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Abstract

An efficient iteration-by-subdomain method (known as the Schwarz alternating
algorithm) for incompressible viscous/inviscid coupled model is presented. Appro-
priate spectral collocation approximations are proposed. The convergence analysis
show that the iterative algorithms converge with a rate independent of the poly-
nomial degree used.
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1. Introduction

Domain decomposition methods are useful approximation techniques to face com-
putational fluid dynamics problems, especially in complex physical domains and using
parallel computational environments. They have been first employed in finite difference
and finite element methods. In the context of spectral methods, they date from the
late 1970s (see for instance [3] and the references therein). Earlier applications of the
domain decomposition methods are related to split the whole domain into subdomains
of simpler shape, and then to reduce the given problem to a sequence of subproblems
which include generally same equations. Recently an intensive attention focuses on
the study of possibility of using different type of equations within subdomains where
different flow characters are observable. There has been some work, done mainly by
Quarteroni and his collaborators [4, 8], on the coupling of compressible viscous and
inviscid equations. The coupled problem of incompressible viscous and inviscid equa-
tions has been first considered by Xu and Maday in [11]. One of main goals of these
investigations was to find correct conditions on the interface separating the viscous
and inviscid subdomains. However efficient solvers are also of great importance when
solving numerically the full time-dependent coupled equations. We propose in this pa-
per an iteration-by-subdomain procedure to solve the coupled problem. The iteration
algorithm, which involves the successive r[esoluti]on of the two subproblems, is a variant
9,4,8

news techniques: first the norms of interface’s function are defined via some interface

of classical Schwarz alternating methods But the present algorithm uses two
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"lifting” operators, different from the usual L2-norm; secondly, the interface iteration
functions are constructed on weak form, due to the discontinuous velocity/continuous
pressure formulation in the inviscid subdomain (in fact we have not been able to prove
the convergence of the iterative procedure based on strong form). We give exact con-
vergence analysis and prove that the iterative algorithms using a spectral collocation
approximation converge with a rate independent of the polynomial degree used.

We end this introduction by introducing some notations. Hereafter we use letters
of boldface type to denote vectors and vector functions. c¢,cy,co,--- are generic posi-
tive constants independent of the discretization parameters. Let {2 to be a bounded,
connected, open subset of R?, with Lipschitz continuous boundary 9 (see fig.1);
Q_ and €, are two open subsets of Q, with Q_ N Q. =0, Q- UQ, = Q. Let
Iy = 00N,k =—,+T =00 NoQd, # (. n_,n, are the unit normals to
Q_,Q, respectively (son_ = —n on I'). We notice by C°(2) the space of continuous
functions on €. For any integer m, we notice by H™(f2) the classical Hilbert Sobolev
spaces, provided with the usual norm || - ||, o, and also, with the semi-norm | - |,,, o. It
is well known that the value on the boundary 0f2 of all elements of H™(2) can be given
a meaning through a trace operator which maps linearly and continuously H™(2) onto
a subset of L2(9), denoted by H™1/2(9Q), which is a Hilbert space for the quotient
norm || - [|—1/2,00- We use also the space L§(§2) defined by

LE Q) ={ve LQ(Q);/dex =0}.

Fig.1 Computational domain

Throughout this paper, with any function v defined in €2, we associate the pair
(v_,vy), where v_ (resp. v;) denotes the restriction of v to Q_ (reps. Q). We
define (-,-)g, kK = —,+ and (-,-)r by

(g, Vi) = /

UgVig dX, ((I),\If)r = / DV do.
D Qk . F

The scalar product on L?(Q_)% x L?(Q4)?,

(u,v) = (u_,v_)_ + (uy,vy)4,

coincides with the usual one on L2(Q)2.



An iteration method for incompressible viscous/inviscid coupled problem ... 381

2. Viscous/inviscid coupled problem

Consider the following coupled problem: for f given in L?(2)? and a,v positive
constants, find two pairs (u_, uy), (p_, py) defined in (2, Q) respectively, such
that:

ou_ —vAu_ +Vp. = f | V-u_ =0, in Q_,
oauy + Vpy = f, V.-uy =0, in Q4, (2.1)

u_ = 0, on'_,

u; -ng = 0, onl',.

