — O,
k=1 k=1

S 1. 2) = o, Dl 2y = 0, = BT
Eh BT + By + M B3 + Bin + B + B = 1,

|€7.58Th| + |k B3n] + 1783n] + B3| + 1854 + 185n] < do,
Eh BTy + By + 1 B3 + Bin + B + B = 1,

+ || + (B2 + |5
EnYin + MhYon + Yan + Vin = 1,

[ERYTR| + [mavanl + 1v3nl + 1Ykl < o,

+ |7 B3

where dg, dg and g are given constants.

3. Existence

In this section we prove the existence of the discrete vector solutions for the finite
difference system (4) (6). Let us now at first turn to the a priori estimates of these

solutions.
7}+1 _ ,Un
Making the scalar product of the vector -————Lh with the vector finite difference
T
equation (4) and summing up the resulting products for j = 1,2,---,J — 1, we have
+1 _ o™ 19

n+1 n
'U n—|—§T‘ n—{—nT‘
J n Jo_ AT J
‘ ( A" AT vy

Dl

uM‘
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Since A(z,t) is m X m symmetric matrix,

J—1 n-l—l U” . n+§}1 . ”‘H? 1 J—1 o _
Z( ATSu; Y = A S0y ) = o DA 0 du )
j=1 §=0
J—1
(AT, SR+ ST (AT — AT o
j 297 J
7=0
J—1 n+1 n n+1 n
1 — v 'U~+1 _'U‘+1
+ 3 (A7 @t = d0f), - (00f T~ dup )b+ € L g L),
j=0
where the last sum at the right hand of above equality is equal to
J—1 +1 +1 +1
=53 (an (31+1 e Y AN E )Ll U
" h2 4 0 J T T "\2 j+1 T
]:
1 n J—1
N Ry T n n
-(3- j)f)”—m;{(l—mﬂ—ﬁj)
1 1 1 1
y (An(vﬁl Vi1 vi " _”?) vt — v _ vt _U;l)h
J T T ’ T T
T gty
(g Ay (A S )l
1 n-l— n n+1 n n+1 n
_T G+ "% Y T Y T Y
=g A0 - (A ()
j=0
ot yn
L)+ S (I + ) (A — A7)
"t g gty
G G Ay Ay L L)) (10)

By using the Cauchy inequality and the condition (I) and the interpolation formula
(see [6]), we get

1 -1 ! n+1 vy n+a” n+a” n+a”
n+1 n n—|—1 n—|—1 J i g1 j j
D 0((Aj — AT b0 h+21(f,3j RIS T
1= J

Aq o 2
<SHIu I + o | A

C
)T g—l(l\&)ﬁ“l\% + ovp 3 +1). (11)

Combining (9)—(11) gives the following inequality
n+1 n 2 1 J—1

v —v n n n ne n n
|, + 5 Dol oup ) — (A, o0
§=0

Ay g2
<SR + e |2 ——

C
)T a(l\&)ﬁ“l\% +6vp 5 +1)
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J—1
T n n n
ol LR g )TIAT
=1

n+1

J

h

n ny\—+ n _,UnQ
+2(1 = — §) AT |

i
5 2 16y = o+ € — i A7, — A

n n n n +An n U?+1iv;} 2
+ (&1 —mf =&+ i) AT +AJ“Hf‘ h}’ (12)

where £ and 7} can be taken any constants, Aj = A} and |A| is defined as

Ax
|A| = sup u
zeER™ |T‘
Introduce the restriction condition for the choice of steplengths 7 and h.
(V) Suppose that the steplengths 7 and h are so chosen that, there is the relation
of restriction .

max A-<1—a
h2 j=12,g—1 7 = ’

where 0 < e <1, and A; is given by
Aj =N =1 —nf =& )TA7 |+ (- - 5?)+\A"\
I € = A = AT 0 — € ) TAT A
From (12) and the restriction (V) it follows that
B
[+ = STIAn o gun ) — (Ao, dur A

T 2T 0

(e —e1
C
S7||5UZ+1||§ + 6—1(||5UZ+1||§ +[lavp]I3 +1).

