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Abstract

In this paper, the partial projection finite element method is applied to the
time-dependent, problem—the damped vibrating Timoshenko beam model. Tt is
proved that this method allows some new combinations of interpolations for stress
and displacement fields. When assuming that a smooth solution exists, we obtain
optimal convergence rates with constants independent of the beam thickness.
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1. Introduction

The Timoshenko beam model is given by

Oy +d 20 —wy) =0 on I,
{ diQ(e — wg)z = g() on I,
0(0) =6(1) =w(0) =w(l) =0

where the beam is considered damped, d represents the beam thickness and I = [0, 1].
f(x) is the rotation of vertical fibers in the beam and w(x) is the vertical displacement
of the beam’s centerline(under a vertical load given by g(z)).

Analogous to the situation one would meet in studying the Reissner—Mindlin plate
model, the standard finite element methods fail to give good approximation when the
beam thickness is too small, owing to a ”locking” phenomenon. Instead, mixed meth-
ods, based on the introduction of the shear term as a new variable, have proved to be
successful([1],[8],etc.). D.N. Arnold[1] studied the discretization with emphasis on the
effect of the beam thickness and used a mixed finite element method reduced integra-
tion approach. He obtained optimal-order error estimates with constants independent
of the beam thickness.

On the baisis of [11], B.Semper considered the following time-dependent vibrating
beam equations

O + 00y — Opy +d2(0 — wy) = on I x (0,71,

wi + 0w +d %0 — wy)z = g(x,t) on I x (0,77,

0(0) =6(1) = w(0) = w(l) =0, vt e [0,T], (1.1)
H(T,O) = eﬂ(z)aet(mao) = 91(1'), Vo e,

w(1,0) = wo(#), n(1,0) = wr(a), Vel
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Where ¢ represents a damping constant.

B.Semper discussed some semi-discrete and fully discrete approximations for this
model.Following Arnold’s idea, he also obtained optimal-order error estimates with
constants independent of the beam thickness under the assumption of the regularity of
the solution of (1.1), which we will derive in this paper(see Theorem 3.1).

As we have known, in studying of the Reissner Mindlin plate model, Prof. Zhou
Tianxiao [15] proposed a new mixed method:PPM-Partial projection method of finite
element discretizations, which has attracted more and more researchers’ interest[2,7].In
comparison with Galerkin formulations, this method enhanced stability and is promis-
ing for the plate and shell problems. In this paper, we extend the idea of PPM to the
time-dependent problem. Semi-discrete and fully discrete schemes are proposed for the
vibrating beam model (1.1). As desired, this method allows some new combinations of
interpolations for stress and displacement fields, and, when assuming a smooth solu-
tion, we obtain optimal-order error estimates with constants independent of the beam
thickness .

We now give the arrangements of this paper.In section 2 some notations are collected
and variational formulations are presented.In section 3 a prioi estimates are derived 3.In
the following section new variational formulations are given. In the last two sections
semi-discrete approximations and fully discrete approximations are considered and their
convergence are analysed .

Throughout this paper we denote by C a constant independent of h and d, which
may be different at its each occurrence.

2. Notations and the Original Variational Formulations

At first we introduce some notations. We will use the standard notations for the
Sobolev spaces H” and H{ with norm || - ||, with H® = L2.The L%inner product is
denoted by

1
(f,9) :/0 f(x)g(z)dx.

Furthermore we denote the dual space of H™" by H". For any vectors ¥ =<
1,19 >, ® =< ¢y, o >€ [H"]?, we interpret

(\Ilu Q)) = (¢1, ¢1) + (1/}27 ¢2)7
NO[17 = (T, 9), = (1, 91)r + (P2, 92)r = [[91][7 + [192]17,

(here (-,-), represents the [H"]?—inner product).We also define the following bilinear
forms (for abbreviation, we denote H}(I) = H¢, L?(I) = L? in what follows):

For < U, ® >€ [Hy|* x [Hj]*, a(¥, @) = ((¢1)a, (¢1)0);

For < U, >€ [Hy]? x L?, b(n, ®) = (0,1 — (2)q),

For < W, ® >€ [Hg|* x [Ho[*, c(¥,®) = (1 — (2)a, b1 — (¢2)a),

Given any Banach space V' with norm || - ||y, for any v : [0,7] — V which is
Lebesgue integrable, we define the norms

