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ON THE LEAST SQUARES PROBLEM OF A MATRIX
EQUATION*)

An-ping Liao
(College of Science, Hunan Normal University, Changsha 410081, China)

Abstract

Least squares solution of F=PG with respect to positive semidefinite symmetric
P is considered,a new necessary and sufficient condition for solvablity is given,and
the expression of solution is derived in the some special cases. Based on the ex-
pression, the least spuares solution of an inverse eigenvalue problem for positive
semidefinite symmetric matrices is also given.
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1. Introduction

The purpose of this paper is to study the least squares problem of the matrix
equation F=PG with respect to Pe S i.e.
(Py) Ignisn |F' — PG|, where F,G € R"™™ and G # 0.
€53

Where || - || denotes the Frobenius norm, and ST ={X € §"X > 0},5" ={X €
R™"| X = XT}.Problem(P;) was first formulated by Allwright [1],A necessary and
sufficient condition for the existence of the minimizer P in (P) was given in [2],where
exact global solutions for (P;) are denoted throughout by P .The expressions of solu-
tion and the numerical solution for (P;) had been studied in [3]. But the expression of
solution is given only for two special cases, i.e. case a): P = FG if rank(G)=n and
GTF € 87 and case b):P = 0 iff rank(G)=n and —-FGT — GF"T ¢ S~.

Problem (P;) is often appeared in many fields such as structural analysis, system
parameter identification ,automatic control, nonlinear programming and so on. A rel-
evant work is [4].

When S = S ,the following inverse eigenvalue problem

(P}) gligl |G A —PG|,where G € R™™™ and A = diag(A, A2, ..., Am)
€

is a special case of (P).A necessary and sufficient condition for solvability and the
expression of solution of (Pj) were given for S = R™ "™ and S = S™ in [5,6].The
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following special inverse eigenvalue problem

(Py) }greliSI}L |G AN =PG|,where G € R™™™ and N = diag(A1, A2, ...; A) > 0
>

is solved by using dual cone theory[10].
Although the least squares solution of the following problem

(Py) )gnlsn |AT X A — D||, where A € R"*™ D ¢ R™™
€53

was successfully solved by Dai and Lancaster[7], the approach adopted there is based on
symmetry of (Py), and yet there is not such property in (P;).So the approach adopted
in [7] is not suitable to ().

The aim of this paper is to give a new necessary and sufficient condition for solv-
ability of (P;) and then derive a expression of solution in the some special cases. Based
on the expression we have also solved (P,).This paper extends the results in [10].

The notation used in the sequel can be summarized as follows. For A, B € R"*™ At
and Ax B respectively denote the Moore-Penrose pseudoinverse of A and the Hadamard
product of A and B.OR"™™" denotes the set of all orthogonal matrices in R™*".The
notation A > 0(> 0) means that A is positive semidefinite (definite). For ¥ =
diag(o1,09,...,0,) > 0, @y, denotes the matrix (¢;j), x,,where ¢;; = (0? + 0]2)’1,1 <
i,7 < r. In addition, a unit matrix is denoted by I.and the set {X € S"|X > 0} is
denoted by S¥.

This paper is organized as follows. A new necessary and sufficient condition for
solvability of (P;) is given in section 2. Based on the condition, in section 3 the
expression of solution of (P)) is given in some special cases. Problem (F,) is solved in
section 4.

2. The Solvability Conditions for (F;)

To Study the solvability of (P;), we decompose the given matrix G by the singular
value decomposition(SVD):
X
G=U ( 0 8 ) vl = 2vf (2.1)
where U = (Uy,Us) € OR™™ U, € R™",V = (V1,V5) € OR™ ™ V; € R™*" %
= diag(o1,09,...,0.) > 0,7 = rank(G).

Theorem 2.1. Suppose that rank(G)<n, and a SVD of the matriz G is (2.1).
Then (Py) has a solution if and only if rank(Py1 )= rank(Pi1|Pi2),where Py is a unique
minimizer of |UL FVi — Py X with respect to Py € Srz,and Py = (UFFvie—HT.

If (P;) has a solution, then the expression of solution is

- Py Py T
P=U| . f oA U
PL, PLP/ P+ B )
where B € SU " is arbitrary.