Taking €, = % and summing up the inequalities for n =0,1,---, N — 1, we get

R o < (3 I e +1),

n=0 n=0

then the Gronwall inequality yields that
n+1

N J—
Z ‘uH T+ | mmax ||5vh||2 < C. (13)

n=0 17'1

Using the interpolation formula, we obtain

n n < 14
n*{]nlax N(thHQa lvh |oo) < C, (14)

=0,1,-,
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where C' is a constant independent of the steplengths 7 and h.

By means of Leray-Schauder’s fixed point theorem in finite dimensional space and
the estimates (13)—(14), there is the existence theorem for the discrete solution va =
vp ={v}]j =0,1,---,J;n =0,1,---, N} of the general finite differnce scheme (4) (6)
with intrinsic parallelism corresponding to the boundary value problem (2) and (3) for
the semilinear parabolic system (1) as follows:

Theorem 1. Suppose that the conditions (I), (II) and (III) are fulfilled. And
assume that the steplengths T and h satisfy the conditions of restriction (V). Then the
general finite difference scheme (4) (6) with intrinsic parallelism corresponding to the
original problem (1), (2) and (3) has at least one discrete solution va = vy = {v}|j =
0,1,---,J;n=0,1,--- ,N}.

4. Uniqueness

To prove the uniqueness of the solution for the difference scheme (4)—(6) we further
assume the following condition holds.

(I)! B(z,t,u), f(z,t,u) are locally Lipschtiz continuous with respect to u € R™.

Given the values {v}|j = 0,1,---,J} of the difference scheme (4) (6) on the n-th
layer. Let {U;H_l\j =0,1,---,J} and {17;-1+1|j =0,1,---,J} be the two solutions of the
difference scheme (4) (6) on the (n + 1)-th layer, i.e.,

,Un+1 P )

| nter neta S L

Sl = (A AT Gy )+ By 8 e
(j =1,2,---,J — 1)

,0[7]1+1 — ,074-1 =0;

and
R | n+gr ntnly | mntal o _ntal  ontad
j i _ B _ n n—+ao 1_77, [0 n+o

= (Ajov; Y - Af L eu )+ By Yoy A f
(j:1,2, 7‘]71)

Tt =7t =0,

—n+tan? — +aj +aj
where B;l Y and f;.H'O‘ (j=1,2,---,J — 1) are obtained from B;l “ and f;-l a] (j =
1,2,---,J — 1) respectively by replacing ’U;H—l (7 =0,1,--+,J) with the corresponding
5}“‘1 (=0,1,---,J). The difference w; = U;H'l — 5?“ satisfies

T 1 -
wy =TTy — A ) 4B =120 0-1) (19
Wy =wy = Oa (16)
where
n _ pntal  —ntal o) ntal ntaj < ntai o _n+tal ntaj _ gntaj
Rf=(B; 7 —B; ")d'w; 4By (0, = )+ =)
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Now firstly making the scalar product of the vectors w;h with the vector equation
(15) and summing up the resulting products for j = 1,2,---,J — 1, and proceeding the
same calculation as that in section 3, we have

J 1 J—1

T n n n
wpll3 + = Z &+ nj1) (A7 dwy, dw;)h 3 > = nf ) (A dwy, wy + wig)
J =0 j=0

J—1
=7y (R}, wj)h
j=1

It follows that

J 1 J—1
n T n n n
||U’h”2 +35 Z (4] 5“’]»‘5"%) Z(l - fj - 77j+1)(Aj 5“’ja5wj)h
] 1 7=1
- — J—1
+ 53 Z%(E}l = N 1) (A (w1 —wj), wjpr +wi)h + 7 Zl(R}lﬂUj)h
J= J=
J—1
<zl 220 =& =) TIAT |+ 20 - & = ) AT | *h
j=1