This problem, that will be hereafter referred to as viscous/inviscid coupled problem,

stems from the use of a finite-difference schema in ti[m(i to the nonlinear Navier-
10

kinematic viscosity, « is the inverse of the time-step, and f is the source terms.

Stokes/Euler coupled equations for incompressible flow In this respect, v is the

Obviously, suitable conditions on the interface I' are required. That can be seen in
a trial way that one condition is needed on I' in order to solve the viscous problem in
Q_, and that a further condition is required on I' in order to solve the inviscid problem
in Q. In order to find it, we apply the well-known vanishing viscosity technique that
consists of generating the interface conditions by a limit procedure on globally viscous
problems when wiscosity vanishes in €. It has been proven that the appropriate

interface conditions are[ll]:
ou_ r
V—— —p_n_ = n on
n_ D PNy 3 (22)
u_-n_ = —uy-ng on I'.

The equations (2.1)-(2.2) are well posed in the sense that their weak problem have one
unique solution. That can be done by considering the following variational formulation:
find (u, p) € X x M, such that for all v € X, g € M,

a(u,v) +v(Vu_ , Vv ) — (p—,V-v_)_ + (Vpi,vi)y — (p4ng,vo)r = (£,v),

2.3
(V ’ u*uq*)* - (u+7Vq+)+ - (u* : n*7Q+)F = 07 ( )
where X, M are two real Hilbert spaces, defined by
X ={v;vlo_ € H'(Q.)? v]o, € L*(Q4)% v|r_ =0}, (2.4)
M ={g;qlo_ € L*(2-),qlo, € Hl(Q+),/qux = 0}, (2.5)

with respective norms
Ivlix = lv-llio- + Ivilloor,  llallar =lla-lloo- + la+ |0,

Theorem 2.1."1 For all & and v positive, problem (2.3) admits one unique so-
lution.
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3. Solution via an iteration-by-subdomain procedure

Our goal in this section is to prove that the solution of the coupled problem (2.1)-
(2.2) can be exhibited as a limit of solutions of two subproblems within £ and €
respectively.

We first remark that the pressure (p_,p;) in the coupled problem (2.1)-(2.2) is
defined up to an additive constant. In order to fix this constant, we have chosen the
pressure space M of functions with zero average in full domain Q (see (2.5) for the
definition of M). In fact, this choice of M is only a matter of convenience, and we can
just as well take

M = {giglo_ € L2 ).qla, € H' (). [ adx=0}. (3.1
—+

The former has been proven suitable for the global Uwaza algorithm[ll]. The latter
is however preferable to the iteration-by-subdomain method, which will be discussed
hereafter.

3.1 The iteration-by-subdomain procedure

Let u’, uUJr to be two functions given in I'. We define two sequences of function pair
(u,p™)m>1 and (u’l, p?')m>1 by solving for each m the following inviscid problem in
Q.

{au’f—l—VpT:ﬁ_, V.u' =0, in Q, (3.2)

u-ny =0, onl'y, uf -ng=¢", onl,

and then the following viscous problem in €2_

ou™ .
T —p™n_=pP'n,, onT, (3.3)

{ ou™ —pvAu"+Vp"r=£f , V-u"=0, inQ_,

u” =0, onI'_, v

on_
where ™ = 0u™ ' -ny|p+ (1 — 0)u? ' -ni|r, 6 € [0,1] is a relaxation parameter.

Remark 3.1. In order for (3.2) to be well-posed, the interface data of the first
step, ', has to be chosen to satisfy the compatibility condition:

/(pldaz().
Jr

The iterative procedure will be discussed both in the continuous case, and in its
spectral discrete case (see section 4). In both cases, we will prove the solvability of
the subproblems and the convergence of the iterative procedure. We first consider the
solvability and a priori estimates of the problems (3.2) and (3.3).

The variational formulation of (3.2) writes: find (u’?,p’?') € X4 x M, such that

Af(a?, p), (v, g0)] = (B v ) s — (9™ q40)r, (3.4)
V(vi,q4) € X4 x My,
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where
Xy = L*(Q4)% , My = H'(Q4) N L5(24),
and A, is defined by
Al pl), (v, q4)] = e(ull, vi) o + (v4, VP) 4 — (ulf, Vay ) 4.

