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Abstract

Correction methods for the steady semi-periodic motion of incompressible fluid
are investigated. The idea is similar to the influence matrix to solve the lack of vor-
ticity boundary conditions. For any given boundary condition of the vorticity, the
coupled vorticity-stream function formulation is solved. Then solve the governing
equations with the correction boundary conditions to improve the solution. These
equations are numerically solved by Fourier series truncation and finite difference
method. The two numerical techniques are employed to treat the non-linear terms.
The first method for small Reynolds number R = 0 — 50 has the same results as
that in M. Anwar and S.C.R. Dennis’ report. The second one for R > 50 obtains
the reliable results.
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1. Introduction

For semi-periodic incompressible fluid flows, S.C.R. Dennis and co-workers!' =% solve
the vorticity-stream function formulation of the governing equations by the series trun-
cation and finite difference method. Since no boundary condition for the vorticity, they
propose the vorticity integral conditions based on Green identity. These methods are
effective. But the vorticity integral conditions are implicit. In this paper, the correc-
tion method with explicit boundary conditions is proposed. We investigate the steady
two-dimensional semi-periodic flow near an infinite array of moving plane walls. This
example is developed by M. Anwar and S.C.R. Dennisl®l. They get the numerical so-
lutions by Fourier series and finite-difference approximations. Their series truncation
method loses effectiveness for R > 50. In the computations by the correction method,
we adopt the two numerical techniques to treat the non-linear terms for the various
ranges of R. The first method is explicit. The vorticity transport equation with given
boundary conditions and the Poisson equation for the stream function with Dirichlet
boundary conditions are solved respectively. Then solve a homogeneous problem to
correct the solutions. The numerical results for R = 0 — 50 are the same as that in [3].
The second method is to solve the coupled vorticity-stream function formulation with
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any given boundary condition of the vorticity. Then again solve the governing equa-
tions with the correction boundary conditions to improve the solution. The numerical
results for R > 50 are reliable. Since the explicit boundary condition of the vorticity,
difference equation of the coefficients of Fourier series can be solved by direct method
in explicit method. This saves the computational work.

2. Governing Equations

The vorticity-stream function formulation of the steady state incompressible flow is
as follows,

0y Ox ozr Oy
VQrL/} = _67
where 9 and ¢ are the dimensionless stream function and vorticity respectively, R is
the Reynolds number.

{ V2§:R(@%,@%)’ (2.1)

We consider the example of steady semi-periodic flow as in [3]. The flow is gen-
erated by the motion of an infinite array of walls along the y-direction. The velocity
components of the moving wall are u = 0, v = —siny, (—oo < y < 00). Since the flow
is periodic and antisymmetrical for ¢, the boundary conditions are

0
qﬁ:(),—q/}:siny, for z =0,

Ox
&= 0,9 =0, as z — oo,
Pp=£=0, for y=0and y =m.

3. Method of Correction Solution

We expand ¢ and ¢ as Fourier series with respect to y,
S .
§(z,y) = 3 gnlx) sinny,
n—
S .
Y(ay) = ¥ falz)sinny.
n—

By substituting the above series into (2.1), we can get a system of differential equations
for Fourier coefficients g, and f,,

ll_n2 =T, n:1727...7
gT,l, 2971 n (3.1)
n_nfn:_gn, 77,:1,2,"',
where
J— R G ! ! !
=g D A(n =1l fin—p| = (0 + D) furp)gy = D(Frip + sgn(n —p) fly )90},
p=1

and sgn(n — p) denotes the sign of (n — p), with sgn(0) = 0. The boundary conditions
in terms of f, and g, are f,(0) =0, f.(0) = d,, fu(oco) =0, gp(cc) =0, n=1,2,---,
where 01 =1, 0, =0, n=2,3,---.
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This nonlinear problem can be solved by the iterative method. Then we can treat the
nonlinear terms by explicit and implicit methods. The second order ordinary equations
can be approximated by finite difference method.

3.1. Explicit correction method

In the iterative procedure, the nonlinear terms are treated explicitly. Then the
iterative procedure is

(VY _ 2D _ ) ne19 ...
{ (f7(7,k+1))” o n2f7(zk+1) _ 797(1144'1)’ n=12--

The correction method is to decompose the problem into a nonhomogeneous one
with given boundary conditions and a homogeneous one with correction boundary
conditions. The nonhomogeneous problem is as follows

(g4 ) —n2glal ) =P =12
FEy = n2f 5D = =gl =12,
g,EIf,j—l)(O) given ,g£ ,;H)(oo) =0, n=1,2,---, (3-2)
Dy =0, A0y =0, n=1,2,--.
While the homogeneous correction problem is
(it — 2l =, n=12:-
(FEa )y —n2f 5D = gy, n=1,2-
ggi;l)(oo)zo, n=12-,
Sl =0, fLEV00) =0, (Y lso = 00 = (A5 loer m=1,2,0 (339
3.3

Then g(kH) = g,(‘]frfl) —|—g£ﬁ11) and f,(lk“) = f(kJrl + f*lf+1 are the (k+ 1)—th iterative
approximations of g, and f,.

