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Abstract

In this paper we represent a new numerical method for solving the steady
Navier-Stokes equations in three dimensional unbounded domain. The method
consists in coupling the boundary integral and the finite element nonlinear Galerkin
methods. An artificial smooth boundary is intrdouced seperating an interior in-
homogeneous region from an exterior one. The Navier-Stokes equations in the
exterior region are approximated by the Oseen equations and the approximate so-
lution is represented by an integral equation over the artificial boundary. Moreover,
a finite element nonlinear Galerkin method is used to approximate the resulting
variational problem. Finally, the existence and error estimates are derived.

Key words: Navier-Stokes equations, Oseen equations, Boundary integral, Finite
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1. Introduction

Nonlinear Galerkin methods are multilevel schemes for the dissipative evolution
partial differential equations. They correspond to the splittings of the unknown wu :
u = Yy + z, where the components are of different order of magnitude with respect to
a parameter related to the spatial discretization. The numerical procedure consists of
introducing an approximate inertial manifold which is a simplified approximation for
the small component z. In particular, z is often obtained as a nonlinear functional of y.
These methods have mainly been studied in the case of Fourier spectral discretizations
(see [1-4]). The Finite elements approximations are considered in [5-8]. However, these
works do not apply to the steady exterior Navier-Stokes equations.

Our purpose here is to present a new numerical method for solving the steady
exterior Navier-Stokes equations. First, we introduce an artificial smooth boundary
I’y separating an unbounded part €29 from a bounded part ;. Then the Navier-
Stokes equations in {29 are approximated by the Oseen equations. By use of the Green

* Received December 5, 1996.
DSupported by NSFC & State Key Major Project of Basic Research.



596 Y.N. HE, K.T. LI AND F.H. GAO

formula, we derive the coupling problem of the Navier-Stokes equations in €2y combining
the boundary integral equation over I's. Next, we present the coupling method of the
boundary integral method and the finite element nonlinear Galerkin method for solving
the coupling problem. Finally, we prove the well-posedness of the approximate problem
and analyse the couvergence rate of the approximate solution. Our result show that
the finite element nonlinear Galerkin coupling method is superior to the usual finite

element Galerkin coupling method presented in the paper [9].

2. Continuous Coupling Problem

Let Qg be a simply connected bounded open set of R? with smooth boundary T
and let €2 denote the complement of Qg UT'. The steady Navier-Stokes problem for a
fluid occupying €2 consists in finding the velocity vector u of the fluid and its pressure
p* sach that

—vAu* + (u* - D)u*+Vp* = f in

div u* =0 in 2
(N = S5)

u* = ¢ on I

u*(z) = wy as T — 0o

Here the coefficient v > 0 is the dynamic viscosity of the fluids, f represents a density

vector of external forces and ¢ is the velocity vector of the flow on I' satisfying the

condition / ¢ - nds = 0, where n denotes the unit vector normal to I', exterior to €2,
r
and wy is a constant vector. Moreover, we assume that f has a compact support in €.

For simplicity, we deal with the homogeneous boundary condition case of ¢ = 0 in
the sequel, but all the results stated here will still hold if the trace ¢ on €2 is any given
sufficient smooth function that admits a solenoidel extension (div u = 0) in €.

For some sufficient large real number R, we introduce an artificial boundary I'y =
{z € Q; |z| = R} embedded in (2, separating an unbounded region 2, from a bounded
region ) such that Q; contains the support of f and ((u — wp) - V)u is sufficiently
small in 5. We shall also denete by n the unit vector normal (from Q3) to T's.