(2.2)

To prove Theorem 2.1, it will be convenient to give the following three lemmas.
Lemma 2.1.1Y The minimizer in (Py) exists and is unique when rank(G)=n.
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Lemma 2.2. Suppose that F,G € R"*™ and there is a minimizer P in (P,). Then

|F — PG| = min |F — PG| = inf |[F - PG|.
Pesy pPeSz

Proof. Tt is obvious that || F— PG| = }gnisn |F—PG| < Pinsf ||F'— PG||.On the other
esn esn

hand,for any € > 0, let § =(2|G|) 'e (noteb’ #0), then P + 61 > 0 (note P >0) and
|F—(P+61)G|| < ||F—-PG|+|0G| < ||F+ PG| +eHence |F—- PG| = Piensf“ |F'— PG|
>

Lemma 2.3.18 Suppose that a real symmetric matriz is partitioned as

E F
FT @G
where E and G are square. Then this matriz is positive semidefinite if and only if

E>0,G — F'EYF >0 and rank(E) = rank(E|F).

Proof of Theorem 2.1. For Pe S% partition P as
Py Py T

P=U U 2.3
( Piy Py ) (2:3)

where Py € SL.1t follows from (2.1) and (2.3) that
Ul'Fv, — P UI'FV,
ul'rv, - PLY. UI'FV,
+|UFFVi = PLE|? + U] FVa|)? + |[U7 FVa? (2.4)
It follows from Lemma 2.1 that there is unique P;; which minimizes ||U{ FV; — P13
with respect to P11 € SL.If Py = X'V FTU, and rank(Pyy) = rank(Pn| Prg), then

1P~ PG|* = | ( ) 1> = Ul Fvi — Pu3|?

is optimal for (P;) for any Py € S " such that Py > 131:515;51312. In fact, it follows
from Lemma 2.3 and (2.4) that P e 8%, Py and Py minimize the right hand side
of (2.4) with respect to P;; € S% and ]312 e R™*(=7) Hence (Py) certainly has a
minimum when rank(Pll) = rank_(ﬁn\ﬁlg) ,and in which case P can be expressed by
(2.2).

Conversely,it only remains to be shown that there is no minimum when rank(Py;) #
rank(ﬁu\fju). A . .

Suppose that rank(Py1) # rank(Pi1|P12) and that there is a minimum, say at
Ay € SZ. Partition Aj as

Ay=U ( gﬂ; g‘; ) U, (2.5)

where By € R"™*", it follows from Lemma 2.3 that By € S% and rank(By) = rank(By|Cp).
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If Cy = Py9, then By # Py;. Otherwise it follows that rcmk(l:jn) = rank(By) =
rank(By|Cy) = rank(Py1|Py2), which contradicts the initial assumption that rank(Pr1) #
rank(PH\Pu). . .

Hence, whether Cy = Py9 or Cy # Pj9, it follows from (2.1),(2.5) and Lemma 2.2
that

|F — AyG|? UL FVy — BoX|?

+ U3 FVi = CoE|? + |UT FVa|* + (U FVa?

> |UFVi — Pul|” + U] FVa|* + ||US FValf?

= min |U{FVi — PuS|? + U FVa|? + ||U3 FVa|?
Priesy

= inf [[UJFVi — PuS|® + U] FVo|* + ||Uy FVa?
PriesSt

= inf ||F - PG|?
PeSsn

= min |F — PG|?
pPest

This contradicts the optimality of Ag and therefore contradicts the existence of a min-
imum for (P;) when rank(Py1) # rank(Py1|Py2).Which completes the proof.

3. The Expression of Solution for (F;)

As it is stated in [3], it is difficult to find expression of solution for (Py;).In this
section, we get the expression of solution for (P;) in the some special cases.

Lemma 3.1. Suppose that real numbers o1, 03, ..., 0, are all positive,Ps, = (@ij)rxr, Pij =
(07 +03)7',1 <i,j <r.Then @y > 0.

Proof. Note that ¢;; = (0 + 0?)*1 = [y P REALEY , then for any X =
(z1,29,...,7,)T € R" ,we see that

2 2 2

o0 2
XT@ZX:/U (21, .nzy) (el e YT (et e o ) (2, ., ) T dE

oo T 5
= / (Z zie %) 2dt > 0,
0 =1

so @y, > (0.The Lemma, is proved.

