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ON THE LEAST SQUARES PROBLEM OF A MATRIXEQUATION�1)An-ping Liao(College of S
ien
e, Hunan Normal University, Changsha 410081, China)Abstra
tLeast squares solution of F=PG with respe
t to positive semide�nite symmetri
P is 
onsidered,a new ne
essary and suÆ
ient 
ondition for solvablity is given,andthe expression of solution is derived in the some spe
ial 
ases. Based on the ex-pression, the least spuares solution of an inverse eigenvalue problem for positivesemide�nite symmetri
 matri
es is also given.Key words: Least squares solution, Matrix equation, Inverse eigenvalue problem,Positive semide�nite symmetri
 matrix.1. Introdu
tionThe purpose of this paper is to study the least squares problem of the matrixequation F=PG with respe
t to P2 Sn�,i.e.(P1) minP2Sn� kF � PGk; where F;G 2 Rn�m and G 6= 0:Where k � k denotes the Frobenius norm, and Sn� = fX 2 SnjX � 0g; Sn = fX 2Rn�njX = XT g.Problem(P1) was �rst formulated by Allwright [1℄,A ne
essary andsuÆ
ient 
ondition for the existen
e of the minimizer P̂ in (P1) was given in [2℄,whereexa
t global solutions for (P1) are denoted throughout by P̂ .The expressions of solu-tion and the numeri
al solution for (P1) had been studied in [3℄. But the expression ofsolution is given only for two spe
ial 
ases, i.e. 
ase a): P̂ = FG+ if rank(G)=n andGTF 2 Sm� ; and 
ase b):P̂ = 0 i� rank(G)=n and �FGT �GF T 2 Sn�.Problem (P1) is often appeared in many �elds su
h as stru
tural analysis, systemparameter identi�
ation ,automati
 
ontrol, nonlinear programming and so on. A rel-evant work is [4℄.When S = Sn�,the following inverse eigenvalue problem(P 02) minP2S kG ^ �PGk; where G 2 Rn�m and ^ = diag(�1; �2; :::; �m)is a spe
ial 
ase of (P1).A ne
essary and suÆ
ient 
ondition for solvability and theexpression of solution of (P 02) were given for S = Rn�n and S = Sn in [5,6℄.The� Re
eived Mar
h 27, 1997.1)Resear
h supported by National S
ien
e Foundation of China.



590 A.P. LIAOfollowing spe
ial inverse eigenvalue problem(P2) minP2Sn� kG ^ �PGk; where G 2 Rn�m and ^ = diag(�1; �2; :::; �m) � 0is solved by using dual 
one theory[10℄.Although the least squares solution of the following problem(P 002 ) minX2Sn� kATXA�Dk; where A 2 Rn�m;D 2 Rm�mwas su