With above assumptions, we introduce an approximation (u, p) of (u*, p*) such that

(u, p) satisfies the following coupling problem

(—vAu+ (u-Vu+Vp=f in
divu=0 in
/ ulr = 0,0(u,p) -nlr, = AT

(V=5 —vAu+ (wo-V)u+Vp=0 in Q

divu=0 in Q9

ulr, =u", lim u(z) = wy
|x|—00
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where

ou
U(’U,,p) 'n‘F2 = 7pn‘l“2 + Va_n|rza At = (I(’U,+,p+) ) ’n“F2

(uiapi) = lim (u|917p‘Q1)7 (u+7p+) = lim (U|anp|92)'
xr—1'9 xr—1'9

We are now ready to give an integral representation formula for the solution (u,p)
of the Oseen equations in €2,. Referring to [9], we have that for £ = 1,2,3

u(@) = = [ uy) - o(UL B - nly)ds, = [ (aly) - Usla =) (wo - nly)ds,

Ty
—|-.F Ur(z —y) - My)dsy + wg V€ Qo, (2.1)
p(z) = - /M vu(y) - n(y)(wo - Vﬁdsy - /m u(y) - P(z — y)(wo - n(y))dsy
+ - P(z —y) - My)dsy +C Vz € Qy, (2.2)
gun(o) = [ )00 o —3) - nlp)ds, — [ (wlo) - Uil ) - (1)),
+ . Uk(z —y) - My)dsy +wy VYV € I'y, (2.3)

where P = (Py, Py, P3), (U, Py) is the fundamental solution of the Oseen system:

—vAUk(z —y) + (wo - V)Ui(z —y) + VPe(z — y) = 6(z — y)ex,
div Ug(z —y) = 0,
and (Uy, Py) is given by

% 01
0x,0z;’ k= Oy, 4m|z — y

1 jos]—et
¢ = / < at,
0

vU, = 0piAg — ),

 8na t
_Jwo| wo - (z —y)
a=—s=|z—yl - —]——.
2v |wo

By introducing the following Sobolev spaces (see [9]):
X={veH(Q)*%v=0 onT}.
Xo={veX;div v=0 inQ},

M = L}(@) = {g € LXR0); [ qdw=0},
Ja,

T —{pe ) [ pnds =0},
Iy
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we obtain the continuous coupling variational problem corresponding to problem (N-S’)
and the integral equation (2.3):
Find (u,\,p) € X x M x T such that
a(u,v) + ar(u,u,v) — (p,div v)+ < yv, A >= (f,v) Vwe X
(Q) 1
b()\,u)*i<’}/0U,,U,>*<G(’)’[]U),u >=0 YueT

(g, div u) =0 Yqe M

where

(u,v) = /Q u - vdx, (yv, \) = /r v - Adsy,
a(u,v) = v((u,v)), ((u,v)) = . Vu - Vudz,

ay(u,v,w) = / (u-V)v - wdz,
Ja

buwyzé_éﬂmmvu—ywxwm%wﬁ

Gr(you) = /Fz u(y) - o(Us: i) —y) - nly)dsy, + | (uly) - Uele = y))(wo - n(y))dsy,

where G is a linear operator with respect to w.

The following estimates are classical (see [9, 11-15]):

la(u,v)| < v|u|i|v]i,a(u,u) = v} Yu,v e X, (2.4)
laq (u, v, w)| < coluli|vh|w)  Yu,v,w e X, (2.5)
s (w0, w)] < eafuly! ful ol fwlg w7 Vu,0,w € X, (2.6)

|b(>\7lu‘)| < CQHAHfl/Q,FQ||:U‘||71/2,F27
b(p, 1) > csllpl 1 jor, Vi AET, (2.7)

where ¢ = ¢(1), ¢; = ¢;(24) (1 = 0,1,--+) are positive constants dependent of €,
luli = [ul1,0, = ||VU||L2(QI)4= lulo = [ulo0, = ||U||L2(Q1)2=

A =1/2,05 = WM g-172 g8 1M 2,00 = 1M 172 ()

Remark. In (2.4)—(2.7) we using following fact: Friedrichs inequality in X is still
valid. Therefore, In X the seminorm | - |; and full norm || - ||; are equivalent.
Theorem 2.1. Suppose that flo, € X' and

degv 2| fll« < 1 (2.8)

Then the variational problem (Q) admits a unique solution (u,A\,p) € X x T x M.
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Moreover, if flg, € L*(€1)%, then (u,\,p) € (H*(Q1)° N X) x (H'*(I'9)* N T) x
(H'(Qq) N M) satisfies
[ull2 + [ M[1/2.0, + [Pl < eal Flogns (2.9)
(f:v)

where |lulla = [Jullg2,)3, [Pl = llplla1@)), [flls = sup
veX ‘,U‘l

This proof can be found in the paper [9].

