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Abstract

In this paper, following the paper [7], we analysis the “sharp” estimate of the
rate of entropy dissipation of the fully discrete MUSCL type Godunov schemes
by the general compact theory introduced by Coquel LeFloch [1, 2], and find:
because of small viscosity of the above schemes, in the vincity of shock wave, the
estimate of the above schemes is more easily obtained, but for rarefaction wave, we
must impose a “sharp” condition on limiter function in order to keep its entropy

dissipation and its convergence.
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1. Introduction

Let us consider the Cauchy problems for nonlinear hyperbolic scalar conservation

laws: p o7
Uu
u(z,0) = ug(z) (1.2)

where f : R——R is Lipschitz continuous functions, and the initial data ug(z) is a given
function in L'(R) (N L>(R). As it is well-known, this problem in general does not admit

smooth solution, so that weak solutions in the sense of distributions must be consider.
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Moreover, an entropy condition must be added in order to ensure the uniqueness of the
weak solutions of equation (1.1) and (1.2). The convergence of high resolution schemes
has been investigated by many authers, such as Osher and Tadmor [3], Vila [5],and
Coquel and LeFloch [1, 2]. However, some quantities depending on space mesh size are
always introduced in their paper. In general, the difference schemes only depends on
the ratio of the mesh size but the mesh size. So, the introduction of these quantities
may be improper.

In this paper, we discuss a class of the fully discrete MUSCL type Godunov schemes
based on the general theory introduced by Coquel-LeFloch [1, 2]. In section 2, we
recall the Godunov schemes for scalar conservation laws and give its MUSCL type high
resolution Godunov schemes. Section 3 deals with the rate of entropy dissipation of the
schemes. We give a cubic estimate of the ”sharp” entropy inequalities of the MUSCL
type Godunov schemes in the case of shock wave. Moreover, we anaylsis the case of
rarefaction wave, and find that a ”sharp” condition must be imposed on the limiter
functions in the case of rarefaction wave, in order to ensure entropy inequalities and
convergence of the above schemes. The above limitations make these schemes fail to

preserve the second order accuracy.

2. The Fully Discrete MUSCL Type Godunov Schemes

Let us consider finite difference schemes in conservative form for conservation laws
(1) and (2)
h

u?“ =u — Ah (2.1)

j J+5 jf%)’
where A = At/Az is the mesh ratio, and At and Az are the variable meshsize in time

and space directions, respectively. hj+1 denotes the numerical flux
2

hj+% = h(tj—sq1s ey Ujis), H(1,y .y u) = f(u). (2.2)

As well known, the weak solution of equation (1.1) and (1.2) is not unique. So let the
function U(u) be any convex function,so called the entropy function, and associated
with entropy function F(u) satisfies F'(u) = U'(u)f'(u). (U,F) is called an entropy
pair. If the weak solution of equation (1.1) and (1.2) satisfies the following inequality:
U (u) n OF (u)

ot ox
in the sense of distribution to every entropy pair (U,F), the weak solution is the unque

<0, (2.3)

physical solution of equation (1.1) and (1.2). The inequality (2.3) is called the entropy
inequality (or the entropy condition). Corresponding to the conservative scheme (2.1),

the discrete entropy inequality is defined as

Uuj ™) = Ulug) + AM(H 1 — H; 1) <0, (2.4)
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where the discrete entropy flux

Hj+% = H(Uj—s41, s Ujps), H(u,...yu) = F(u). (2.5)

In this paper, the given flux f is assumed to be of C? class and uniformly convex. Our

estimates will depend explicitly on the convexity modulus given by
§ = inf f"(u) (2.6)
u

the infimum being taken on all u under consideration. For the sake of simplicity in
the presentation (it is not a respection for our purpose and the extension to a general
entropy in immediate) , we shall use in all this section and the next section the entropy
(U, F) defined by

u
Uw) =L, Plu) = /vf’(v)dv, Vu € R (2.7)
0
For any uy and up in R , let % — w(%;uL,uR) denotes the unique entropy weak

solution to the Riemann problem

up + fo(u) =0, >0,z € R. (2.8)
: 0

u(0, z) = { w0 (2.9)
UR, if x>0.

Since the function f is strictly convex,w(*;uy,ug) is composed of either a shock wave
(ur, > ug) or a rarefaction wave (ur, < ug).

Now,let us discuss the Godunov scheme

n+l _ n G G
where
h‘G(ba a) = f(w(0+a b, a)) (2.11)

The above scheme admits a following decomposition (Tadmor [4])

where
Ax

2 [Z 0
R _ . L _ .
U1 = /U w(At,u;[l,u;‘)dz, U1 = A /7Az w(At,u;[l,u?)dz, (2.13)
Under the CFL stability restriction on A,

Amax | f'(u)] < (2.14)
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Coquel and LeFloch [2] have given a quadratic estimate of the estimate of the entropy

dissipation in the Godunov scheme.