T
Il = ([ G 0IR ", p=1,2
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|vllze 0y = sup |[[o(,)[|v
0<t<T

We also use the notation
ol (#) = [[v(, )]

We define the following Banach spaces:
Lp(O,T; V) = {’U : [OvT] - V7 HUHLP(O,T;V) < OO}, p= ]-a 27 o0

The standard variational formulations of (1.1) can now be written as:
Given g(z,t) € L*(0,T; H '), find ®(z,t) =< 0(z,t),w(x,t) >€ L2(0,T;[H}]?) such
that ®,, ®y € LQ(O,T, [Hil]Q) and

(Pet, W) + 0(Py, U) + a(P, V) +d %¢(P, V) = G(V), VU e [Hj]?
(@(70)7\11) = (@7anj)a AAVAS [H[H
(@t(ao)aw) = (q)pa\Ij)a VI e [H[H
Oy =< by, wp >, Pg =< 01, w1 >,

where G(V) = (g,%2).

If we introduce the auxiliary shear variable

Mz, t) = d™*(¢1 — ($2)2)

which is related to the shear stress,we get the mixed variational formulations of (1.1):
Given g(z,t) € L?(0,T; H '), find < ®, X\ >€ L?(0,T;[H{]? x L?) such that ®;, & €
L2(0,T;[H ']?) and

(2.1)

(q)tta ) ( a\I]) + a(q)a \I!) + b()‘a \Ij) = G(\I])a \ANS [H[HQ

b1, ®) — d*(A. ) = 0, v € 12 22
(@(,0), ¥) = (@0, ¥), VU € [H,]® '
(q)t( 70)7\11) ('1) \I! v € [H[HQ

3. Regularity Result

To assert that the problem (2.1)(also (2.2)) is well posed, we will prove the following
regularity result:

Theorem 3.1. Let & =< ¢y (x,t), pa(x,t) > be the solution of the problem (2.1),P,
gy € L0, T; L?). Then for any t € (0,T),there exists a constant C independent of h
and d such that:

p1ll2 + [|¢2ll2 + d7%[|d1 — (¢2)allt < C (3.1)

To prove this theorem, we first cite a lemma proved by D.N.Arnold [1]:
Lemma 3.1. Let F,G € H',0 < d < 1. Then there ezists a unique pair of
functions < ¢1, 2 >€ [HE]? such that

(($1)ar (W1)a) + d2(d1 — ($2)ar 1 — (Y2)) =< Foahr > + < G, 1py >,

for any < 1,99 >€ V? C [H{]?. Moreover,for p = 0,1, ..., there exists a constant C
dependent on p such that

1d1llp1 + llg2llp+1 +d [ d1 = ($2)allp < CUIFllp—1 + [|Gllp-1)- (3.2)



356 M.F. FENG X.P. XIE AND H.X. XIONG

Now we take two steps to prove Theorem 3.1:
Step 1:to bound H¢tHL°°(O,T;L2) and ‘|¢tt|‘L°°(O,T;L2)'
Let U = &, in (2.1),then we have

(B, ®y) + 0(Py, By) 4 a(®, By) + d 2e(®, D;) = G(Ty)

or equivalently

d

d -
|4][§ + 20]|4][§ + @H(dﬁ)xl\% +d gy — (d2)all§ =2 < g,(2)e > (3.3)

¢
dt dt

Integrate (3.3) from 0 to ¢, we have

1] 15(2) + 20 fi || @[5 + 1I(¢1)]5(2)
+d72‘|¢1 - (¢2)$H%(t) (34)
= [|194|3(0+) + [ (413 (0+) +2 f5 < g, (d2)r >
+d 2|1 — ($2)a][5(0+)

Now we estimate the last term of (3.4).The B-B condition(Lemma 5.3)and (2.1)
imply that
d?[|gr — (¢2)all5(1) = lIAllo ()

< % Supy b‘(‘:\I,’H\I? = % Supy m[_@)tt, V) = 6(P, V) — a(®, ¥) + G(V)]

< g l1@eullo(®) + 011 @¢/Jo(8) + [[(P1)llo(8) + gl Loe 0,51 1)]
Then we have

_ 1
d™?||¢1 — (2)a]15(0+) < 7o 1@atllo(0+) +0|@elo(0+) +[[($1)alo(0+) gl e 0.2 )]
Note that 6 > 0,d > 0, by (3.4) we have(assuming d € (0,1))

| @][5(t) < C + 2T\\gl| 1.0 (0,15~ 1) [| Pl oo (0,7 1.2)

where C' is dependent on 4, ||®[|o(0+), |[(¢1)zl0(0+), [|9l[ o0 (0,137 1), [|@et] [0 (O+).
so we get

@[ 0,7;12) < C, (3.5)

where C' is independent of h and d.