essfully solved by Dai and Lan
aster[7℄, the approa
h adopted there is based onsymmetry of (P 002 ), and yet there is not su
h property in (P1).So the approa
h adoptedin [7℄ is not suitable to (P1).The aim of this paper is to give a new ne
essary and suÆ
ient 
ondition for solv-ability of (P1) and then derive a expression of solution in the some spe
ial 
ases. Basedon the expression we have also solved (P2).This paper extends the results in [10℄.The notation used in the sequel 
an be summarized as follows. For A;B 2 Rn�m; A+and A�B respe
tively denote the Moore-Penrose pseudoinverse of A and the Hadamardprodu
t of A and B.ORn�n denotes the set of all orthogonal matri
es in Rn�n.Thenotation A � 0(> 0) means that A is positive semide�nite (de�nite). For � =diag(�1; �2; :::; �r) > 0;�� denotes the matrix ('ij)r �r,where 'ij = (�2i + �2j )�1; 1 �i; j � r: In addition, a unit matrix is denoted by I,and the set fX 2 SnjX > 0g isdenoted by Sn>:This paper is organized as follows. A new ne
essary and suÆ
ient 
ondition forsolvability of (P1) is given in se
tion 2. Based on the 
ondition, in se
tion 3 theexpression of solution of (P1) is given in some spe
ial 
ases. Problem (P2) is solved inse
tion 4. 2. The Solvability Conditions for (P1)To Study the solvability of (P1), we de
ompose the given matrix G by the singularvalue de
omposition(SVD):G = U  � 00 0 !V T = U1�V T1 (2:1)where U = (U1; U2) 2 ORn�n; U1 2 Rn�r; V = (V1; V2) 2 ORm�m; V1 2 Rm�r;�= diag(�1; �2; :::; �r) > 0; r = rank(G):Theorem 2.1. Suppose that rank(G)<n, and a SVD of the matrix G is (2.1).Then (P1) has a solution if and only if rank(P̂11)= rank(P̂11jP̂12),where P̂11 is a uniqueminimizer of kUT1 FV1 � P11�k with respe
t to P11 2 Sr�,and P̂12 = (UT2 FV1��1)T :If (P1) has a solution, then the expression of solution isP̂ = U  P̂11 P̂12P̂ T12 P̂ T12P̂+11P̂12 +B !UT (2:2)where B 2 Sn�r� is arbitrary.To prove Theorem 2.1, it will be 
onvenient to give the following three lemmas.Lemma 2.1.[1℄ The minimizer in (P1) exists and is unique when rank(G)=n.



On the Least Squares Problem of a Matrix Equation 591Lemma 2.2. Suppose that F,G 2 Rn�m and there is a minimizer P̂ in (P1). ThenkF � P̂Gk = minP2Sn� kF � PGk = infP2Sn> kF � PGk:Proof. It is obvious that kF�P̂Gk = minP2Sn� kF�PGk � infP2Sn> kF�PGk.On the otherhand,for any � > 0, let Æ =(2kGk)�1� (note G 6=0), then P̂ + ÆI > 0 (note P̂ �0) andkF�(P̂+ÆI)Gk � kF�P̂Gk+kÆGk < kF+P̂Gk+�.Hen
e kF�P̂Gk = infP2Sn> kF�PGk. Lemma 2.3.[8℄ Suppose that a real symmetri
 matrix is partitioned as E FF T G !where E and G are square. Then this matrix is positive semide�nite if and only ifE � 0; G � F TE+F � 0 and rank(E) = rank(EjF ):Proof of Theorem 2.1. For P2 Sn�,partition P asP = U  P11 P12P T12 P22 !UT (2:3)where P11 2 Sr�.It follows from (2.1) and (2.3) thatkF � PGk2 = k UT1 FV1 � P11� UT1 FV2UT2 FV1 � P T12� UT2 FV2 ! k2 = kUT1 FV1 � P11�k2+kUT2 FV1 � P T12�k2 + kUT1 FV2k2 + kUT2 FV2k2 (2:4)It follows from Lemma 2.1 that there is unique P̂11 whi
h minimizes kUT1 FV1 � P11�kwith respe
t to P11 2 Sr�.If P̂12 = ��1V T1 F TU2 and rank(P̂11) = rank(P̂11j P̂12), thenP � = U  P̂11 P̂12P̂ T12 P22 !UTis optimal for (P1) for any P22 2 Sn�r� su
h that P22 � P̂ T12P̂+11P̂12. In fa
t, it followsfrom Lemma 2.3 and (2.4) that P � 2 Sn�; P̂11 and P̂12 minimize the right hand sideof (2.4) with respe
t to P11 2 Sr� and P12 2 Rr�(n�r). Hen
e (P1) 
ertainly has aminimum when rank(P̂11) = rank(P̂11jP̂12) ,and in whi
h 
ase P̂ 
an be expressed by(2.2).Conversely,it only remains to be shown that there is no minimum when rank(P̂11) 6=rank(P̂11jP̂12).Suppose that rank(P̂11) 6= rank(P̂11jP̂12) and that there is a minimum, say atA0 2 Sn�: Partition A0 asA0 = U  B0 C0CT0 D0 !UT ; (2:5)whereB0 2 Rr�r; it follows from Lemma 2.3 that B0 2 Sr� and rank(B0) = rank(B0jC0).