Now,we will anaysis the sharp entropy inequality of the following MUSCL type conver-

sions of the Godunov scheme

S g )\(f(w(0+;aj+%,’l]j+%) — f(w(07;a, : U,

J J j—30
where
iy =t~ .
0y = o+ L0 ),
= uz — u;‘i
tjp1 — Uy

and ¢(r) is the Limiter function (see [5] for details).
Lemma 2.1. If the limiter function ¢(r) satisfies

¢(r)
0 < {82 4} <2,
then
wjpr Sy <dgn <wg, ifuje < ug,
uj <y < < ujin, ifujin > g
If define
Az
2 7 2
"R - z I . z o
uflfé_A—x/w(A_t’u] 1,'LL] 1)dm,u+%—A—x / w(Kt’uj‘l‘%’uj"‘%
0 _ Az

then we have

(2.15)

(2.16)

(2.17)

(2.18)

)dz, (2.19)

Lemma 2.2. Under the CFL condition (2.14), for each n in N and each i in Z, we

have
Uaf y) ~Uliy; 1) +2M(F (i, 1) — F{' )
Az
2
_ rR 1 z - - _aR N2 —
— ok, Ax/(w(At,ujfé,ujfi) all ) )%ds = A,
0
U(u]ﬂ%)fU(ﬂ +1) — 2A(F (i, 1) F]?i%)
0
B [ i) —af e = B
i~s Az At It it ey T T

_ Az
2

(2.20)

(2.21)
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where the terms JjR+ , and JjL+ , equal zero except when the Riemann solution w(*; U1,
3 = 2

2
ﬂj+l) contains a shock wave with speed o, 1 and, in this latter case,they are given by
2

+3

Jﬁl: F(ﬂj_l_%)*F(’LAL]-_F%)*U]-_F%(U(’EL]-_F%)*U(’LAL]-_F%)), if0j+%>0, (2-22)
I3 0, otherwise
J-L_|_1 _ F(aj+%) - F(ajJr%) - Uj+%(U(aj+%) - U(’&jJr%)), if Uj+% <0, (2.23)
ITe 0, otherwise

As first order Godunov schemes (2.10), we can write equation (2.15) in the following

form: R .
(w1 4+u’ 1)
15 J+5
ultt = —— (2.24)
where
aﬁ% :aﬁ%+uj+a]7%+2/\(f(a]7%)ff(uj)),:af7%+(172,\r}])(u] i 1), (2.25)

j+i j+3
o (fla ) = Fluy)
(Ij = ’a-il — ’LL) )
J—3 J
O (f@ ) — Fluy)
(Ij - ’11471 — u) )
J—3 J

Next,we will anaysis the entropy dissipation of MUSCL type Godunov schemes (2.15)
from the above decomposition forms, based on the general theory introduced by Coquel
and LeFloch [2].

3. The Estimate of Entropy Dissipation of a Shock Wave in MUSCL
Type Godunov Schemes

n

In this section, we will only consider the following case: uiyg — uy

J
have the same sign. Because, otherwise, from the equation(2.16), (2.17), (2.25), and

(2.26), we can find that

no_gn
and uy —uj_y

il
|
Sl

)

R R
J- J=

NI
N =

]ﬁ. ]F+ : (3.1)

il
|
Sl

N =

1
2
So, in this case, we have the same results as [2] in the case of shock (or rarefaction)

wave.First,let us discuss the case of shock wave (u;y1 < u;). By Lemma 2.1, we have
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Lemma 3.1. Under the CFL condition (2.14),

U(ﬁi%) — Ul(uj) + 2X\(F (uy) —F(ﬂi%) (3.2)
= A+ 2] + U(ﬁﬁ%) U(ﬂﬁ%) — (1= 2265) (U (uf) — Ulit;_1)),
U(ﬁf,%) = Uluy) = 2A(F (u;) — F(ﬂﬁ%) (3.3)
=B+ 2 + U(aﬁ%) - U(uﬁ%) (1 +2X3;) (U (uf) — Uty 1))
where
jR:F(uy)*F(ﬂjfé) —0j(Uuy) = Uli; 1)), (3.4)
TV =F(ij, 1) = Fu;) = 65(U (1) = Uluy)), (3.5)
Iflet o, 1, = max(O.,ajié),aH%’f = min(O.,aH%),then
RHS(3.2) = A+ 2)\JF - Aoj o1 (12X ;) (3.6)
J J J
RHS(3.3) = B+2)\J" + Aoji1 (1+42X5;) (3.7)
st~ A0 Oy |y g AT ey

2 2Tj+1
Denote the fourth term of equation (3.6),0r(3.7) as (I),(II),respectively. Since (see

[2]);

Az
5
1 T . N R \2
s /(w(ﬂ,ujf%,ujf%) fu];%) dx (3.8)
0
= oy 1 (12X, 1 )(@ fajfé){
;!
o - . L \2
Az / (w(A—t,uj+%,uj+%)fuj7%) dx (3.9)
Az
-5