J—-1
[ €8 — € — AT, — AT

?M

J—1
3 =) = G )T IAT AT fwgPh) 7 Y (R wj)h.
7=1

I —

By the restriction condition (V) we have

J—1
ellwnll3 + Uol\éwhllz <7 Y (R}, wj)h. (17)
7j=1

Since

n+a? —n+al
B; 7 —B; 7| <Clwjt1] + wj| + |lwj1]),

n+a” —n+al
17 F) < Oyl + gl + gl

and
n-l—a n+a
51 - 51 6] 71]511)] + 77] ’72]510] 1s

there holds
J—1

7> (B} wp)h <C[([16957 12 + 1605 12) lwn I3 + ll6wn ll2lwn 2 + [lwnl3]
j=1

<Cr(e1]|dwnlls + Clen) lwnll3),
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where the estmates (13) and the interplation inequality are used. It reduce that
20
(e = rCle)lfwnll3 +7( = Cer) w3 <o,

and then taking €; and 7 small, we get wj; = 0. The uniqueness theorem is proved.

Theorem 2. Suppose that the conditions (I)—(III), (V) and (I)' are satisfied. As
the meshstep 7 is sufficiently small, the discrete solution va = vj = {Uﬂ? =0,1,---,J;
n=0,1,---,N} of the difference scheme (4)—(6) is unique.

5. Convergence

In this section we shall prove the convergence of the solution for difference scheme
(4) (6) with intrinsic parallelism to the genernalized solution of the problem (1) (3)
on the basis of the obtained estimates and the convergence properties of the discrete
solutions va = vy = {v}[j =0,1,---,J; n=0,1,--- N}

From (13) it is easy to obtained the following lemma.

Lemma 1. For the discrete solution of the difference scheme (4) (6), there are the
estimates

J—m 1
2
(,ogmas, , 2 I =+ i) ® < Om, (18)
1 k) ‘]:0
N—s—1 J 1
2
(3 Sl wrtPar)? < Ot (19)

n=0 j=0

Let us define the piecewise constant functions

+nn
oh(z,t) = o, o) (z,t) =v; P Wl (x,t) = 6T,
n+1 n
+gn v, — vk
oSt = b L (e t) = L2

for (z,t) € Q7 (j=0,1,---,J = L;n=0,1,---,N = 1).

Lemma 2. Assume that (I)—(V) and (IV) hold. When h — 0,7 — 0 (for some
subsequence), there is a function u(z,t) € L°°(0,T; H}(0,1)) N H(0,T; L%(0,1)) such
that

(i) v (r t) = u(x,t) strongly in L*(Qr) and a.e. in Qr;

(ii) v (z,t) — u(z,t) strongly in L*(Qr) and a.e. in Qr;

(iii) v Ih(:r: t) = ug(z,t) weakly in L?(Qr);

(1v) H (2. t) = ug(z,t) weakly in L*(Qr);

(v) vth(:v t) = u(z,t) weakly in L*(Qr).

Proof. Using Lemma 1 and the well-known method in [6], we can prove (i) and
(iii).

From the condition (IV) and the conclusion (i), we see that (ii) and (iv) hold. (v)
can be proved as the usual way. Now we note that u(xz,t) € L>(0,T; H}(0,1)). Define
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the bilinear function: for (z,1) € Q7 (=0,1,---,J —1jn=0,1,---,N — 1)

, (z —z)(t —1t") , (zjr1—z)(t-1t") ,
vi(z,t) = Jh’T jj_'ll NS A - v} +1
(z —zy))@t" ' —1) (Tjr1 —x)@" 1)

ht Vit ht Ui

Obviously there holds v T(x,t) € L®(0,7; H(0,1)) and as h —, 7 — 0,

* *
&gﬁ§%|\v ﬁ“'UZHL2ULn +'&?£§%|K1’ﬁ)z "U;hHL2aLn — 0.

Then the conclusion u(z,t) € L°°(0,T; H(0,1)) is true.

Define the piecewise constant functions, for (z,t) € QY (3 =0,1,---,J—1;n =
0717"'7N_1)7
A +a” B ~ +am? _ +a
o () = 8", 7. of(z,t) =%, 0T, (x,t) = 8w,

Aj(z,t) = AT, Bi(z,t) = B, ™, fi(z.t)=f .