3. Finite Element Galerkin Coupling Approximation

For simplicity we restrict the discussion here to the case where 2; has polyhe-
dral boundary, but the results can be easily extended to a general curved domain, by
introducing an approximate boundary I', U I'y;,. For further details we refer to [14].

From now on, h will be a real positive parameter tending to zero. First, we introduce
three finite-dimensional subspaces X, T}, and My, of X, T and M as followis. For each
h > 0, let 75, be a triangulation of {2; made of tetrahedra K with diameters bounded
by h. We suppose that {7} is an affine family of class C?, regular in the sense that
there exists a constant vy; > 0 independent of h such that

hk <mpx VK € 1,

where hx < h is the diameter of K and pg is the diameter of the inscribed sphere
in K. Let us denote by s;,1 < i < n the finite number of triangular composing the

boundary I'y. We take the following finite element spaces:

X, ={vn € C(N)* N X; 04|k € P3(K),VK € 1},
Ty, ={pn € C°(T2)* N T; pnls; € PP(si),1 <i <m},
Mh :{qh S M;qh\}( S PO(K),VK c Th},

where P, denotes the space at all palynomials in three variables of degree < [,0 < [.
Moreover, we define the subspace Xy, of Xy given by

Xon = {vn € Xp; (qn,div vp) =0, Vg, € Mp}.

According to the literatures [9, 13-14], there hold the following approsimate prop-
erties:
(H1) There exists an operator 7, € L(H?(1)3; X)) such that

(qn,div (v — mpv)) =0 Vg, € My, Yo € H* ()3,

v —mpo|1 < chljv]2.
(Hy) The orthogonal projection operator Sy, : L?(I'y)? — T}, satisfies

[ = Shpll-1/2.0, < chllpllijor,, Vo€ H'Y2(Iy)* N T
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(H3) The orthogonal projection operator py, : L3(21) — M), verifies
lg — pralo < chllglly, Vg€ H'(21)° N M.
(H4) There exists a cons tant (3, independent of A such that

(qha div U)
sup ———=

> Blanl  VYan € Mp,.
'UhEXOh ‘vh‘l

with these finite element spaces, problems (@) and (P) are approximated by

Find (up, Ap,prn) € Xp x T, X My, such that

a(up,v) + a1 (up, up, v) + (Y00, An) — (pr, div v) = (f,v) Vv € X,
b(Ans 1) — %(v(mh,u) —(G(youn),n) =0 Vu € Th
(g, div up) =0 Yq € My,

(Qn)

and
Find (up, \p) € Xop x Tj, such that

(Ph) a(uhav) + al(Uh,’LLh,U) + <’)’[]U, >‘h> = (fav) Vo € XOh

1
b(An,p) — 5(70“1“#) —(G(youn),p) =0  Vu €Ty

Theorem 3.1. Assume that f|o, € X' and
42| f s < 1. (3.1)

Then problem (Qp) has ezactly one solution (up, A\p,pp) € Xp x T x My, where
(up, An) € Xop x Ty, is the unique solution of problem (Py). Moreover, if flo, € L?(2)3
then

0,921 - (3.2)

lunlle + [[Anllij2,r, <clf

and
lu —uplt + [|A = Anllijar, + [P — prlo < ch. (3.3)

For the proof of Theorem 3.1, the readers can see the paper [9].

