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CORRECTION METHODS FOR STEADY INCOMPRESSIBLEFLOWS�1)Jian Li(State Key Laboratory of S
ienti�
 and Engineering Computing, ICMSEC, Chinese A
ademyof S
ien
es, Beijing 100080, China)Abstra
tCorre
tion methods for the steady semi-periodi
 motion of in
ompressible 
uidare investigated. The idea is similar to the in
uen
e matrix to solve the la
k of vor-ti
ity boundary 
onditions. For any given boundary 
ondition of the vorti
ity, the
oupled vorti
ity-stream fun
tion formulation is solved. Then solve the governingequations with the 
orre
tion boundary 
onditions to improve the solution. Theseequations are numeri
ally solved by Fourier series trun
ation and �nite di�eren
emethod. The two numeri
al te
hniques are employed to treat the non-linear terms.The �rst method for small Reynolds number R = 0 � 50 has the same results asthat in M. Anwar and S.C.R. Dennis' report. The se
ond one for R > 50 obtainsthe reliable results.Key words: In
ompressible 
ow, vorti
ity, stream fun
tion, numeri
al solution.1. Introdu
tionFor semi-periodi
 in
ompressible 
uid 
ows, S.C.R. Dennis and 
o-workers[1�4℄ solvethe vorti
ity-stream fun
tion formulation of the governing equations by the series trun-
ation and �nite di�eren
e method. Sin
e no boundary 
ondition for the vorti
ity, theypropose the vorti
ity integral 
onditions based on Green identity. These methods aree�e
tive. But the vorti
ity integral 
onditions are impli
it. In this paper, the 
orre
-tion method with expli
it boundary 
onditions is proposed. We investigate the steadytwo-dimensional semi-periodi
 
ow near an in�nite array of moving plane walls. Thisexample is developed by M. Anwar and S.C.R. Dennis[3℄. They get the numeri
al so-lutions by Fourier series and �nite-di�eren
e approximations. Their series trun
ationmethod loses e�e
tiveness for R > 50. In the 
omputations by the 
orre
tion method,we adopt the two numeri
al te
hniques to treat the non-linear terms for the variousranges of R. The �rst method is expli
it. The vorti
ity transport equation with givenboundary 
onditions and the Poisson equation for the stream fun
tion with Diri
hletboundary 
onditions are solved respe
tively. Then solve a homogeneous problem to
orre
t the solutions. The numeri
al results for R = 0� 50 are the same as that in [3℄.The se
ond method is to solve the 
oupled vorti
ity-stream fun
tion formulation with�Re
eived O
tober 21, 1996.1)This work is supported by the National Nature S
ien
e Foundation of China.



420 J. LIany given boundary 
ondition of the vorti
ity. Then again solve the governing equa-tions with the 
orre
tion boundary 
onditions to improve the solution. The numeri
alresults for R > 50 are reliable. Sin
e the expli
it boundary 
ondition of the vorti
ity,di�eren
e equation of the 
oeÆ
ients of Fourier series 
an be solved by dire
t methodin expli
it method. This saves the 
omputational work.2. Governing EquationsThe vorti
ity-stream fun
tion formulation of the steady state in
ompressible 
ow isas follows, ( r2� = R �� �y ���x � � �x ���y� ;r2 = ��; (2.1)where  and � are the dimensionless stream fun
tion and vorti
ity respe
tively, R isthe Reynolds number.We 
onsider the example of steady semi-periodi
 
ow as in [3℄. The 
ow is gen-erated by the motion of an in�nite array of walls along the y-dire
tion. The velo
ity
omponents of the moving wall are u = 0, v = � sin y, (�1 � y � 1). Sin
e the 
owis periodi
 and antisymmetri
al for y, the boundary 
onditions are = 0; � �x = sin y; for x = 0;� ! 0;  ! 0; as x!1; = � = 0; for y = 0 and y = �:3. Method of Corre
tion SolutionWe expand � and  as Fourier series with respe
t to y,8>><>>: �(x; y) = 1Pn=1 gn(x) sinny; (x; y) = 1Pn=1 fn(x) sinny:By substituting the above series into (2.1), we 
an get a system of di�erential equationsfor Fourier 
oeÆ
ients gn and fn,( g00n � n2gn = rn; n = 1; 2; � � � ;f 00n � n2fn = �gn; n = 1; 2; � � � ; (3.1)wherern = R2 1Xp=1f(jn� pj fjn�pj � (n+ p)fn+p)g0p � p(f 0n+p + sgn(n� p)f 0jn�pj)gpg;and sgn(n� p) denotes the sign of (n� p), with sgn(0) = 0. The boundary 
onditionsin terms of fn and gn are fn(0) = 0, f 0n(0) = Æn, fn(1) = 0, gn(1) = 0, n = 1; 2; � � �,where Æ1 = 1, Æn = 0, n = 2; 3; � � �.



