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Abstract
We study the Fredholm integro-differential equation

+oo
D2 o(z) + / k(e — y)o()dy = g(x)

— 0o

by the wavelet method. Here o(z) is the unknown function to be found, k(y) is
a convolution kernel and ¢(z) is a given function. Following the idea in [7], the
equation is discretized with respect to two different wavelet bases. We then have
two different linear systems. One of them is a Toeplitz-Hankel system of the form
(H, + T,)x = b where T, is a Toeplitz matrix and H,, is a Hankel matrix. The
other one is a system (B,, + C,)y = d with condition number x = O(1) after a
diagonal scaling. By using the preconditioned conjugate gradient (PCG) method
with the fast wavelet transform (FWT) and the fast iterative Toeplitz solver, we
can solve the systems in O(nlogn) operations.
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1. Introduction

In this paper, we study the Fredholm integro-differential equation

Alola)) = DZota) + [ ka — oty = g(x) (1

by the wavelet method. The applications of the equation in image restoration could be
found in [10]. For the history of numerical methods for the Fredholm integro-differential
equations, we refer to [4]. Following the idea in [7], the equation is discretized with
respect to two different orthonormal wavelet bases By and By of LQ(R). The By comes
from the father wavelet ¢(z) and the By comes from the mother wavelet ¢ (z). After
discretizing of the equation with respect to By and Bs on a finite interval, we then have
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two different n-by-n linear systems. One of them is a Toeplitz-Hankel system of the
form

(Hn + Tn)fl7 =b (2)

where T), is a Toeplitz matrix and H,, is a Hankel matrix. The other one is a system
(Bn +Cn)y =d (3)
with condition number
K(D,'*(Bn + C,)D,'?) = 0(1) (4)

after a diagonal scaling D,,. The relation between H,, +T;,, and B, + C,, is B,, + C,, =
Wy (H, + T,)W, ' where W, is the wavelet transform matrix between B; and Bs.

We then solve (2) by solving its equivalent form (3) with y = W,z and d = W,,b.
For solving (3), we use the PCG method with the diagonal preconditioner D,,. The
condition number of the preconditioned system is, by (4),

KDy (Bu + Cn)) = 5(D,? (B + Co) D, %) = O(1).

n n

When the PCG method is applied to solve the preconditioned system, the convergence
rate will be linear, see [5]. By using the FWT, see [2], and fast iterative Toeplitz solver,
see [1] and [9], we can solve the system (B, + Cp)y = d and also (H, + Ty,)z = b in
O(nlogn) operations.

2. Discretization of Fredholm Equation

The Fredholm integro-differential equation is given as follows, Ac = g, where A
is defined by (1), g € L?(R) and k(z — y) € L?(R) is symmetric and positive, i.e.,
k(z —y) = k(y — ) > 0. For solving the equation, we need to find o € C3*(R) such
that (1) is to be satisfied. The equivalent variational form of (1) is: find o € H{(R)
such that

B(o,p) = F(p) (5)
for Vi € H§(R). Here B(o,u) = By(o,u) + Bi(o, ) with

+0o0
Bo(o.p) = [ Dio@)Dip(a)ds.

B = [ [ ke - wownta)dyds

and

+o0

P = [ glayula)ds.

— 00
We assume that B(o, u) is a continuous elliptic bilinear form on H§(R) x Hf(R), i.e.,
there exist two constants 8 > « > 0, such that OLHO’H%{S < B(o,0) and B(o,u) <
Bllollm; |l mg - For instance, when s =0 (or s = 1) and +oo0 > C > k(z —y) > ¢ > 0,
then obviously, B(o,u) is a continuous elliptic bilinear form on L?(R) x L?(R) (or
HY(R) x HL(R).
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2.1 Wavelet Bases

Now, following the idea in [7], we are going to discretize the Fredholm integro-
differential equation with respect to two different orthonormal wavelet bases By and By
of L?(R). First of all, we introduce a function ¢(z) € L?(R) called the father wavelet
(or scaling function), with a compact support [0,a], a > 0, see [3]. The ¢(z) has the

property that
oz —k), keZ (6)

form an orthonormal sequence in L?(R). Let V; be the closed linear subspace of L?(R)
generated by (6). A chain of closed subspaces in L?(R) is given as

"'CV];lCVjCVj_HC"'.

The multiresolution analysis (MRA), depending on (), is given as follows:

(i) f(z) € Vy if and only if f(2/z) € Vj;

(ii) --CcVaicWVycWvy g

(iii) U, V; = L2(R) and (%, V; = 0

(iv) The sequence (6) forms an orthonormal basis of Vj.

Let W; denote the orthogonal complement of V; in Vj 1, ie., Vi1 =V; @ W;.

From MRA (iii), we also have &> W, = L?(R). There exists at least one function
P(z) € Wy such that ¢(z — k), k € Z form an orthonormal basis of Wy, see [2]
and [8]. The ¢(x) is called the mother wavelet. We then construct following two
wavelet sequences: ¢ (z) = 211202z — k), j,k € Z, and Yik(z) = 20/24p(20z — k),
j.k € Z. The {p;x(z)} and {4, x(z)} form two wavelet bases of L*(R) and {¢; ()}
also constructs an orthonormal basis of Hj(R) for 0 < s < r where r is the regularity
of the MRA, see [6] and [8]. The bilinear form B defined by (5) can be projected on
the subspace V (J is fixed) with respect to the following two bases in V:

Bi={psu(x)} and Bo= |J {¢jula)}.

—oo<j<J~1

The following lemma could be found in [6] and [8].