Lemma 3. Assume that the same conditions as those in Lemma 2 and (I)' hold.
When h — 0,7 — 0, there are

(i) 97 (z,t) = u(z,t) and 0] (z,t) — u(z,t) strongly in L*(Qr) and a.e. in Qr;

(ii) 07, (z,t) — ug(w,t) weakly in L?(Qr);

(iii) Aj(z,t) — A(z,t), Bf(z,t) = B(z,t,u(z,t)) and f7(x,t) = f(x,t,u(z,1))
strongly in L*(Qr) and a.e. in Qr.

Proof. (i) and (ii) can be proved easily by using Lemma 2 (i) and (ii) and the
condition (IV). Now we prove (iii). Note that B(x,t,u(z,t)) € L®°(Qr). There are

1B (,t) — B(x, t. u(z, 1)) 72(q,)

N—-1.J-1
-y //
n=0 j=0" “¢j
Y
xw(
N—-1.J-1 1
- dz'dt’
7;)%}” /I’Sh/t’ST ’

x// \B(m+x',t+t',50v;+aj)—B(:I:,t,u(:ri,t))\Qd:I:dt
J

% / / n(B(y, S,SOU;H—a?) — B(z,t,u(z,1)))

1
st +2)dyd52d:vdt

)

r. 1
J+3
h

<

<2 max // Bz + 't + 5] (x, 1))
2! |<h |t <7 ) JQr
~ Bz + 2"t + 1 u(z + o't + 1)) Pdzdt
+2 max // |B(z + 2’ t +t', u(z + 2’ t + 1)) — B(x,t,u(z,t))|*dzdt
|2/ |<h,|t'|<7 T
EIl =+ IQ.
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From (I)" and the assertion (i), it follows that lim I; = 0; and since B(z, t, u(z,t))

h—0,7—0
€ L>®(Qr) C L*(Qr), the continuity of translation of functions in L?(Qr) yields that
lim I, = 0. Then we have proved that Bj(z,t) — B(z,t,u(z,t)) strongly in

h—0,7—0
L?(Qr) and a.e. in Q7. The other assertions in (iii) can be proved by the same way.
Let ®(z,t) € C*°(Qr) and ®(z,t) = O near z = 0 and z = [. Denote @7 = ®(x;,t").
Define the piecewise constant functions @7 (z,t) = 7, 7, (z,t) = 0@7, for (z,t) € Q7.
Assume that
(V) for any given constant M > 0, T < M.

h2

There holds

[ | 5w 005505, + (0. 8) — Biw )5 — (0, ) . 0]
QT

N-r-l n n+§;‘ n 'U;l+1 - U;'l n+a;‘ <1 n+a;‘ n+a n
= Aduy 60+ (L = B 6l — T )@ ke
n=0 j=1
N—-1J-1 ,n+l _ ,m
v — U 1 n
_ {]77——(A?51)7-1+§Jf14" o n+77)
— L= T h J
n=0 j=1
n+ao n+a n+a’
_Bj 61’0]' _fj J}(I)?hT—i-I,
where
N-1J-1
Z An ?+1 77]+1)(5anrl - 5“}'1)7
n=0 7=0
. N-1J— ot gyn
2 Z Z 53 1= An 1¢n (5}1 —77;+1)A?¢?+1]%]h7
: ]:
N-1J-1 1 n+l _ .n
r v — v
<o (X TG —m AL — (€ - ) Ares ) 2| R | o,
n=0 57=0
where we have used the assumption (V)" and as h — 0,7 — 0,
N-1J- 1 N-1J-1 1
( Z &g )ht)? =0, (X Y n))?hr)’ >0,
n=0 j=1 n=0 j=1
N—1J- 1 1 N—1J-1 1
( L)*ht)? =0, ( (@7, — @F)2h7)” 0,
n=0 ]:1 n=0 j=1
and
N—1J-1 N-1J-1
(XX g m) CO+ elragn). (XD Iyl m) C(L+ Inll2qr)-
n=0 j=1 n=0 j=1

When letting h — 0,7 — 0 (for some subsequences), we get, for any smooth test
function ®(x,t),

/ ./QT[A(.T, Bt (2, £) B (2, ) + (g (2, 8) — B, b, w)un (3, £) — f (2, 1, 1)) B (2, )] dzdt = 0.