Corre
tion Methods for Steady In
ompressible Flows 421This nonlinear problem 
an be solved by the iterative method. Then we 
an treat thenonlinear terms by expli
it and impli
it methods. The se
ond order ordinary equations
an be approximated by �nite di�eren
e method.3.1. Expli
it 
orre
tion methodIn the iterative pro
edure, the nonlinear terms are treated expli
itly. Then theiterative pro
edure is( (g(k+1)n )00 � n2g(k+1)n = r(k)n ; n = 1; 2; � � � ;(f (k+1)n )00 � n2f (k+1)n = �g(k+1)n ; n = 1; 2; � � � :The 
orre
tion method is to de
ompose the problem into a nonhomogeneous onewith given boundary 
onditions and a homogeneous one with 
orre
tion boundary
onditions. The nonhomogeneous problem is as follows8>>>>><>>>>>: (g(k+1)�;n )00 � n2g(k+1)�;n = r(k)n ; n = 1; 2; � � � ;(f (k+1)�;n )00 � n2f (k+1)�;n = �g(k+1)�;n ; n = 1; 2; � � � ;g(k+1)�;n (0) given ; g(k+1)�;n (1) = 0; n = 1; 2; � � � ;f (k+1)�;n (0) = 0; f (k+1)�;n (1) = 0; n = 1; 2; � � � : (3.2)While the homogeneous 
orre
tion problem is8>>>>><>>>>>: (g(k+1)��;n )00 � n2g(k+1)��;n = 0; n = 1; 2; � � � ;(f (k+1)��;n )00 � n2f (k+1)��;n = �g(k+1)��;n ; n = 1; 2; � � � ;g(k+1)��;n (1) = 0; n = 1; 2; � � � ;f (k+1)��;n (0) = 0; f (k+1)��;n (1) = 0; (f (k+1)��;n )0j1 = Æn � (f (k+1)�;n )0j1; n = 1; 2; � � � :(3.3)Then g(k+1)n = g(k+1)�;n + g(k+1)��;n and f (k+1)n = f (k+1)�;n + f (k+1)��;n are the (k+1)�th iterativeapproximations of gn and fn.3.2. Impli
it 
orre
tion methodThe iterative pro
edure is( (g(k+1)n )00 � n2g(k+1)n + R2 (2n)f (k)2n (g(k+1)n )0 + R2 n(f (k)2n )0g(k+1)n = ~r(k)n ; n = 1; 2; � � � ;(f (k+1)n )00 � n2f (k+1)n = �g(k+1)n ; n = 1; 2; � � � ;where~r(k)n = R2 1Xp=1;p6=nf[jn� pj f (k)jn�pj�(n+p)f (k)n+p℄(g(k)p )0�p[(f (k)n+p)0+sgn(n�p)(f (k)jn�pj)0℄g(k)p g:This problem 
an also be solved by the 
orre
tion method. First, the following problemis 
onsidered8>>>>><>>>>>: (g(k+1)�;n )00 � n2g(k+1)�;n + R2 (2n)f (k)2n (g(k+1)�;n )0 + R2 n(f (k)2n )0g(k+1)�;n = ~r(k)n ; n = 1; 2; � � � ;(f (k+1)�;n )00 � n2f (k+1)�;n = �g(k+1)�;n ; n = 1; 2; � � � ;g(k+1)�;n (0) given; g(k+1)�;n (1) = 0; n = 1; 2; � � � ;f (k+1)�;n (0) = 0; f (k+1)�;n (1) = 0; n = 1; 2; � � � :(3.4)