3.2. Implicit correction method

The iterative procedure is

(g Hy — 260D 4 Bon) i58) (DY 4 B (Y gt = 5 F) = 1,2,
(f£k+1)) - n f7(74k+1) = _97(1k+1) n = 17 27 U

)

where

R o
T2 12375 [in=p f\(:zp\ 7(n+p)f7(zlf|-)p] (gz()k))'*P[(quli)p)'—i-sgn(nfp)('f‘gzp‘)/]gz()k)}'
p=Ll,p#n

This problem can also be solved by the correction method. First, the following problem
is considered

() gl 4 £em £ G + En(l gl =7, =120
(piEDyn _p2 kD) glEED) n=1,2 -
g»(ﬁlfyjl)((]) given, ggﬁl)(oo) =0, n=1,2,---,
FED ) =0, f5 D (00) =0, n=1,2 .
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Next, the correction problem is

(gis3)" = n?gli50 + (2m) ) (043 + Fnl )y el =0, m=1.2
( *fﬁl )1 — 2 prD — gkt n=1,2--
gt (00) = 0, n=12,---,
S0 =0, fEe0) =0, (FEE e =00 (P o, m=1,2,0.

Then gffc“) = i 2 +g>(klitzl) and fr(LkH) = ff )+ f*fH .

4. Numerical Method

For computational convenience, the variable z is transformed z = e™”. Then (3.1)
is the following form

{229;:+Zgnngn—7‘na n:1721"'7 (41)

2fyl;+zfrlzin2fn:*gna n:1721"'7

where
R o0
n= *72 > Aln = pl finp) = (0 + D) frip)gp = P(frry + 590 = P)fl )90}
p=1

The boundary conditions become f, = ¢, = 0, for z = 0, n = 1,2,---, f, = 0,
fh = =6y, for z = 1.

Let M be a positive integer. The interval (0, 1) is divided into M sub-intervals, each
with the length h = ﬁ All derivatives in (4.1) are approximated by central-difference
quotients. The difference equations at z; = jh are

{ (232‘ +52))9j410 — (2232‘ +n?h?)gjn + (292 —L2)gi—1m = Tinh?,
(27 + 52j) firm — (222 +020%) fin + (22 — B2) fi 10 = —gjmh®.

When the explicit correction method is used, (3.2) can be solved by the above scheme.
For simplicity, we drop the superscripts k, k + 1. The boundary conditions are

gn(o) = Oagn(l) given afn(o) =0, fn(l) =0. (4'2)

We usually take g, (1) to be the value of the k—th iteration. The exact solutions of (3.3)
are g, = —2nf) (1)2", fn = f1(1)z" Inz. So the explicit correction method saves the

computational work. In the implicit correction method adopted, the difference scheme
of (3.4) is

(232 + Lz %nRijj,Qn)ngrl,n - (2292 +n?h? + %"szfylﬂnhQ)gj’”
+(Z]2 — %Zj + %nRijj,Qn)gjfl,n = 'Fj,nh2=

(22 +52) frorm — 227 + 020 fin + (22 = 525) i1 = —gsnh?.
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The boundary conditions are (4.2). While the difference scheme of (3.5) is
(2]2 + %Zj — %nRijj,Qn)gj+1,n — (22]2 4+ n2h? + %nRij;’2nh2)gj’n
+(232' — 57+ %"Rijj,Qn)gjfl,n =0,
(ZJZ' + %Zj)fﬁlm = (22] + nh?) fin + (Zf - %Zj)fjfl,n = —cgjnh?,
9n(0) = 0,g,(1) = 1, f(0) = 0, fu(1) = 0,

where ¢ is determined by the following formulation

1
[ e =

By the numerical integration,

M—-1

c= —fé(l)/{ggn(l) +h 30 ginlih)" '

=1

Then cgjn, fjn are the numerical solutions of (3.5).

For the iterative procedure converging, the relaxation is employed. If gkt k1)
are obtained by correction method, the new values of (k + 1)-th approximations are
given by

gkt = wg® 4 (1 — w)g*+h),
{ FERD = wf® 4 (1 w) 4,

where 0 < w < 1 is a relaxation parameter.

5. Numerical Results

For the various ranges of R, results are computed by the explicit and implicit
correction methods. The calculations are carried out with h = 0.025. We take N terms
of the series. In Table 1, N and w are given for different R.

3.14 3.14

0.047 0.048

Fig.1. Streamlines for R = 10 Fig.2. Streamlines for R = 40
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The results are obtained by the explicit correction method
for R = 10 and R = 40. Curves of the stream-function )
are shown in Fig.1 and Fig.2. For the cases R = 70,120,

Table 1. N and w
for different R

R N w
the implicit correction method is used. Fig.3-4 describe the 0 5
results of the constant stream-function 1. The results are 10 1 10
nearly the same as that by finite difference method in [3]. 40 | 14 0.1
These show that the correction methods are effective and 70 |18
. 120 | 22 0.01
feasible.
3.14
1 1
4 4
Fig.3. Streamlines for R = 70 Fig.4. Streamlines for R = 120
References

. LI

[1] S.C.R. Dennis, Gau-Zu Chang, Numerical solutions for steady flow past a circular cylinder

at reynolds numbers up to 100, J. Fluid Mech., 42(1970), 471.

[2] S.C.R. Dennis, J.D.A. Walker, Calculation of the steady flow past a sphere at low and

moderate reynolds, J. Fluid Mech., 48(1971), 771.

[3] M. Anwar, S.C.R. Dennis, Numerical methods for steady viscous flow problems, computers

and fluids, 16(1988), 1.

[4] S.C.R. Dennis, M. Ng, P. Nguyen, Numerical solution for the steady motion of a viscous

fluid inside a circular boundary using integral conditions, J. Comput. Phys., 108(1993)

142.

3