Now differentiate the first equation of (2.1) with respect to ¢t and let W = @y,
Similarly we have
et (0,7522) < C, (3.6)

where C' is also independent of A and d.
Step 2: from (2.1) we have

((d)l)iﬂa (,(:[)1)16) + d72(¢1 - (¢2):ﬂa¢l - (1;[)2)1)
= —((¢1)e + (1) e, 1) — ((P2)ee + 0(d2)e, Po)+ < g,p2 >
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Denote
—((d1)er +6(d1)e, 1) =< Fy9pr >

and

_((¢2)tt + 6(¢2)t71/}2)+ < gu¢2 >=< Gu 1/}2 >
then by virtue of triangle inequality and Lemma 3.1 we get(taking p = 1)

[[¢1ll2(2) + l[d2|l2(t) +d2[|¢1 — (d2)all1(t)
< C([|Fllo +[1G]lo)
< C([|®ullo + 0l/4llo + [lg]o)
< C([®t]| oo 0,7:22) + 0@t oo (0,1322) + 191l Loe (0,122))
< O |[@olf1, [|Pol1, HQHLOO(O,T;LZ)a HgtHLOO(O,T;H*l)u HQHLOO(O,T;H*U)

This completes the proof.O

4. New Variational Formulations of the Problem

To begin with, we introduce a weighted factor a which is generally assumed to be
in (0,1].The new variational formulations equivalent to (2.2) are presented as follows:
Find < ®,\ >€ L2(0,T;[H}]? x L?) such that

(pr, ) + 5(Py, ) + By (D, ¥, 1) = G(¥), V < U,n >€ [Hy]* x L?, (4.1)

"By
=a(®, V) + ac(®, V) + (1 — ad?)d*(\,n) + (1 — ad?)[b(A, ¥) — b(n, ®)]
= ((¢1)z: (¥1)a) + ( — (¢2)ar b1 — (¥2)e) + (1 — ad?)d? (X, n)
—(1 - )[(77,¢1 ($2)z) — (N1 — (¥2)2)]

{ (Pr, ¥) + (P4, V) + a(P, V) + ac(P, V)

or equivalently
+(1 — ad?)b(\, ¥) = G(T), (4.2)
~(1 — ad?)b(n, ®) — (A, n)] = 0

with conditioons

{(( 0),¥) = (@, ¥), Ve [H)
(®:(-,0), ¥) = (B0, ¥), V¥ € [Hy]”

5. Semi-Discrete Approximations and Convergence Analysis

For our numerical methods, we assume I is partitioned quasiuniformly by a sequence
of grids I'y:
OZ.TOS.’ElSLEQS...SLEn:l

such that for any grid
Cmin(z;41 — x;) > h = max(z;41 — 2;),
1 (3

where C' is independent of A and the partition.On such a partition,we define T; =
[, Ti+1] and
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Vip={veHI) v, € Pk,i=0,1,....,n — 1}
(%) Vo ={ve€H{I): v, € P,i=0,1,..,n — 1}
Wy ={w e L*(I) : w|p, € Py,i =0,1,...,n — 1}
where Pk, Py, and Pj are polynomials of degrees at most K, L and J, respectively.

Based on (4.1) or (4.2), we present a semi-discrete approximation scheme:
For a fixed ¢t € (0,77 , find < ®"(-, ), \"(-,t) >€ [Vi, x Vo] x W), such that:

(®f, W) + 8(9F, W) + By (", N5 0, 1) = G(¥),

V<U¥,np>e€ [Vl,h X Vg,h] x Wy, (51)
with the conditions
(¢(70) - @707\11) = 07 VANS Vl,h X V2,h7 (5 2)
(@4(-,0) — @, W) =0, V¥ €V, xVy, '
or equivalently
(@}, W) + 5(0), W) + (0", V) + ac(@", ) 5.30)
+(1 = ad®)b(\", ¥) = G(V), '
—(1 = ad®)[b(n, ®") — d*(\",7) =0 (5.3b)

The existence and uniqueness of the finite element solution of (5.1) are trivial.Most
of our work is about the error estimates.