Lemma 3.2. If A,B € 8%, then Ax B € SZ. If,in addition,BE€ ST and A has no
diagonal entry equal to 0,then A x B € S, -

Theorem 3.1. Suppose that G € R"* ™ rank(G) = n and the SVD of the matriz
G is

G=UE0V!I=UEVl (3.1)
where U € OR™ "V = (Vq, V) € R™*™ E = diag(01,09, ...,0,,) > 0. Then
P=U(®g* (U (FGT + GFTU))UT, (3.2)

if ®p « (UT(FGT + GFT)U) > 0. Especially, if FGT + GFT > 0, then P can be
expressed by(3.2).
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Proof. For any P € SZ, it follows from (3.1) that
|F = PG|* = ||[U"FVi = U PUE|? + |UT FVaf? (3.3)
On the other hand, it follows from [6,Lemma 2.1] that |[UT FV; — SE|| is minimized
with respect to S € S” by taking
S=0u+(UTFVIE+ EV'FTU)
= &g+ (UN(FGT + GFT)U) (3.4)
Hence,when S > 0.the minimizer P of |UTFV; — UL PUE| with respect to P € SZ
is USUT ji.e.P = USUT. That is to say,P can be expressed by (3.2) when S > 0.
Especially, if FGT + GFT > 0,it follows from Lemma 3.1,Lemma 3.2 and (3.4) that
S > 0. Thus we have proved Theorem 3.1.
Note: When rank (G) = n and GTF > 0, we can prove that

U(®g« (UN(FGT + GFTYU))UT = FGT > 0,

thereby @y * (UT(FGT + GFT)U) > 0. On the other hand,let G = ( (1) g and
1 1 . . 2 4
F = 9 9 ,then rank(G)=2 and FG' + GF' = 4 8 > 0, thereby
1 -1
Opx (UN(FGT +GFTYU) > 0; but GTF = 4 4 ¢ S;. Hence,Theorem 3.1 is

a generalization of the Theorem 2.4 in [3].

Theorem 3.2. Suppose that G € R™™™, rank(G)< n and the SVD of the matriz G
is (2.1). Then(P1) has a solution if S > 0 and rank(S) = rank(S|Pyy),in which case
the expression of solution is

fa:U(:g P )UT (3.5)
Pl PLSTP,+ B
where B € 877" is arbitrary ,8 = ®xx(Ul FViS+SV FTU,) and Piy = (U] FVi 2.
Especially, Problem(Py) has a solution if S >0 o0r FGT" + GFT > 0, and its solution
P can be expressed by (3.5).

Proof. When S > 0.it is easy to know from the proof of Theorem 3.1 that the
minimizer Py; of UL FVy — P 2| with respect to Pj; € S% is S ie. Py = S.So,when
S >0 and rank(g) = ’I‘ank‘(g|p12),p11 > 0 and Tcmk(]:’H) = Tank(]:’11|]512). Thereby
(P;) has a solution and the expression of its solution is (3.5) by Theorem 2.1. It only
remains to be shown that § > 0 when FG' + GF” > 0. In fact.it follows from (2.1)
that

S = opx (UL FWY + VI FTY)
= Oy« (UL (FGT + GFTUY),

where U; € R™ " and rank(U;)=r. Obviously, U{ (FGT + GFT)U; > 0 when FGT +
GFT > 0,thereby S > 0 by Lemma 3.1 and Lemma 3.2. Thus we complete the proof.

5. The Expression of Solution for (F,)

Theorem 4.1. Let a SVD of the G be (2.1). Then (P,) has a solution , and the
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expression of solution is

R T
pP-U ( 205 % (2‘51 AVIY) g ) T, (4.1)

where B € ST" is arbitrary.

Proof. Note that (P,) is a special case of (P;) when F= GA. So,from Theorem
3.1 and Theorem 3.2,it is all right to be shown § = 2®y, * (V" A ViX) > 0 and
1512 = 0.Here S and 1512 are the same as Theorem 3.2. In fact,it follow from (2.1) that

S = &y« (UFVE 4+ VI FTUY)

y * (UL GAVIE+ 2V AGTUY)
= Oy« (UL UV AV + 2V AViZUL DY)
= 20y« (ZV AVIY)

and Py (ZVIT AViY) >0 by &5 > 0 and A > 0.In addition,it follows from U2TU1 =0
that

Py = UIFvis YT = Wwlaavis YT = 0lv, v aviz—HT =o.
The theorem 4.1 is proved.

The author thanks the referees for their valuble suggestions which led to improve-
ments in the content and the exposition of this paper.
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