Theorem 3.1. For all £, € L?(Q,)%, ¢™ € L*(I'), the problem (3.4) admits one
unique solution; furthermore, its solution (u'l',p’") satisfies

1
o, +[p¥ e, < (= +2)[fillog, +2(1+ )l llor (3.5)
particularly iof £ =0, then
lui o, < 20" lor . (3.6)
P he, < ellulfoo, < 2all@™llor - (3.7)

Proof.  We note that AL [(u’}',p’!), (v4,q4)] is not coercive in space X x M.
Consequently, the well-posedness of problem (3.4) can not be derived by the standard
Lax-Milgram theorem. However we see that problem (3.4) is equivalent to the saddle-
point problem:

af,vi)y + (v, V) = (f,vi)g,  Vvp € Xy,
(., Vg )4 = (9™, q4)r, Vg, € My,

whose well-posedness can be proven by applying the saddle-point theory[5]. The esti-
mations (3.5)-(3.7) can also be obtained by using standard estimation techniques.
|

We now consider problem (3.3). Its variational formulation is: find (u™,p™) €
X_ x M_, such that

A[™ ™), (v-qo)] = (£.vo) - + (T, v e, V(vo,q) € X_x M-, (3.8)

where
X —{v € H(Q )%v |p. =0}, M — L¥9),
and A_ is defined by
A_[(0™,p™),(vo,q-)] = a(u™,v_)_+v(Vu",Vv_)_— (Vv_,p™)_+ (Vu™, q_)_.
The following theorem comes from classical results on the Stokes equations (see e.g.
[2])-
Theorem 3.2. For all f- € L*(Q_)? and p?* € L*(T), the problem (3.8) admits

one unique solution; furthermore, its solution (0, p™) satisfies

e + P00 < collf-flo.o + lP¥llor) (3.9)

particularly if £ =0, then

™[0 + [P lo,o- < collp¥[lo,r (3.10)

where ¢y depends on o and v.
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3.2 Convergence of the iteration-by-subdomain procedure

We deal now with the convergence of the iteration-by-subdomain procedure (3.2)-(3.3).
We begin by defining the application L : L2(I') — L?(I"),

Lrx=u¥ nyr, VreLAD),
and then the application Ly : L2(T') — L3(T),
Lo =0LXA+ (1 - 0)\, VA e L*(T),
where u(,)‘) solves the problem: (u(,)‘),p(,)‘)) € X_ x M_, such that
A @™ p™M), (v_.q) = 0Pni vor, V(vog) e Xox M,
where p(+)‘) is the solution of the following problem: (u(f‘),pg;\)) € X, x M, such that

A oY), (v g)] = (Mg, V(i aq) € Xy x M.

We define also the “lifting” operator F : VA € L?(T), FA € X; x M, and F) solves:
AL[FA (v qq)] = —(Ag)r V(ve.qq) € Xy x My (3.11)

Moreover set for A, u € L?(T'):
(A p) = AL[EAFpul . IAIZ = (A N) (3.12)

Lemma 3.1. The bilinear form ((-,-)) defined by (3.12) is symmetric, therefore it
defines a scalar product in L*(T).

Proof.  Using the notation of (3.11), we have

(A ) = AL [FX, Pl = =0 p)r

but (3.11) implicates

— @M, vp) =~y
furthermore
a(@ uM), + @M, vpl), =0,
then

(A p) = a@P? ulM),

which gives
(A 1)) = ((s A)) -

It is then immediate that ((-,-)) defines a scalar product in L?(T). O
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Theorem 3.3. There exists 0y € (0,1], such that for all € (0,0), it exists
k() < 1 such that

[ LoAll« < K@) A« , VA e LXT) . (3.13)
Proof.  From the symmetry of ((-,-)) we have
ILoAlZ = 02 [ILAIZ +260(1 — 0)((LA, A)) + (1 — O)[IA]J3 - (3.14)
According to the definitions of F' and L, it is verified that

(LA X)) = AL[F(L)), F)] = A+[F<1(1“> ‘1), FA

~ g p e = (g, u)e = A (@ p), ()]

_ )
—a(™ u®) . p(va®, vu®) - < —min(a, )[[a®)2, .