348 Y.L. ZHOU AND G.W. YUAN

This means that the m-dimensional vector function wu(z,t) € L°(0,7;H}(0,1)) N
H'(0,T;L?(0,1)) satisfies the semilinear parabolic system (1) of partial differential
equations the homogeneous boundary conditions (2) and the initial condition (3) in a
generalized sense.

The uniqueness of the generalized solution for the problem (1)—(3) can be justified by
usual way. By means of the uniqueness of the generalized solution of the homogeneous
boundary problem (1) (3), we then can obtain the convergence theorem for the finite
difference schem (4) (6) with intrinsic parallelism as follows:

Theorem 3. Under the conditions (1)—(V), (I)' and (V)', as the meshsteps h
and 7 tend to zero, the m-dimensional discrete vector solution va = vy = {v;‘\y =
0,1,--+,J; n=0,1,---,N} of the finite difference scheme (4) (6) with intrinsic par-
allelism converges to the unique generalized solution u(z,t) € L*(0,T;HL(0,1)) N
HY(0,T; L%(0,1)) of the boundary problem (3) and (4) for the semilinear parabolic sys-
tem (1) of partial differential equations.

6. Some Practical Schemes with Intrinsic Parallelism

Here analogous to the method in [5] we construct some the difference schemes with
intrinsic parallelism satisfying (V) and (V)'. The time steplength for these difference
schemes can be taken at least 8k times the time steplength for the fully explicit finite
difference schemes (k can be any positive integer), if the coefficient matrix A(z,t) is
piecewise smooth, and the interface of the discrete subdomains for the suitable con-
structed schemes with intrinsic parallelism is not at the discontinuity points of the
matrix function A(z,t).

The discrete domain of the difference scheme is decomposed into two types of dis-
crete segments “AB” and “BA” alternatively. On “BA” we define

2k l
” 26— 1 2k —1 E+1 EkE+171 T
¢n & 11 e -
<a>:<a>: 2%k 2% 2%k 2% 7 2
nj 1) 00 L 1 k=1 k-11 1
2% 2% 2% 2% 2 9
2k
o1 ko1 k-2 k2 T T o .
2% 2%k 2%k 2% 2% 2%k
EX1 kF1 kEF2 kX2 k=1 2-1
2% 2% 2% 2% 2% 2%
On “AB” we define
2k l
T, T =1 k11 T
<§?>:<§j>: 2%k 2% 2%k 2% 2 9
" iy g 2K-1 21 K+ kF1 ] I
2%k 2% 2%k 2% 2 2
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2k
Fr1 E+1 F+2 Er2 k-1 261
2% 2%k 2%k 2% 2% 2%k
E21 k21 EZ92 ET9 1 [
2%k 2%k 2%k 2% 2% 2%

The discontinuous points of A(z,t) are assumed to be in the interior of the sub-domains

where §j = ’I]j = 5

7. Multi-Dimensional Problems

The results obtained in sections 2 6 can be generalized to the boundary value prob-
lems for the multi-dimensional parabolic systems. For simplicity, we briefly describe
only the results about the two dimensional problems.

Consider the boundary value problems for the two dimensional semilinear parabolic
systems

U = (A(T, ya t)ufﬂ):ﬂ + (A(T, ya t)“y)y + B(T, ya t)urﬂ + C(Ta ya t)“y + f(mayata ’LL)

(20)

u(z,y,t) =u(z,y,t) =0, on 9N x[0,T] (21)
u(z,y,0) = ¢(z,y), on (22)
where u(z,y,t) = (ui(z,y,t), -, um(z,y,t)) is the m-dimensional vector unknown

u ou u . .
= — are the corresponding vector deriva-

Eu Uy = %7 Uy 8y

tives. The matrix A(xz,y,t) is m x m positive definite coefficient matrix, B(z,y,t) and

function (m > 1), u; =

C(x,y,t) are the m x m matrices, and f(z,y,t,u) and p(z,y) are given m—dimensional
vector functions; Q@ = {0 <z <[;,0 <y <ly}, Qr =Q x[0,7T].