4. Finite Element Nonlinear Galerkin Coupling Approximation

In this section, we are given two parameters h and H, tending to 0, with H > h > 0.
We consider four finite element spaces X, Xy, T and My, with Xy C X} and we write

Xy =Xg + Wy, Wy = (I — Ry)Xp,
where Ry : X — Xy denote the L?-orthogonal projections defined by

(Rpv,vg) = (v,og) Yv € X,vg € Xpg.
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The modified nonlineaar Galerkin method associated with (X g, X, T}, My,) con-
sists of looking for an approximate solution (u”, A, p") € X}, x T}, x M}, such that

W =y+zye Xg, 2z e W,

and
((a(y +z,0) +ai(y + 2,y + z,0) + (v, \") — (p",div v) = (f,v) Yo € Xg
ay + z,w) + ar(y + z,y,w) + a1(y, z,w) + (yow, \")
Q" —(p", div w) = (f,w) Yw € Wy,
BN, 1) = 5 (o, ) — (Gl 1) = 0 Vi€ T
L (¢, div u") =0 Vg € M,

or finding (u”, \") € Xg;, x T}, such that

a(y'l_zav) +a1(y+zay -I—Z,U) + (’YovaAh) = (fav) Vo € X N Xop
(Ph) a(y—l—z,w)+a1(y+z,y,w)—i—al(y,z,w)—i-(’ygw,)\h) = (fuw) Vw € WthOh
1
bOX", 1) = 5 (vou", 1) = (G(you"), p) = 0 Vi € Ty

Recalling again [6-7, 16], the following properties are classical, namely
(H5) There exists a constant Hy such that for 0 < h < H < Hy, Xy N Xop, # {0}
(Hg) There exists a constant 0 < § < 1 such that

S(lo + |wl?) < v +w|} YveXg, we W,

(H7) |w|0 < ’)’H|w|1 Yw € Wy,
In order to consider the well-posedness of problem (Q"), we introduce the following
lemma.

Lemma 4.1. For any u® € X, the variational formulation

1

D", ) — S (vou", ) — (Gyou),p) =0 Y €T

admits a unique solution \' = X(yu") such that

(you", M(yvou™)) >0
IMvou") | -1 /005 < clu”|y

This proof can refer to [9].
Thanks to Lemma 4.1, problems (Q") and (P") can be rewritten as

Find (u" =y + 2z,p") € X}, x M, such that
a(u”, v) + a1 (u”, uP, v) — ai(z, 2, rev) + (v, Myu"))

—(ph, div v) = (f,v) Vv € Xp,
(g,div u") =0 Vq € My,

Q")
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and
Find u" =y + 2z € Xy, such that

(‘Ph) a(uhvv) + al(uhﬂuhav) - al(zazaTHU)

+(y0v, Ayou”)) = (f,0) Vo € Xon
where rgy =1 — Ry.
In order to consider the well-posedness of problem (Q"), we first consider ones of
problem (P"). To do this, we study the following problem:
Given g € K}, find v € Xy, such that

a(v™,v) + (yov, Ayou™))
=(f,v) —ai(g,9,v) + a1(rpg,rug,ruv) Vv € Xop (4.1)

where Ky = {g € Xon: loh < 2711}

In view of Lemma 4.1, the bilinear form: af(-,-) + (v, A(70-)) is continuous and
coercive on Xgp X Xgp. Hence, there exists a unique solution v" € Xg; for (4.1)
according to the Lax-Milgram theorem. So, (4.1) defines a mapping F : K; — Xg.
Thus, the problem (P") is equivalent to the operator equation

ul = Eul (4.2)

In other words, u” is a solution of (P") if and only if u” is a fixed point of E.
Theorem 4.2. Suppose that v,co(Q1), fla, € X' and H < Hy satisfy the unique
condition:
8cov 2| fls < 1,60 2ciy 2HV 25732 1|, < % (4.3)

Then there exists a unique fized point u of E in the set K.