Using (3.6), we get
IEAJ2 = AP, FEN)] < 4a™ 0 e < el o (3.15)
where ¢; depends on the trace mapping constant. Combining (3.14)-(3.15), we obtain
1LoAIE < [e16” = 2min(,)0(1 = O)[[uP[Fq + (@ =ONZ.  (3.16)
Using (3.10), (3.7) and the standard trace’s inequalities, we have

A A A
V2o <@V IR < elPEg,

(3.17)
< exo?[[ul|B o, = c20AL[FA, FA = ca N2

where ¢y depends on ¢ and the trace mapping constant. Finally, a combination of (3.16)
and (3.17) gives
| LoA||2 < [ creaaf? — 2coamin(a, v)B(1 — ) + (1 —0)? ] || A2 .

Let

k(0) = \/0102a02 — 2coamin(a, v)8(1 —0) + (1 — 6)2 |
we obtain (3.13). Furthermore a simple calculation shows

2(1 + coamin(a, v))
"1+ 2coamin(a, v) + creaa’’

k(@) <1 ifand only if 0<6 <6y =min(1

One of the immediate consequences of the above theroem is the following corollary.

Corollary 3.1. Let (uy,py),(u_,p_) to be the solution of the coupled equa-
tions (2.1) and (2.2); Let (u'l',p"), (u™,p™) to be the solution of the iteration prob-
lems (3.2) and (3.3). Then for all 6 € (0,6)), (u',p') converges to (uy,py) in
X, x My and (u™,p™) converges to (u_,p_) in X_ X M_ as m — oo.
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Proof.  We first prove

" —ungfp = Le(e™ ! - ungp).
In fact, by the definitions of Ly and ¢, we have

Lo(¢™ ' —u_ -ny|p)
( m—1

OL(e™ " —u_-nylr) + (1-0)(¢™ ! —u_ -nylr)
— G nylr) —(us - nalp) + (1 - 0)™ ! —u_ -yl + O - ny )
= G nglr) 4 (L 0 ngly) -yl

P —u_ -l

The contraction of Ly and the equality (3.18) imply
m
" —u_-ny, as m—oo.

But (2.3) and (3.4) give

C.J. XU

(3.18)

Ap[(ul =y, pl = pi), (Ve 04)] = (ueony — 0™ ), V(va,g4) € Xy x My,

by the estimation (3.6) and (3.7), we get

[uf —uifoo, +[PF —prho, <cle™ —u-nifor,

thus

ul’ 2 uy in X;, p'—=py in My, as m—o0.

and hence
P — py in L*T), as m — oo.

But (2.3) and (3.8) give

A[(u™ —u . p™ = po), (v q )] = (s —pons,vo)r, V(vo.g) € X x M.

It follows from the estimation (3.10) that

u® —uflio + 1P —p-lloa <elpf —pillor =0,

which gives

u"—>u in X , p"—=p in M , as m— <.
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4. An iteration-by-subdomain procedure via a spectral approximation

We approximate the iteration-by-subdomain problems (3.2) and (3.3) by a spectral
collocation method. For the sake of simplicify, we consider the domain Q = (—-2,2) x
(—1,1), which is broken into Q_ = (—2,0) x (—1,1) and Q4 = (0,2) x (—1,1). We
assume also f € C°(Q)2. Let us first introduce some notations. We denote by Py
the space of all polynomials of degree < N with respect to each variable z;,z5. We
then denote respectively by = N and AN the sets of (IV + 1)? Legendre-Gauss-Lobatto
points {k and (N — 1)? Legendre-Gauss points Ck within €, (see, e.g. [1] for the exact

definitions),

B —{f (§1ka§2k)0<l7<N} k—,+,
AkN—{C —(C1k=C2k)1§ZJ§N—1}= k—, +.

Let h’i’k,hé’k;ﬂ < 72 < N, denote respectively the Lagrange polynomials associated
to the components ﬂ k and 55 k- For any points 51? and (,ij, we denote respectively
by wk‘ and p J the corresponding weights in the Gauss Lobatto and Gauss 1ntegrat10n
formula for rectangular regions. For any point §k in 0Q N E Hk we denote by 7,

the corresponding weight in the one-dimensional Gauss-Lobatto integration formula
referred to 9€),. We define the discrete integration rules for all ®, ¥ € C%(Q),

@\IkaL_ZZq> ENT(ENDT | k=—+, (4.1)
i=07=0

((1)7 \IJ)GL = ((1)7 \Ij)*yGL + ((1)7 \Ij)+,GL ’ (42)