Suppose that the following conditions are fulfilled.

(I) A(z,y,t), B(z,y,t) and C(z,y,t) and f(z,y,t,u) (for any fixed u € R™) are
bounded measurable functions with respect to (z,y,t) € Qp; for any fixed (z,y,t) €
Qr, f(x,y,t,u) is Lipschtiz continuous with respect to v € R™; A(x,y,t) is m x m
symmetric matrix and is Lipschtiz continuous with respect to ¢ € [0,7] for any fixed
(z,y) € Q; and |A(z,y,t)| < Ag, where Ay is a constant; and there are constants A; > 0,
By > 0,Cy > 0,C > 0 such that |Ai(z,y,t)| < A1, |B(z,y,t)| < By, |C(z,y,t)| < Cy,
|flzy,t,u)] < [f(z,y,t,0)] + Clul.

(IT;) There is a constant og > 0, such that, for any vector ¢ € R™, and for
('Ta Y, t) € QTa

(67 A(Ta Y, t)g) > UU‘§|2'

(III,) The initial value m-dimensional vector function ¢(z,y) € H}(Q).

Let us divide the rectangular domain Q7 into small grids by the parallel lines z =
iy =vy; (1 =0,1,---,1; 7 =0,1,---,J) and t =" (n =0,1,---,N) with z; = ihy,
y; = jhe and t" = n7, where Ihy = [y, Jho =1y and N7 =T, I,J and N are integers,
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and hy, ho and 7 are steplengths of the grids. Denote QZ ={z; <z <zif1,y; <y<
Yji1, t" <t <"t} where i =0,1,---, I —1;5=0,1,---,J —1;n=0,1,--- N — 1.
= {vjyli = 0,1,---,I; j = 0,1,---,J;n = 0,1,---, N} the m-
dimensional discrete vector function defined on the discrete rectangular domain Qa =
{(zi,y,t")e=0,1,---I; 5=0,1,---,J;n=0,1,---, N} of the grid points.
Construct the finite difference scheme with intrinsic parallelism for the problem

J— T
Denote va = Vi hy

(20) (22) as follows:

n+1 ,Un‘

[ ; n+&x n+nk n+£ n+1;;
2l ’ = h (A?jdl‘ 1j l = ?fljéivifljj) (A?](Sy ij Azg 163! ij—1 )
@; z‘ TL+@:L
+BZ(5; l] J +CZ(5; zy ! +fij J? (23)
(221,2,"',1*1,]:].,2,"',:]*].;’I’LZO,].,"',N*].);
Ugj:v?j:v%:vglj:[)’ (Z'ZO,].,"',I;]':0,1,"',J;’I’L:0,1,"',N), (24)
U?]:(p’tja (ZZO,I,,I,]:O,l,,J), (25)
where ©Yoj = P15 = Yio = PiJ = Oa (Z :07117-[’7 = Oa]-a"'a'])a
o 1YY
1 l+§
= : dzd
Pij hth/Qw(fc,y)w( T ) wdy,
1
where w(z,y) € C°(R?),w(z,y) > 0, suppw C By = {|:v\ <3 lyl < 5}, and
2
/ w(z,y)drdy = 1. And
R2
1
r—r. 1 Y-y, n+35
1 i+5 ity t— "2
Al = Az, y,t 2 2 dzdydt
1) hthT n (T’yﬂ )UJ hl I hQ I ) z y I
J
1
_ _ rT—T. 1 Y—yY. 1 n+s
n+ay, 1 <g n+ak ity ity t— 172
y = t. 0%, 4 dxdydt
fij it Jan fz,y,t. 670, )w( o ) zdydt,
where Bj; and Cj; are defined similarly; and w(z,y,t) € C(R?), w(z,y,t) > 0,

1 1 1
{\:L“| < 5,\y| < §,|t| < 5} and /R?)w(:l:,

suppw C B3
2

1
(Z + §)h17 y]+%
stated here hold.