Lemma 1. Let f = Z(f, Yk Then f € HF(R) if and only if
7.k

11 = Y10 05021+ 22)° < o0, 0<s<r ™
3k

where r is the reqularity of the MRA.

2.2 Projection of B with respect to B; and By

Let Bj denote the projection of B(o, ) on V; x Vj. The matrix representation of
B corresponding to the basis B; has the elements given by

Mp,q = B(@rp, 014q) (8)

where Vp,q € Z. For VYo, € H§(R), let 07, uy denote the the projections of o, u on
Vj respectively. Then the equation (5) becomes

B(og,py) = F(u) (9)
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Let

o= wppsp and pg =g, Vg€ Z (10)
peEZ

Substituting (10) into (9), we have the following linear system
Moz =10 (11)

where (Mu)p,q = mpq is given by (8), and

@p=ap W= [ s@psale)ds

— 00

Let Hy and T, be matrices with (Hoo)p,g = hpq and (Teo)p,q = tp,q Where hy , =
Bo(@ip:01q) and t, , = Bi(@gp, ¢14). Then we have My, = Hy + Too. Because,

“+oo

5 | Dipsa(©Dips(€)d

hpq = hgp = Bo(Pip, 0i1q) =

1
- omad

+oo . _
| e G2 ) de = by

Hence, H,, is a Hankel matrix. For matrix T, since k(z — y) is symmetric and ¢(x)
has the compact support [0, a], we have

Bl (pJ,Pa(pJq
+oo —|—oo
= 2J/ / (z —y)p(2”z — p)p(2’y — q)dydz
277 (atp) (27 (a+q) ; ;
=27 / k(z —y)e(2°z — p)p(27y — q)dydx
2=7p 2=J7q

=2 [* [Tk oy le@e)dyds =ty =ty

Hence, T, is a Toeplitz matrix. Therefore, (11) is a Toeplitz-Hankel system.
The matrix representation of B; corresponding to the basis By has the elements

given by
N tigm = B(¥p.g, P1,m) (12)
for —oo < p,l < J and —oc0 < g, m < oco. Let
05 = Zyp,qu,q and py =Y m, —o00<I<.J VmeZ (13)

P,
Substituting (13) into (9), we have the following linear system
Ny =d (14)

where (Noo)piigm = Tpiigm, given by (12), denotes the (p,l)th entry of the (¢, m)th
block of Neo, ¥ = (ypq)" and d = (d, )7 are vectors with dp, = [72° g(2)4, 4(z)dz.
Let By, and Cy be matrices with

(BOO)p,l;q,m = Bﬂ(wp,qu "/’l,m) and (COO)p,l;q,m =B (wp,qawl,m)-
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Then we have Ny, = By + Cxo.

3. Condition Number and Operation Cost

Now we consider the condition number of the system (14) by following the idea in
[6]. Let ¢ € V; with ¢ = w;x1h; 5. We have
Jik

B(¢,¢) = Z Z Wi kWp,qNjpik,qg = w” Noow (15)

gk D.q

where w = (w; ;)7 is a vector. By the assumption that B(o, u) is a continuous elliptic
bilinear form on the space Hj(R) x Hj(R), we have

Cullgl3 < B(9.9) < Calll%s (16)

where Cy > C7 > 0 are constants. Combining (15) and (16), we have
Cill bl < w" Nogw < Collbl .

By using (7), one can easily obtain

Cs Z |2jswj’k|2 <w!' Nypw < Cy Z \stwj,k 2

J.k gk

where Cy > C3 > 0 are constants. After a diagonal scaling D, we have
Csllw|)? < w' D7V2N LDV 2w < Cyljw]|?

where || - || is the [y-norm. Thus, the condition number of N, after a diagonal scaling
is

k(D7V2NL,D7Y?) = 0(1). (17)

The relation between M, given by (11) and N4, given by (14) is Noo = W M W !
where W is the wavelet transform matrix between two orthonormal wavelet bases B
and By. We then solve the Toeplitz-Hankel system (11) by solving its equivalent form
(WMoW YWz = Wb ie., Ny = d where y = Wz and d = Wb, We use the
PCG method with the diagonal preconditioner D to solve the preconditioned system
D 'Nyy = D 'd. Since by (17), the condition number of the preconditioned system
is O(1), the convergence rate will be linear, see [5].

In practice, we usually use a finite interval instead of (—o0, +0c). We then have an
n-by-n system

Mpx =b (18)

where M,, is the finite section of M,,. Let W,, be the finite section of the wavelet
transform matrix W. The system (18) can be solved by solving its equivalent form

(W, M, W, YW,z = W,,b
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ie.,

Nyy =d (19)

where N, is the finite section of N, y = W,z and d = W,b. The PCG method is
applied to solve the system (19) with the diagonal preconditioner D,, which is the finite
section of D. In each iteration of the PCG method, we have to compute the matrix-
vector multiplication N, v for some vector v and solve the system D,z = t, see [5]. For
N,v, we know that

Nyv = (B, + Cp)v = Byv + Cpo.

For C,v = W, T,W, v, By using the FWT, u = W, 'v could be computed in O(n)
operations. The T,u could be computed by using the fast iterative Toeplitz solver in
O(nlogn), see [1] and [9]. By using FWT again, we note that the operation cost for
Cpv will be O(nlogn). Similarly, B,v could also be computed in O(nlogn) opera-
tions. Hence, the operation cost for N,v will remain O(nlogn). It requires only O(n)
operations to solve the system D,,z = t. Thus, the total operation cost per iteration is
O(nlogn). Since the number of iteration is independent of n, we therefore can solve
the system (19) and also the system (18) in O(nlogn) operations.
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