N—-1N-1
(¢ p" (4.3)

i=1 j=1
(@ W)rgr= Y. N7 (= Y eEw(E)r). (4.4)

¢JernsN ¢fernzy

We introduce the norms associated to (4.1)-(4.4):

1
[Pllkcr = (2, 9); ¢ » k=—+, [®leL =Pl cL+[®l+cL ,

(M

1
@]l = (2,®)% . [®lrar = (2. 9)F ¢ -
The following inequalities are well known (see, e.g. [1] p.70-76):

lellzar < 19150, <RlRGr . YO € Pr(Q), k=~ +,

I@lFor < @05 < 3IRIF ar . VO € Pr(T), (4.5)
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191> ¢ = @] , VO € Py o).
Let X_ n,M_ n, X4 ny and M, y to be four spaces:

X n={v_ePy(Q )*v |r =0}, M y=IPyvQ),
Xin =Py (Q4)? My n = Py(2) N L3().
We now state the spectral collocation approximation to the coupled problem (2.1)-(2.2)

as follow: find (u_ n,p-n) € X_ n x M_ y and (uy y.py n) € Xy ny X My, such
that

( au_y —vAu_y+INVp_n = f_ at 5? ce2NnQ_,
V-ou y =0 at (¥ e AV,
u ~ 0 at €9 e=Nnr,
O[ll_hN + Vp+’N = f_|_ at 62 S Ei\f N Q_|_,
Wt .. _ :
u, NNy = Ti*jV-u+,N at &7 e EV Ny,
+
wl] .. —
upy-ng—u_ y-ng = T;}V-u+,N at §l+] E:fﬂF,
+
du_ iy T
vt —p_nNn_ —pyyng = L:,*JR at €7 € ENNT,
\ +

where Iy notices the interpolation operator from the (N — 1)? Gauss points {l,] to

N-1
(N + 1)? Gauss-Lobatto points dj, ie. (IN¢)(§i,j) = Z hi,,(d’,)h]",(@f,)qﬁ(dm).
I,m=1

R is the residue duo to discrete integration by part, defined by
R = au_ N — VAuny + Ivaf,N —f_.

It is verified that the collocation equations (4.6) is equivalent to the following variational
formulation:

a(uN,vN)GL + I/(Vu,,N, VV*,N)f,GL — (p,,N, V- V,,N),yg
+(Vpy N, VvinN) 1oL — (PN -0y, v N)rer = (f,vy)ar, (@7)
—(V-u_n,¢ ~N)-¢g+(uy N, Ve N)r 6L — (N Dy, g4 N)rgr =0, '
Vvy € X,,N X X+,N , Ygn € Mf,N X M+,N ,

therefore the well-posedness of the problem (4.6) can be proved, as in the differential
case, by applying the standard saddle-point theory. We refer to [11] for the detailed
proof and error estimations to the discrete solutions (uy,py).

Remark 4.1. We chose the weak form of the interface conditions in (4.6) because
this suits better the numerical analysis. The strong form is obtained just by replacing
the right-hand-sides of these formulas with zero. The two forms are equivalent from

ij
1

i tional t
— is proportional to

the point of view of accuracy. We recall that the quotient

(see for instance [1]), hence the weak form enforces the interface conditions up to the
residue of the equations times a constant tending to zero as N — oo.
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4.3 The discrete iteration-by-subdomain procedure

We propose an iterative procedure to solve the coupled problem (4.6). We define two

sequences (u'f n,p"l' y)m>1 and (U™ y,p™ y)m>1 such that (uf y,pT y) € Xin X
My n, (0" 5, p" n) € X_ n x M_ y satisfying the discrete inviscid problem:

af v v N 1o+ (VP v N 1o = (B, v V)46t
(vq_T,NauT,N)-F,GL = (@%aqT,N)F,GLa (48)
V(VT,N7qT,N) € X+7N X M+,N.

and the discrete viscous problem

a™ v v" ) e Hv(Va? VT ) e — (07 NV VT N ) -6
= (P N0+, v yran + (£, v™ §) - 6L,

4.9
(qT,Nav'uTyN)*,G :07 ( )
V(v N, " y) € Xy X M N
where ¢}, m > 1 is defined by
ij
"= oum 1— )y -y — =V u™ e, 00,1 4.10
oy =00ty ngle + (1= 0) (W y -0y — =5 Veuliy)ie, €01 (4.10)
+
From the seventh equation of (4.6), it is immediate that
o = 0wl g+ (1 0)g (411)

Remark 4.2. Here again, in order for (4.8) to be well posed, ¢} is required to
satisfy the discrete compatibility condition:

> e 0.