. - n+al
The expression 60vij *

<0 n+6¢;} _¢ngn ,n+l n—|—1 n—l—l
0 ,Uz'j _éijﬁlijvi+1] + azyﬁ?z] + 771]/632] i—1j
‘n on , n+1 n—|—1 n—|—1
+ &i50aijviia1 + %35513 + 17 Bgi v i1
where .
n n n n
n_ Sip Ty o, S T
a. = —m = ——,
ij 9 ) ij 9

t)dzdydt = 1, and z. 1

+ D

l+2

1 1 1
= (j + i)hg, "2 = (n + 5)7’ If w(z,y,t) = xB,, also the results

2

can be taken as in the following ways:

Z] ij l+zy+9’
1,j==1,0
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ntan o5 mtal

For the expressions 6lv V; " and é,v i we can take
N n+d. _ n+1 n_n n+1 n n n n
5xvij fzﬂuﬁ vt 771j72ij5Ivi—1j + ’Y3z’j5xvij + 741']’51"02'71]"
<1 "+ai] _ n+
5yvij - 61371135 ’U + 771372135 vz] 1 + ’73275 Uzy + ’74z75 vzy 1

Define the piecewise constant function &} , (z,y) = &; for z; < x < zi41, y; <
Yy <yYj+1, 1=0,1,---, 1 —1;5=0,1,---,J — 1). By (IILI,) and simple computation,
we can obtain ||¢p, p, (7, y) — ¢(z, y)||Lz y = 0, a8 hy — 0,hy — 0, and [|620p,p,[]2 <
Clloa(z, y)lr2(0); [10yoninsll2 < Clloy(z, y)IIL2 - Moreover, there are ||d:0n, h, (2, y) —
e (z,Y)ll 20 —> 0, 16ypn1ns (7, y) — @y (2, y)||L2 y = 0,as hy = 0,hy — 0.

Define the piecewise constant function §h1h2(:1: y,t) = &, for (z,y,t) € Qf, (1 =
0,1,---,I-1;7=0,1,---,J=1;n=0,1,---, N —1). Similarly we can define the piece-
wise constant functions ny, ;. (:I:,y,t),ﬁghlhz(:v, y,t), (1 <k <6), B,Tllh%ﬁ(:v, y,t), (1,7 =
:|:1,0), FY;—’thhz (Iuyut)u (1 S m S 4)7 aql;lh (:E yvt) Wa ’-)/77;1h1h2 (Iuyut)u (1 S
m < 4)a dﬁth ('Ta Y, t)’ §IT11h2’ ﬁ;;lhz'

For these functions above, we assume the following condition holds.

(IV3) The piecewise constant functions defined above are bounded functions uni-
formly with repsect to hi,hs and 7. And as hy — 0,hs — 0,7 — 0, these piecewise
constant functions converge strongly in L?(Q7).

Remark. Note that in [1] and [2], no such condition (IV3) is imposed, where
the known data are assumed to be smooth. Here they are weaken to be bounded
measurable. The assumption (IV3) excludes those “morbid” functions appearing in the
construction of the difference schemes (23)—(25). But, it is not a severe restriction, since
almost all the well-known difference schemes with intrinsic parallelism, in particular,
those discussed in [5], satisfy the condition.

Introduce the restriction condition of the steplengths:

1 1
4 <1_
(V2) T(h% + hg) 1<i<I— 121”<{3<J 1A” <l-s

where 0 < ¢ <1, and
Ay =(1 = mfy = &) AL | + (1 =iy, — &5) T |AT
+ Z|§z?11j =iy + &5 — iy l[A7 1 — Al
Il = € AT+ AT
+ (1= = & )AL |+ (1= iy — €)Y AL
b€ i+ gl AG AL
+ %Iél}l — 1 fzy + gl |Ai 1 + Ajl

Under the conditions (Is) (Vg), the existence, uniqueness and convergence theo-
rems for the difference schemes (23)—(25) can be proved. Moreover, when A(z,y,t) is
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piecewise smooth and the discontinuity surface of A(z,y,t) satisfies certain necessary

confinement, by choicing suitably the parameters (i.e., £’s and 7’s) we can get some
practical difference schemes (see [4] and [5]). The construction principle of the schemes
is similar to that in the section 6.
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