At first we introduce an auxiliary steady-state Galerkin problem:
Find < (i), A >€ [Vl,h X VQ’h] x W}, such that:

Bl(éuA, \Ilun) = Bl(@7A7\IJ7n)7 v < \Ilan >€ [Vl,h X VQ,h] X Wh (54)

where < @&, X > is the exact solution of (4.1).
The equivalent form of (5.4) is given by:

{ A(® — @, W) + (1 — ad?)b(A =\, ¥) =0, YU e Vi, xVay (5.5)

_[b(nuq;_q))_cp(j‘_)‘un)]zoa VTIGWh

where A((I), \I/) = ((¢1)m7 (¢1)z) + Oé(¢1 - (¢2)$7¢1 - (1/}2)m)

Lemma 5.1. There exists a constant Cy independent of d such that: for any
® € [H;]?
A(®, @) > aCy||@[}

Proof. In [H}]? we define a new norm || - || g by:
12115 = ((¢1)s, (1)) + (b1 = ($2)a, b1 — ($2)a)
It is easy to see that the norm || - ||p is equivalent to the norm || - ||; and then we
have

Cil|2][y < (|2l

so we get
A®@,9) 2 ol|®|[f > aC1]|@]]f. O

Lemma 5.2.
A(D, ) < 2([@[[1 ][]
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b(n, ¥) < [Inllol[¥]h

for any ®, ¥ € [H{)?,n € L.

Proof. Omitted.

Lemma 5.3. (Babuska—Bressi condition)Vn € L?, there exists a ® =< ¢1, ¢y >€
[H{1%, such that

b(n, @) > Bol|nllo]|®]x

(in fact, By = 1//22)
Proof. We solve

—(¢2)z + ¢1 =1,
$i(0) = ¢i(1) =0,
(for i = 1,2) to obtain
b= [ (1 =)o

Let ¢1 = ax(1 — z), then ¢o(1) = 0 implies

1 1 1
/ nd.r:/ d)ld.r:a/ z(l—xz)dz=1/6a
Jo 0 Jo

thus
1

¢$1 = 6x(1 — x) / ndzx,

0
$2 = /0$(¢1 —n)dz

To prove b(n, ®) > Boln|lo||®||1 is to prove

(n,m) > Bol|nllo|| @[l

or
[Inllo = Bol| @1

Obviously,
1 1
1613 =36 [ 221~ 2)%do( | ndn)? < /51l

Similarly we get
B1lF = 1(¢1)all5 < 121[ml[3

621 < 22/5(|nf5
[p2[T < 22/5[n][3

Combine the above four inequalities we obtain

@lI?

ol Il
= 191115+ 811F + 116211} + |2l
< 22/l
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This gives the desired conclusion (with 8y = 1/1/22).0

Lemma 5.4. (Discrete Babuska—Bressi condition)

Let Vi j, Vo, and Wy, be defined as (*). Assume that there exists a function ¢1 € Vi,
such that fol drdr =1 and |p1|1 < Cy, and that L —1 > J, then for any n € Wy, there
exists a ® =< ¢1, P2 >€ Vi), X Vo u, such that

b(n, ®) > Bllnllol @]

where Cy and B are constants independent of d.
The proof is similar to that of Lemma 5.3.

By virtue of the last four Lemma(5.1 5.4), we easily get the following important
result:

Theorem 5.1. Under the same assumption as in Lemma 5.4, problem (5.4) or its
equivalent form (5.5) has a unique solution < ®, X\ > . Moreover we have

1 — @1 + (1 — ad?)[|A — Ao

<C( inf — + inf - + inf ||A—
B (1/)1,hEV1,h H¢1 "/ﬂ,h”l Y2 n€Vap H¢2 1/}2’]1”1 nLEWp H nhHO) (5'6)

< Ch([|¢ll2 + [l¢2ll2 + [[All1)

where C is dependent on o, Cy, 3. R
Proof. Existence and uniqueness are trivial. To analyse the estimate ||® — ®||; +
(1 — ad®)||A — Ao, we rewrite (5.5) as follows:

A(‘i) - Uy, \Ij) + (]' - adQ)b(j‘ — Th; \I!) = A(q) — Uy, \Ij)
+(1 = ad®)b(X =y, ),

YU, U, € Vl,h X Vg,h (5.7)
b(n, ® — ¥p) — d*(A — n4, ) =b(n,® — ¥p) — d*(A — 4. 1),
V”J?h € Wh