¢lernzl

Remark 4.3. The use of different degrees of polynomial between the velocity and
the pressure in the viscous part (Stokes problem) is due to the well known Babuska-
Brezzi’s inf-sup condition. In fact, there exists many possible choices for the discrete
velocity-pressure space pairs (see, e.g. [6, 1]). The one we used has been referred
generally to as IPy X IPy_o method. The spectral approximation of the inviscid part
is discussed in [7]. It was shown that the discrete spaces Py is suitable both for the
velocity function and for the pressure function.

In order to prove the convergence of the discrete iteration-by-subdomain proce-
dure (4.8)-(4.10), we need the following stability results.

Theorem 4.1. The discrete problem (4.8) admits one unique solution (uT,vaT,N);
furthermore, (Wl y,pT' ) satisfies

1
o v l+cr +IVPENl+er < (2 + 2)[f 460 + 200+ )llpiliree . (412)
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especially if £ =0, then
[u?? yll+.an < 2l@R e (4.13)
IVPE nll+er < allulf yll+on < 2alpilrer - (4.14)

Proof.  The proof of the existence and the uniqueness of problem (4.8) is analo-
gous to the one for the differential problem (theorem 3.1). We ignore the details, but
give the proof of the estimations (4.12)-(4.14).

Let u* € X4 n to be the polynomial which satisfies

(V(JT,Nau*)Jr,GL = (SO%QT,N)F,GL Vel € My N,
and
lu*ll+.ar. < lleWlirar- (4.15)

(the existence of such a polynomial is guaranteed by the inf-sup condition!! 7]) Let
z = ull y — u”, then z satisfies

a(z, v n)+an + (VP v v V) +an = (B, v V) an — o, v V)4 o
(Ve n,2)+a. =0, (4.16)
V(VT,N7qT,N) € X+7N X M+,N.

From (4.16), we get
a(z,2)+.qL = (£4,2)+.q0 — (v, 2) 4 qr,
which gives
allzll e < oL + alln’|ly L, (4.17)
we derive from (4.15) and (4.17),

1
I vll+cr < llzllver + [ llon < —llfsllvar + 2[R lInee. (4.18)
Taking v! y = Vp'!' ;v in the first equation of (4.8), we have

a(uf n, Vol ) er + IVPE N3 an = (B P N+ 61 (4.19)
Finally, (4.12)-(4.14) follow from (4.18) and (4.19). O

Theorem 4.2.1" The discrete problem (4.9) admits one unique solution (u” Ny ™ N);
urthermore, (0™ \,p™ ) satisfies
7N 7N

[0yl ar + IVaZ vl cr < co(lf- || ar + IPE vlIrar),
1p" nll—c < Br(IE-1I- ar + [IP¥ nllr.ar),
especially if £ =0, then
0™ Nl cr + VU x|l ar < collp¥ nlirr, (4.20)

1P nll-c < BN IPE NlIrGr-

where ¢y is a constant dependent on « and v, but independent on N. By behaves as
N2,
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4.4 Convergence of the iteration-by-subdomain procedure

We prove now the convergence of the discrete iteration-by-subdomain procedure (4.8)-
(4.10). We begin by defining a discrete interface operator Ly : Py (I') — Py (),

Lyx=u®y nyjr, vAe Py(D),
and then the operator Ly g : IPy(I") — IPn(T),
Lygh=0LA+(1-0)X, VXe Py(D), (4.21)

where u(j‘)N solves the discrete problem: (u(:\)N,p(j‘)N) € X_ Ny x M_ y, such that

{ a(uy v )+ v(Vay Vv ) an — 0, Vv e = (s, V—)F,GL=(4 29)

(q,, Y u(f)\’)]\f)*,G = 07 V(V,,q,) € X*,N X M*,N 5
A . . . . . (N (N
where p’y is the solution of the following discrete problem: (u}’y,py’y) € X4 N X
M, n, such that

{ a(u(+)‘,)]\fu Vi)iGLt (VP(+)‘,)]V7 vi)yarn =0, (4.23)
(VQ+=11$,)N)+,GL = (M ap)rar, V(vige) € Xy v X Moy .