422 J. LINext, the 
orre
tion problem is8>>>>><>>>>>: (g(k+1)��;n )00 � n2g(k+1)��;n + R2 (2n)f (k)2n (g(k+1)��;n )0 + R2 n(f (k)2n )0g(k+1)��;n = 0; n = 1; 2; � � � ;(f (k+1)��;n )00 � n2f (k+1)��;n = �g(k+1)��;n ; n = 1; 2; � � � ;g(k+1)��;n (1) = 0; n = 1; 2; � � � ;f (k+1)��;n (0) = 0; f (k+1)��;n (1) = 0; (f (k+1)��;n )0j1 = Æn � (f (k+1)�;n )0j1; n = 1; 2; � � � :(3.5)Then g(k+1)n = g(k+1)�;n + g(k+1)��;n and f (k+1)n = f (k+1)�;n + f (k+1)��;n .4. Numeri
al MethodFor 
omputational 
onvenien
e, the variable x is transformed z = e�x. Then (3.1)is the following form ( z2g00n + zg0n � n2gn = rn; n = 1; 2; � � � ;z2f 00n + zf 0n � n2fn = �gn; n = 1; 2; � � � ; (4.1)wherern = �Rz2 1Xp=1f(jn� pj fjn�pj � (n+ p)fn+p)g0p � p(f 0n+p + sgn(n� p)f 0jn�pj)gpg:The boundary 
onditions be
ome fn = gn = 0, for z = 0, n = 1; 2; � � �, fn = 0,f 0n = �Æn, for z = 1.LetM be a positive integer. The interval (0, 1) is divided intoM sub-intervals, ea
hwith the length h = 1M . All derivatives in (4.1) are approximated by 
entral-di�eren
equotients. The di�eren
e equations at zj = jh are( (z2j + h2 zj)gj+1;n � (2z2j + n2h2)gj;n + (z2j � h2 zj)gj�1;n = rj;nh2;(z2j + h2 zj)fj+1;n � (2z2j + n2h2)fj;n + (z2j � h2 zj)fj�1;n = �gj;nh2:When the expli
it 
orre
tion method is used, (3.2) 
an be solved by the above s
heme.For simpli
ity, we drop the supers
ripts k; k + 1. The boundary 
onditions aregn(0) = 0; gn(1) given ; fn(0) = 0; fn(1) = 0: (4.2)We usually take gn(1) to be the value of the k�th iteration. The exa
t solutions of (3.3)are gn = �2nf 0n(1)zn, fn = f 0n(1)zn ln z. So the expli
it 
orre
tion method saves the
omputational work. In the impli
it 
orre
tion method adopted, the di�eren
e s
hemeof (3.4) is8>>><>>>: �z2j + h2zj � h2nRzjfj;2n�gj+1;n � �2z2j + n2h2 + 12nRzjf 0j;2nh2�gj;n+�z2j � h2 zj + h2nRzjfj;2n�gj�1;n = ~rj;nh2;�z2j + h2zj�fj+1;n � (2z2j + n2h2)fj;n + �z2j � h2 zj�fj�1;n = �gj;nh2:



Corre
tion Methods for Steady In
ompressible Flows 423The boundary 
onditions are (4.2). While the di�eren
e s
heme of (3.5) is8>>>>>><>>>>>>:
�z2j + h2zj � h2nRzjfj;2n�gj+1;n � �2z2j + n2h2 + 12nRzjf 0j;2nh2�gj;n+�z2j � h2 zj + h2nRzjfj;2n�gj�1;n = 0;�z2j + h2zj�fj+1;n � (2z2j + n2h2)fj;n + �z2j � h2 zj�fj�1;n = �
gj;nh2;gn(0) = 0; gn(1) = 1; fn(0) = 0; fn(1) = 0;where 
 is determined by the following formulation
 Z 10 zn�1gndz = �f 0n(1):By the numeri
al integration,
 = �f 0n(1)=nh2 gn(1) + hM�1Xj=1 gj;n(jh)n�1o:Then 
gj;n, fj;n are the numeri
al solutions of (3.5).For the iterative pro
edure 
onverging, the relaxation is employed. If g(k+1), f (k+1)are obtained by 
orre
tion method, the new values of (k + 1)-th approximations aregiven by ( g(k+1) = !g(k) + (1� !)g(k+1);f (k+1) = !f (k) + (1� !)f (k+1);where 0 � ! � 1 is a relaxation parameter.5. Numeri
al ResultsFor the various ranges of R, results are 
omputed by the expli
it and impli
it
orre
tion methods. The 
al
ulations are 
arried out with h = 0:025. We take N termsof the series. In Table 1, N and ! are given for di�erent R.

Fig.1. Streamlines for R = 10 Fig.2. Streamlines for R = 40



424 J. LIThe results are obtained by the expli
it 
orre
tion methodfor R = 10 and R = 40. Curves of the stream-fun
tion  are shown in Fig.1 and Fig.2. For the 
ases R = 70; 120,the impli
it 
orre
tion method is used. Fig.3-4 des
ribe theresults of the 
onstant stream-fun
tion  . The results arenearly the same as that by �nite di�eren
e method in [3℄.These show that the 
orre
tion methods are e�e
tive andfeasible.
Table 1. N and !for di�erent RR N !0 510 1040 14 0.170 18120 22 0.01
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