Take U = & — Wy, m = P 7, then we have

A(D — Uy, & — Up,) + (1 — ad?)d2(X — 1p, A — 1)
=A(® U, &~ Up) 4 (1 — ad®)b(A —np, & — Ty)
+(1 — ad®)d* (X — np, A —nn) — (1 — ad?)b(A — np, & — Ty)
< 2[[® — Ty [|® — Ty + (1= ad®)||x - 77h|\0|\‘i{— Wnlli (5.8)
+(1 = ad®)d?||A = nallol|A = o + (1 — ad?)[|A = nallo]|® — Wa[lx
<212~ plli + (1 — ad®)||A — mllo]|® — Tplly
+(1 — ad®)[d®[[]X —npllo + 112 — Ty |[1[[A — nallo

In light of LEMMA 5.4, we have

R b(A—np, T
BlIA=mnllo < sup %

WeVy p xVap
. bA-A+A—1p,, )
T oS T
eV px Vo ) (5.9)
A(P—V, V), D0
<1/(1 — ad?) sup ( ﬁ\llth )—i-H)\—TIhHO
VeV X Vo

<2/(1 —ad®)[||® — Wyl +[|® = Wy |li] +[|IA =l
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Substitute (5.9) into (5.8) and employ Lemma 5.1 we get

aC[|d — |17
SA@ -V, @ - Ty)
< [2]® = Tplli + (1 = ad?)|IX = nallo]l|© — W]y
+(1 = ad?)[d?||A —np)lo +[|® — Wyl]]
1/8{2/(1 — ad?®)[||[® = W/l + || — h[l1] + [|]A = nallo}
(assuming d € (0,1),1 — ad? € (0,1))
[(2+2/6)[|® = Walls + (1 +2/B)[[A = nnllo]||® = Walh
+1/B[IA = mnllo + 2[|® — Ty [J1]?

(5.10)

<
<

A series of simple operations on the inequality (5.10) show us that

& — Wylli < 1/(@C)[(242/B)]|® — Wylh + (1 +2/8)]|A —mnl[o]
+2/vaBC||A = npllo + 2[|® — Wpl1]
S COUA = mallo + [|® — pl[1]

where C is dependent on «, g8, C.
Employing triangle inequality we obtain

& —®[|1 < [|®— Tp[ls +[|® — Tp[|y
S OA = mallo + 1@ — pll1] + [[@ — Wylly (5.11)
< ClIIA = mnllo +lé1r — Yipll + 2 — Yonll1]

Since U € Vjp x Vay, is arbitrary, (5.11) together with standard results from finite
element interpolation theory yields

d—dl, <C( inf - + inf -
1 < (wlhevl,hu(pl Yl wmevm\l% Yo.h

< Ch([[g1l]2 + llgall2 + [[A][1)
Similarly , from (5.9) we get

inf ||\ —
i+ inf A=l

(1 — ad?)||X — Ao < Ch(||¢n1ll2 + [|d2ll2 + [|A|1)

The sum of the last two inequalities is (5.6).0
Remark 5.1. In applications we usually take

Vip=Vop={veHyI):v|lp, € Ppi=0,1,...,n—1}

Remark 5.2. Note that the shear term A = d 2(¢1 — (¢2)z), and that theorem 3.1
has given the bound of (||¢1/|2 + |¢2ll2 + d?||¢1 — (¢2)a]11)-
Remark 5.3. With an easy duality argument we also have the estimate

1® - ®|lo < CB? (5.12)
Remark 5.4. Similarly,we get the estimate
1@ — ®),[ly < Ch?

by differentiating (5.4) with respect to ¢.
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Now we come to estimate the error ||® — ®||g. The following theorem is the main
result of this section.