Let A4 n denote the bilinear form: V(uy,py),V(vy,qr) € Xy v x My p,

A+,N[(u+7p+)7 (Vvi,q4)] = aluy, V+)+,GL + (VP+=V+)+,GL - (Vay, u+)+,GL=

then problem (4.23) is equivalent to: find (ugf‘)N,pSf‘)N) € Xy N X M, n, such that

A+,N[(UT,N=pT,N)a (V+=Q+)] = _(>\=Q+)F,GL7 V(V+aQ+) € X+,N X M+,N -(4-24)

We define now the discrete “lifting” operator Fy : VA € Py (1),

solution of the problem (4.24). We define furthermore the scalar product, and the
associated norm:

() = A N[ENA Fypl s I N = (G 2)w - (4.25)

Theorem 4.3. There exists 0y € (0,1], such that for all 6 € (0,0y), it exists
k(0) < 1 such that

Lo NAlls,n < k(@) Allx,n. VA€ Py(T) . (4.26)
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Proof. It follows from the definition of Ly and F that

(LNAN)N = Ag N[Fn(EnA), FyA] = A v [Fy @y - nilr), Fa)

= —(u(j\’)N : n+=p$,)1v)r,GL =—( S_)\,)Nn+au(:\’)N)F,GL (4.27)
= —a(u(:\,)Na u(:\,)N)f,GL - V(Vu(f,)N, Vu(:\’)]v)f,GL

A A
—er (a2 g + 1Vayl2 60

IN

where ¢; depends on a, v.
By the definition (4.25) of || - ||« n, the estimation (4.13), and the trace’s inequalities,
it can be verified that
A
ILNAIZ = As o [En (LX), Fx (EyN)] < 200y nff gy

Y \ (4.28)
< e (uMy 1% or, + Va2 61 -

where ¢y depends on the trace’s mapping constant.
From the definition (4.21) of Ly n, and using (4.27) and (4.28), we get

Lo N A2y = 02 LN A2y +20(1 — 0) (LA, N) + (1 - 0)2A2 y 42)
A A .
< [e26” — 2¢10(1 — O]y |2 gp + VU112 1) + (1 — 022

But (4.20) and (4.14) imply

A A
0112 gr + Va2 r
A A . A
< Gl v IF an < lVPWIZ gr (using [y, pQvdx =0) (4.30)
A
< ca?| |2 or = cal A2y -

where ¢ depends on ¢2 and the trace’s mapping constant.
Combining (4.29) and (4.30), we obtain

1Lo N A2y < [ eacat® = 2cicaf(1 = 0) + (1= 0)? | [IN[2 v, (4.31)
By taking

2(1+ cicar)
"14 2cica + caca’’

6y = min(1

it can be verified that for all 0 < 8 < 6y, holds

k(0) def \/0200492 —2cicaf(1 —0) + (1 —0)2 < 1.
and

Lo N Al v < EOAle .y, VA€ Py(T) .
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Remark 4.4. The optimal value of 0 is 6" = +acae , which gives a
1+ 2cica + coca

coca — (erea)?

contraction constant k(6*) = \/1 ) n .
crea + coca

We can now state the convergence result for the discrete iteration-by- subdomain
procedure (4.8)-(4.10).

Corollary 4.1. Let (uy n,py n),(u_ n,p— n) to be the solution of the discrete
coupled equations (4.6); Let (u’ v, p' v), (0™ x,p™ y) to be the solution of the discrete
iteration problems (4.8) and (4.9). Then for all 6 € (0,6y), (ul y,p’} y) converges to
(Wi, N, p4,N) in Xy X My and (u™ y,p™ y) converges to (u— y,p— n) in X x M_ as
™m — 00.

Proof.  The corollary is an analogy of the corollary 3.1. We begin the proof by
verifying

PN —u- N ngfr = Lon (e uo v i), (4.32)

In fact, by the definitions of Ly y and ¢, we have

Low(g " —u oy i)

OLn(@l " —u - nylr) + (1= 0 = (1= 8)(u v -niln)

H(uT;vl ‘nyfp) —60(u_y-nyfp) + (1 - 9)90%71 —u_ny-nyjr+6(u_ N -nir)
tg(uin,?\rl nifr) + (1-0)p ' —u y-nyfr

O —u_ n-nilp (by (4.11)).