592 A.P. LIAOIf C0 = P̂12, then B0 6= P̂11. Otherwise it follows that rank(P̂11) = rank(B0) =rank(B0jC0) = rank(P̂11jP̂12), whi
h 
ontradi
ts the initial assumption that rank(P̂11) 6=rank(P̂11jP̂12).Hen
e, whether C0 = P̂12 or C0 6= P̂12, it follows from (2.1),(2.5) and Lemma 2.2that kF �A0Gk2 = kUT1 FV1 �B0�k2+ kUT2 FV1 � CT0 �k2 + kUT1 FV2k2 + kUT2 FV2k2> kUT1 FV1 � P̂11�k2 + kUT1 FV2k2 + kUT2 FV2k2= minP112Sr� kUT1 FV1 � P11�k2 + kUT1 FV2k2 + kUT2 FV2k2= infP112Sr> kUT1 FV1 � P11�k2 + kUT1 FV2k2 + kUT2 FV2k2= infP2Sn> kF � PGk2= minP2Sn� kF � PGk2This 
ontradi
ts the optimality of A0 and therefore 
ontradi
ts the existen
e of a min-imum for (P1) when rank(P̂11) 6= rank(P̂11jP̂12).Whi
h 
ompletes the proof.3. The Expression of Solution for (P1)As it is stated in [3℄, it is diÆ
ult to �nd expression of solution for (P1).In thisse
tion, we get the expression of solution for (P1) in the some spe
ial 
ases.Lemma 3.1. Suppose that real numbers �1; �2; :::; �r are all positive,�� = ('ij)r�r; 'ij =(�2i + �2j )�1; 1 � i; j � r.Then �� � 0.Proof. Note that 'ij = (�2i + �2j )�1 = R10 e�(�2i+�2j )tdt , then for any X =(x1; x2; :::; xr)T 2 Rr ,we see thatXT��X = Z 10 (x1; :::; xr)(e��21 t; :::; e��2r t)T (e��21 t; :::; e��2r t)(x1; :::; xr)T dt= Z 10 ( rXi=1 xie��2i t)2dt � 0;so �� � 0.The Lemma is proved.Lemma 3.2.[9℄ If A;B 2 Sn�, then A �B 2 Sn�. If,in addition,B2 Sn> and A has nodiagonal entry equal to 0,then A �B 2 Sn>.Theorem 3.1. Suppose that G 2 Rn�m,rank(G) = n and the SVD of the matrixG is G = U(E;O)V T = UEV T1 (3:1)where U 2 ORn�n; V = (V1; V2) 2 Rm�m; E = diag(�1; �2; :::; �n) > 0: ThenP̂ = U(�E � (UT (FGT +GF T )U))UT ; (3:2)if �E � (UT (FGT + GF T )U) � 0. Espe
ially, if FGT + GF T � 0, then P̂ 
an beexpressed by(3.2).