I

|
>
)

Now, we have the following conclusion:
(1) If 6 > 0 > &,then

RHS(3.2) <2A(J[", + JH,
2

RHS(3.3) <2A(J, + Jh,

T2
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under the CFL condition (2.14).
(2) If 0 > & > &,then

RHS(3.2) <2A(J[", + %) + (1),
2

RHS(3.3) < 2A(Jj{l
2

+ jL) o (I)a

under the CFL condition

(1- ¢(Tj+1))2 B (¢>(Tj))2

2r; 2
Ao 1, < 1 : (3.10)
Jt+5,+ — r; T
3 2((1 — ¢2(T::))2 + (¢(2]))2)
(3) If 0 < 6 < ,then
RHS(3.2) <2A(J[", + %) = (11)
2
RHS(3.3) <2A(J! , + J") + (IT)
2
under the CFL condition
1- ¢(T]{1))2 _ (¢2(:]:))2
Ao 1, < il (3.11)
—5,+ — i T
J=3 2((1 — ¢(]2 1))2 + (¢2(T;))2)
Therefore,
Lemma 3.2. Conder the schemes (2.15) under the CFL condition
Asupy | f'(u) | < g,O <6<1, (3.12)

Suppose that the Riemann solution w(x; ﬂj,laﬁj,l) consists of a shock wave with speed
2 2
0;_1 ,and that the Limiter ¢(r) satisfies

2

¢(r)

r

0< {0, 2y <1 0), (3.13)

Then we have

U ) U )+ AFS = FC 1) < =A6(=0)(| uf —wp, [+ | uf —u, ) (3.14)

Next, we consider the case of rarefaction wave. Denote

L _ ~ T _ ~
0']7% = fl(ujié),ajié = f/(ujié), (315)
fla; 1) = f(a; 1)
o= (3.16)
2 u]*% —ur%
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in this case, JE = 0, JL =0 and
=3 I+3

Az
2
1 T R B
Az / (W(EEUj,%an,%) - Uf, )?dz < (3.17)
0

201 =220 oy 1% a1 -

1
2

—A(I—Sf+%){(1+2)\of+ )2)\032#%7(175;1%)(1—!-2)\04 %)203_}(aj+ @

1
2

where S% S” defined by

S"‘:{ 1, if 0% >0,

] ] (3.19)
0, if otherwise, a=L or R
and, u, is the sonic point(i.e. f/(us) = 0).
As the above case, we can find :
(1) U]L 1 > 0, then in order to hold the following ”entropy” inequalities
RHS(3.3) < (IT) +2AJ",
RHS(3.2) < —(IT) — 2)J*,
we must have the ”sharp” condition:
Aol (1—2X6
27‘]' - )\5(1 + 2)\5’) 2 2T‘j 2T‘j '
and 3
¢(r) 2
r) < 3.21
e (321)

(2) ofil >0> Ujl.;l, then in order to hold the following inequalities
2 2

RHS(3.3) < (IT) + 2AJ"

RHS(3.2) < —(IT) — 2AJ"
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we must have the ’sharp’ condition:

¢(ri—1)  ¢(r))

2()\0747%)2(1 = 220)(1 = = o )2 (3.22)
J
J J J
_A5(142X5) (¢(rj))2 S0
4 T
and ,
{(r), d)(r)} < (= 5)v2 ,0<s<1 (3.23)

(
Here, we assume u, = sﬁﬂ_% + (1 - s)~j 1
The case (3) aﬁl <0,and (4) ot , <0< ol
2 2
(1) and (2), respectively.
The case (5) o=, > 0> c® |, then
Jt3 J—3

, are in similar to the above case

RHS(3.2) = (I) + 2AJ" > 0,

and

RHS(3.3) = (IT) + 2)\JE > 0.

So, we can not give negative estimate of entropy dissipation,because ¢ > 6. Therefore,
for rarefaction wave,in order to make the above fully discrete schemes to satisfy discrete
entropy inequality, we must make ¢(r) = 0,i.e.make the above schemes to degenate 1-
order accuracy. In this kind of modifiment, we can prove the convergence of the modified
schemes (see [1, 2, 7]).

4. Conclusion

In the last sections, we have discussed the estimates of the rate of entropy dissi-
pation in fully discrete MUSCL type Godunov schemes by using the theory of Coquel
and LeFloch [1, 2] for nonlinear hyperbolic conservation laws. we have proven: because
of small viscoity of Godunov scheme, the scheme can not obtain the “good” estimate
of entropy dissipation in vincity of rarefactiion wave. But under some “sharp” con-
dition and modifiments for Limiter function, we can proved the convergence of the
scheme(2.15)—(2.16). Unfortunately, in this case, this modified MUSCL type Godunov
scheme will not preserve the second order accuracy under these conditions. It should be
further researched how to discretizate properly the entropy flux such that the discrete
entropy conditions can be better consistent with the nonlinear stability of the difference

schemes for hyperbolic conservation laws.
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