The contraction of Ly n implies
YN S u_ y-np, as m— oo . (4.33)
Combining (4.7) and (4.8) gives

A+,N[(UT,N —up NP N = P+,N), (V4,q4)] = (u- v -1y — 977, q4)r, (4.34)
V(vi,q4+) € Xoon X My N

by the estimations (4.13) and (4.14), we get
[y —up Nl + VP Ny = Veenl+on <201+ o)lloy —u_ v - nylp,gr(4.35)
then (4.33) and (4.5) imply
m . m .
uly supny in Xy, p'y —pyny in My, as m—oo. (4.36)
and hence

PN = pen in LP(I), as m — oo. (4.37)
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Another part, combining (4.7) and (4.9) gives
a®y —u y,vo) gL +tv(V(a”y —u- n),Vv_o)_ gL
~0 N =P Vovo)o g = (0 ny — P+.N)D4, V)P 6L
(g, V- (uT}N —u_yn))-g=0, V(vo,qg-) e X_ n X M_ y.

Applying the estimations (4.13) and (4.14), we get
[u” v —u_ Nl + VU™ y = Vu_ Nl + Py —p-nl-c

< oOBnlPE N — Pnllor,

we derive from (4.37) that

u"'y—u_ny in X_, p"y—p_ny in M_, as m —oo.

5. Generalization to the coupled Navier-Stokes/Euler equations

We generalize the coupled model (2.1) to the coupled problem between the Navier-

Stokes equations and the Euler equations:

Vu. —vAu_+Vp_=£f inQ_,

ot P
u .
—+ (u - V)uy + Vpy = £y in @y, (5.1)

u (0)=u’ inQ_, ui(0) =ul inQy,

ulyx =0, up-nyfs, =0

with the incompressibility V-u = 0, where Q; = Qi x (0,T), X, = Tx x(0,T),k = —, +,
and u?, ui are two functions given. The non-linear term is treated by the method of

characteristics. That is, we rewrite (5.1) under the form

Du_ vAu_ +Vp_ =1 in Q_,

Dt D

uy - .

Dy T VP+= £y in Q4, (5.2)
u (0)=u’ nQ_, ui(0)=uf inQ,

uls. =0, up-nylp, =0,
where D/Dt is the total derivative in the direction u. We discretize (5.2) in time by

an implicit scheme:

ou™ ™ — p AT 4 Vptt = £ L qu” (x"(1)  in Q.

ottt + Vpit = £ 4 qu (x™() i Qy,
u71+1|1_‘7 =0 ) ui+1 ) 1’1+|1‘*+ =0 3
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where a = N with At the time step, and x"(x) = x(x, (n+1)At,nAt) is the solution
of

dx

- =u'0), x(x (n+ D (n+ 1)) =x. (5.3)

The time scheme is unconditionally stable, and each time iteration requires a coupled
viscous/inviscid resolution plus a transport of the previous solution on the character-
istics.

We note that, on the interface I', we have u_ -n_ = u; -n_. Thus (5.3) can be
solved globally in all domain €2 without any additional interface conditions on I'.

6. Concluding remarks

1. We have presented an efficient iteration-by-subdomain algorithm to solve numer-
ically the viscous/inviscid coupled equations. We have given the detailed proof of
the convergence results. The key to the success is the definitions of the interface
iteration function ¢’ in (4.10) and the scalar product ((-,-))n given in (4.25). It
is crucial to get from (4.27) that ((LyA, A))n is non-positive. We have also pre-
sented the idea to generalize the present coupled model and numerical algorithm
to the full Navier-Stokes/Euler coupling.

2. Tt is seen, from the proof of theorem 4.3, that the contraction constant k(6) is
independent on the choices of the pressure discrete space M_ y in the viscous
part (see remark 4.3). This means that the convergence rate of the iteration-by-
subdomain procedure is independent on the choices of M_ n. Hence the choice
of M_ n can be made by its proper considerations.

3. We have obtained (see remark 4.4) the optimal value * of the relaxation param-
eter. However the exact estimations of the constants ¢, ¢; and ¢z in (4.31) are not
trivial. In a future work, we plan to investigate numerically the dependence of
convergence rate on 6.
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