On the Least Squares Problem of a Matrix Equation 593Proof. For any P 2 Sn�, it follows from (3.1) thatkF � PGk2 = kUTFV1 � UTPUEk2 + kUTFV2k2 (3:3)On the other hand, it follows from [6,Lemma 2.1℄ that kUTFV1 � SEk is minimizedwith respe
t to S 2 Sn by takingŜ = �E � (UTFV1E +EV T1 F TU)= �E � (UT (FGT +GF T )U) (3:4)Hen
e,when Ŝ � 0,the minimizer P̂ of kUTFV1 � UTPUEk with respe
t to P 2 Sn�is UŜUT ,i.e.P̂ = UŜUT : That is to say,P̂ 
an be expressed by (3.2) when Ŝ � 0:Espe
ially, if FGT + GF T � 0,it follows from Lemma 3.1,Lemma 3.2 and (3.4) thatŜ � 0. Thus we have proved Theorem 3.1.Note: When rank (G) = n and GTF � 0, we 
an prove thatU(�E � (UT (FGT +GF T )U))UT = FG+ � 0;thereby �E � (UT (FGT + GF T )U) � 0. On the other hand,let G =  1 00 2 ! andF =  1 �1�2 2 ! ,then rank(G)=2 and FGT + GF T =  2 �4�4 8 ! � 0; thereby�E � (UT (FGT +GF T )U) � 0; but GTF =  1 �1�4 4 ! 62 S2�. Hen
e,Theorem 3.1 isa generalization of the Theorem 2.4 in [3℄.Theorem 3.2. Suppose that G 2 Rn�m, rank(G)< n and the SVD of the matrix Gis (2.1). Then(P1) has a solution if Ŝ � 0 and rank(Ŝ) = rank(ŜjP̂12),in whi
h 
asethe expression of solution isP̂ = U  Ŝ P̂12P̂ T12 P̂ T12Ŝ+P̂12 +B !UT (3:5)where B 2 Sn�r� is arbitrary ,Ŝ = ���(UT1 FV1�+�V T1 F TU1) and P̂12 = (UT2 FV1��1)T :Espe
ially, Problem(P1) has a solution if Ŝ > 0 or FGT + GF T > 0, and its solutionP̂ 
an be expressed by (3.5).Proof. When Ŝ � 0,it is easy to know from the proof of Theorem 3.1 that theminimizer P̂11 of kUT1 FV1 � P11�k with respe
t to P11 2 Sr� is Ŝ i.e. P̂11 = Ŝ.So,whenŜ � 0 and rank(Ŝ) = rank(ŜjP̂12),P̂11 � 0 and rank(P̂11) = rank(P̂11jP̂12): Thereby(P1) has a solution and the expression of its solution is (3.5) by Theorem 2.1. It onlyremains to be shown that Ŝ > 0 when FGT +GF T > 0. In fa
t,it follows from (2.1)that Ŝ = �� � (UT1 FV1�+�V T1 F TU1)= �� � (UT1 (FGT +GF T )U1);where U1 2 Rn�r and rank(U1)=r. Obviously, UT1 (FGT +GF T )U1 > 0 when FGT +GF T > 0,thereby Ŝ > 0 by Lemma 3.1 and Lemma 3.2. Thus we 
omplete the proof.5. The Expression of Solution for (P2)Theorem 4.1. Let a SVD of the G be (2.1). Then (P2) has a solution , and the



594 A.P. LIAOexpression of solution isP̂ = U  2�� � (�V T1 ^ V1�) 00 B !UT ; (4:1)where B 2 Sn�r� is arbitrary.Proof. Note that (P2) is a spe
ial 
ase of (P1) when F= G^. So,from Theorem3.1 and Theorem 3.2,it is all right to be shown Ŝ = 2�� � (�V T1 ^ V1�) � 0 andP̂12 = 0.Here Ŝ and P̂12 are the same as Theorem 3.2. In fa
t,it follow from (2.1) thatŜ = �� � (UT1 FV1�+�V T1 F TU1)= �� � (UT1 G ^ V1�+�V T1 ^GTU1)= �� � (UT1 U1�V T1 ^ V1�+�V T1 ^ V1�UT1 U1)= 2�� � (�V T1 ^ V1�)and �� � (�V T1 ^ V1�) � 0 by �� � 0 and ^ � 0.In addition,it follows from UT2 U1 = 0that P̂12 = (UT2 FV1��1)T = (UT2 G ^ V1��1)T = (UT2 U1�V T1 ^ V1��1)T = 0:The theorem 4.1 is proved.The author thanks the referees for their valuble suggestions whi
h led to improve-ments in the 
ontent and the exposition of this paper.Referen
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