Theorem 5.2. Let < @y, A\, > be the semi-discrete Galerkin approzimation given
by (5.1) and (5.2), and let < ¢, X > be the solution of (4.1) and (4.3). Then if ®, P, €
L>(0,T; H?), there exists a constant C independent of h and d such that

1@ — @yl 00,7577y < CB* T [|®]| Lo (0,1 12) + 1P| oo (0,77, 112)] (5.13)

forr=20,1.
Proof. From (4.1),(5.1) and (5.4) we get
(D~ &), ¥) + (@ — ), ¥)
= (=Pu, V) +4(= q)tu V) = Bi(®, ¥, 1) + G(V)
= (= Dy, ¥) + (= Py, W) — By (0, \; 0, )
A (Puen, V) 4 0(Pp, W) + Bi( Py An; ¥om)
= ((®n — P)ut, V) + 6((Pr — ), ¥) + B1(Ph — @, An — A; ¥, 1),
for any < U, 77>€[V1h><V2h]><Wh
Let B =®), —®,é6=®— & E* =\, — A, we have

(e, W) + 6(é4, V) = (Ey, V) + 0(Ey, V) + By (E, E*; ¥, n) (5.14)
Taking n = 0 in (5.14) we get

(€1, W) + (6, V)

= (Ey, V) + 6(E, V) + a(E, V) + ac(E,¥) + (1 — ad?)b(E*, ¥) (5.15)
Taking ¥ =0 in (5.14) we get
(1 ad®)[d*(E*,n) — b(n, E)] =0 (5.16)

Integrate (5.15) from 0 to ¢ ,we then get

(€, W) + (e, V) + (Ey(+,0),¥) +0(E(-,0), )
= (Eta \Il) + 5(E7 \Il) + (f[f(El):Ea (d)l)z) (5'17)
+a(.f(ﬂE1 — (Ba)z], 1 — (P2)z) + (1 — OZdQ)b(f[;f E)\v ¥)

Now let ¥ = E,7 = [} E* in (5.16) and (5.17), and we easily get

LB} + 20|\ B} + %I f5 (Br)alI3
+al|| [§[Er — (B2)o)l[§ + (1 — ad?)d? 4| [3 EX|3
= 2[(Ey, )+5(E E) + ([y(B1)g, (B1)z)
+a(fy[Er — (B2)a], By — (B2),) + (1 — ad?)d?(fy B, EY)]
=2[(é, E) + (&, E) + (E(-,0), E) + §(E(-,0), E)]

If we integrate this equation from 0 to t ,we also get

E(G + 11 Jo (B1)allf + ol [o[Br — (Ba)]|[§
+(1 — ad®)d?|| [y B3
< |BI3(0) + 2 [y (&, B) + 26 [5(&, E) (5.18)
+2f[f(Et('70)7E) +25f[f(E('a0)aE)
< CIEo(0) + [[étl| Los 0,7522) + [|ell oo 0,102) + |1 Etllo ()] E|| oo (0,522
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Note that by Remark 5.3 and Remark 5.4 and (4.3)
1Elo(0) = [I®n — @l]o(0)

<[ — @pl(0) + || — ]o(0)
< Ch?||®|| oo 0,112

ledl ooz = (@ = @)l poo(o.r:12)
< ChQH'i)fHLOO(U,T;HQ)
éllree 0,522y = 1@ — @] Loc(0,7;12)
< CR?[[®]| oo o,1:12)
[ E¢]0(0) P, — @)4]l0(0)

= I(
< [(@ = @4)illo(0) + [[(® = @)4[0(0)
< OR?||®y|| oo (0,7 112)

We have from (5.18)

|| @ — (i)HLOO(U,T;L?) = HE\2|L°°(U,T;L2) (5.19)
< CRA()| @[ oo 0,1y m2) + 1 @] Lo (0,7 72)]

Also we get from (5.18) and (5.19)

1o (En)allf + all folEr — (B2)]lI3

5.20
< O8] w0 1,7 + 1124l 00 (>:20)

It is not difficult to prove that in H} x H{}, the norm || - ||. defined by

! 2 ! 211/2
@l = supll| [ (@0all§+1 [ 161 = @21}
is equivalent to || - |00 (o,7;m1), SO we have
@] oo 0,311y < C| @] (5.21)
Now (5.20) and (5.21) lead to
@4 — @ e oy = 1Bl Lo 0,170

< C||E|| (5.22)

< CR[||®] oo (0,75 12) + 1P| 100 (0,77512)]

The error estimate (5.22) is over-optimal.

Finally, by means of triangle inequality, (5.6),(5.12),(5.19) and (5.22) imply the
conclusion (5.13).0

6. Fully Discrete Approximations and Convergence Analysis

We now consider a fully discrete Galerkin scheme for (1.1). Suppose [0,T] is par-
titioned into equal subinternals of size 7. The following Crank—Nicholson scheme may
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be used for approximating (4.2) and (4.3). For n =0,1,2,..., J, find < ®", Q", \" >€

[Vl,h X VQ,h] X [Vl,h X VQ,h] X Wh such that:

((0:Q",T) + 6(9,9", W) + a(@"1/2, W)
+ac(®"H2 W) + (1 — ad?)b(A"T1/2 W)
= Gn+1/2(\11)7
—(1 = ad®)[b(n, ®"T1/2) — d*(A"F1/2 )] = 0,
8T¢n — Qn+1/2
(©%, W) = (o, V),
(Q07 \Ij) = (¢07 \Il)u
\ (Aoan) = din(na (1)0)7

where for any ¥ € Vi, x Vay,
0, U™ = 1/7[¥"H — g

\Iln+1/2 — 1/2[\Iln+1 _|_ \I/n]

G2 (W) = (1/2[g( (n + 1)) + g(n

(Similar expressions hold for functions in Wp).

MAVNS Vl,h X VQ’h
v € W (6.1)
YV € Vl,h X V2’h

VAVNS Vl,h X V2’h

Vn € Wy

7)]; ¢2)

It is not difficult to show that (6.1) has a unique solution for each time step. Using
techniques of baker[3], we can easily prove the following result:
Theorem 6.1. Suppose ®(z,t) is a solution of (4.2) and (4.3) such that &, P; €

L>(0,T; H?),
Be e

ST g € L?(0,T; L?). If ®" is the solution generated by (6.1), there exists a constant

C independent of T7,d and h, such that forn =20,1,...,J

AL

|®(,n7) — ®"|| < C[A” + TQ(HWHLQ(O,T;LQ) + HWHH(O,T;L?))]

0'® (6.2)

We give a rough proof for this result. Some triffling calculating are omitted. For
the sake of simplicity, we denote V(- kt) = W(k), for any ¥ € [H}]? and || |lo = || - |-

Proof. Let

o = 0, (B(n
Py = 0:(2(n
then we have from (6.1) and (4.1)

)
) = ®i(n +1/2),

(0-P", ) + 6(0, E™, ¥) + By (E™t'/2, M"+1/2, W p)

= (_pTIl + aTét(n) + (Spg - 8’ré(n)a \Ij)

— @tt(n + 1/2),

(6.3)
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and
O E" = P2 4 8. é(n) — éy(n+1/2) — pll

then we get
0;E° = P° + 7/20.P° + 0.¢(0) — ¢;(1/2) — p
n n—1
O,E" =P +7/23 0. P"+7/23 0, PF+0:é(n) — éy(n+1/2) — p}
0 0

Now combining (6.5) ,(6.6) with (6.3), we have

(0, E°,¥) + 7/25(0, E°, @) + 7/2B, (E'/?, M'/?; ¥, n)
= 7/2(=p% + 8,6,(0) + 6p% — 9,6(0), V)
+(PO +0-6(0) — &,(1/2) — p3,¥)

and
n n—1
(0, E", V) +7/26(3. 0. E* + Y 0,EF W)
0 0
+T/231(2": Eh1/2 4 ”il k12, iMk+1/2 4 ”il MEF2, )
0 0 0 0
n n—1
=720+ X ) (=P + Oréy (k) + 6(p5 — 0-é(k)), V)
+(P% + 9-8(n) — é,(n +1/2) — p3, V)
Let

-1
U = 2E‘n+1/2 — En+1 + E" — Q(i Ek+1/2 _ HZ Ek+1/2)7
0 0

n n—1
n = 2(2 Mk+1/2 - Z Mk+1/2)’
0 0

so we have from (6.8)
L/r([[E"TH? — ||E™|?) + 6/2/|E" T + E"||?
+7'Bl(£: ERH1/2, iMk+1/2; iEk+l/27 iMk-l—l/Q)

n k 120"71 k120"71 k102"71 k+1/2
—TBy (X EFH2 S k205 pREL2 S k)

0 0 0 0
= 20(E°, Ent1/2)

T

n—1
+7(0+ ) (—pb + 0,é0(k) + 5(pk — 9.6(k)), EnT1/?)
0 0
+2(P° + 0,é(n) — é4(n + 1/2) — py, Ent1/2)

Sum them from 0 to I — 1, (1 <[ < J) then we get

-1
B[] < [|B°|]” + 207 (B°, 3 E"T/%)
0
n

+r? 1%1(% + ngl)(—p’f + 8,6,(k) + 8(ph — 0-¢(k)), EH1/2)

-1
+27 S (PY 4 0.é(n) — é(n +1/2) — pi, E"t1/2)
0
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(6.7)

(6.8)

(6.9)

(6.10)
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n—

=+ D)ot + 0reu(k) + 3(ph — dre(k))
0 0

€ = PV +0.é(n) — é(n+1/2) — pb

Using the inequality 2ab < ea® + 1/eb?, (¢ > 0), we have

-1
267(EY EntU2y < 2571(|E° E"
7( % ) <2670 I,Ognnang )

-1 -1
2% (e, BT2) < o3 Y || ||P 4 1/4 max [|E"||?
0 0 0<n<J

-1

21 3 (e, E"H1/2)
0

0012 _ ni|2
< ST(40T||E°|2 +1/(46T) max ||E"|]?)

= 45°T?||E°||? + 1/4 max | E"|?
0<n<J

Substitute (6.11a),(6.11b) and (6.11¢) into (6.10), we have

1/4 max || E"|?
0<n<J

-1 -1
< ||E°|? + 40°T2 | E°|? + 7°T 2 €] + 47T > €5

-1
<[EY|? +48°T?||E°||? + 7°T% max |[[e7]|> +47T 3 |[e5]|?
0<n<.J 0

-1
< 47T 12 4 1/4 E™||?
< AT S|l + 1/4 max (||

XIONG

(6.11a)

(6.11b)

(6.11¢)

(6.12)

Now the work left to us is to estimate each term on the right side of (6.12). It is

easy to prove that

k
p1 =

k
P2 =

we have

and therefore

(k+1)7

oA
1/(27) / [(k+ 1)1 — s][kT — s]—(-, 8)ds,
ott
kT
k+1)T
(k+1) P
1/(27) / [(k+ 1)T — s][kT — s]w(-, s)ds,
kT
(k+1)7
0*®
P <ert [5Pds
kT
(k+1)7
oAk
P et [ 5 P
kT

n n—1 . J 3 84‘1)
2 2 4 2
T(Z"‘Z)HMH < 2TZHP1H <2CTt H—8t4 HL2(U,T;L2)
0

0 0

(6.13a)
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n—1

T(Z'I‘
0

J

- PP
Z)I\p§|\2 <21y P51 < 2CT4HWH%2(U,T;L2)
0

)(lotl =+ dlle51])

)(0-¢4(k) — 00-¢(k))|I]?

0
Thus we get
9 9 n n—1
TP <7’ [+ 3
n n—1
HIE+ X
0 0

J J
7(203 1oF11 + 02 10511%) + 2[|éx(n + 1) + éx(n)
—2et(0) — 6é(n + 1) — dé(n) + 26¢(0)||?
3
< o]/ % at4 HL2 0.1;02) T H%t?H%Q(U,T;LQ)] +Ch

and

-1 -1
T lesl? < %(HPOH +[0re(m)|l + [lee(n +1/2)I + o3 11)?

-1 -1
<4r(S P+ 5 0,6 (m)

-1 -1
+ 2 llén+ 1/2)H2 2 1051%)

< ATCh* +4CT4
+Ch* + Ch*

< Ch* + CrY)|1 22|12

att

where the following relations are used:
(k+1)7

-1 R -1 .
T 203 [0-e(n)[|? =T Z /| el

kT
(k+1)7

8%® (|12

1% at4 HL2 o2 T |5 HL?(O,T;L?)]

93d (2
HL?(U,T;L?) + HW”L?(U,T;L?)]

s)ds||?

<Tz Ur [ llédPds
kT
< |\et\|L2 o2y < Oh*

[PP])2 = [|Q° — @¢(0)|[* = [|@4(0) —

Also we have

d,(0)?> < Ch?

|E°|)2 = ||@° — &(0)|* = [|®(0) — &(0)||> < Ch*

Combining (6.12) with (6.14),(6.15),(6.16), we have

max [|E"||2 < C[n* + 7Y
0<n<J

or equivalently

max ||E"|| < C[h? + 72(|| =
0<n <J

0o PO
Y 172 o) =g o3 172 (0,1:12))]

9*® 83'1)
P HL2 o2y T o o HL2 0.1512))]

367

(6.13b)

(6.14)

(6.15)

(6.16)

(6.17)
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Finally by employing the triangle inequality, we obtain from (6.17) and Remark 5.3
the desired conclusion.O
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