Proof. First, we prove that F is mapping of K} into Kj. Let g € K}, then ol = Eg
satisfies (4.1). Taking v = 9" in (4.1) and using (2.5) (2.6), (Hg) — (H7) and the
following estimates:

a0, o) + (v, Apu™)) > wlo" (4.4)

we obtain
VoL < || £l + colgl? + ey P H 26732 g3 (4.5)

3
Thanks to the uniqueness condition (4.3) and [g|1 < —||f||«, (4.5) yields
v
Yoy < 301 (46)

So, v" € K}, namely, E : K, — K.
Secondly, E is a contraction mapping in Kj,. In fact, if g1, g2, € Kj,, then vff =
Egy1, vl = Egy satisfy

a(vf — v, v) + (v, A(yo (v — 03))) = a1(g2 — 91, 92.v) + a1(g1.92 — g1, v)
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—ay(ru(92 — 91),7Hg2,7EHV) — a1(rugi,ru(92 — 91),THV) Yv € Xop.
(47)

Taking v = v — v8 in (4.7) and using (4.4), (2.5)-(2.6) and (Hg) — (H7), we obtain
vloh — oy < colgr — g2l1(lg1]1 + g2l + ey 2HY26732(|g1 1 + lg2l1) g1 — g2l (4.8)

Due to (4.3), we derive from (4.8) that

_ _ 19
[off — w3l < (Beor 2| fl + 6e1y' 2HY252| fIL) g1 — g2li < 50l —92h (49)
So, E is a contraction mapping of K} into K. By the fixed point theorem, Theorem
4.2 is proven.
Once u" is obtained as the solution of problem (P"), there remains to solve: find

p" € My, such that

(ph,diV U) :a(uhvv) + al(uhauhav) - al(z,z,rHv)

+ (v, )\(’youh)) —(f,v) Yv e X,. (4.10)

Here, the right hand-side of (4.10) is a functional on X}, which, due to the definition
of u", vanishes on Xgj,. It is classical that the inf-sup condition (H,) guarantees that
(4.10) is uniquely solvable in the space Mp. This give the following existence and
uniqueness of the solution (u”,p") of problem (Q").

Theorem 4.3. With the above finite element spaces X, Xp, My and Ty, and the
uniqueness condition (4.3), the problem (Q") admits a unique solution (u, A", p") €
Xp, x Ty, x My, where (uP, \") € Xqp, x T), is the unique solution of problem (P").

Moreover, if f|o, € L2(€)? then

lu™ 2 + A" 2,0, < clf

0,0 - (4.11)

The proof of (4.10) is classical, it can be omitted.

5. Error Estimaates

In this section, we aim to derive the error estimates for the finite element nonlinear
Galerkin coupling method in terms of the three parameters R, H and h.

First, we shall give the estimate |u* — u|; o. According to problem (N — S'), u
satisfies

—vAu+ Xq,(u-Vu+ (1 — Xg,)(wo-V)u+Vp=f in Q
(N — 8¢ divu=0 in Q

ulp =0, lim wu(z) = wy
|x|—00
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where _
x ( ) 1 z€ Ql

o, (z) = o
' 0 z€€.

Hence, w = u* — u and 1 = p* — p satisfy

—vAw+ zq, ((w - V)u* + (u- V)w) + Vn

+ (1 = Xo) (0" = wo) - V)(u" = wo) + (wo - V)w) =0, (5.1)
div w =0, (5.2)
wlp = 0, ‘xl‘linoow(r) = 0. (5.3)

According to the literatures [10-12], there hold

u*(z) —wo = O(|z| ™), u(z) —wy = O(|z|~') Vz >R, (5.4)
/Q(u* -V)w - wdz = 0. (5.5)

Equation (5.1) formally multiplied by w and integrated in  yields

u|w|iﬂ + a1 (w,u*, w) + a1 (u, w, w) + ; ((u* —wg) - V) (u* —wp) - wdz
2

++ [ (wo-V)w-wdzx =0, (5.6)
Qo

where (5.2) is used. Thanks to (5.2) and (5.5), we have

/ ((u* —wp) - V)(u™ — wy) - wdz —I—/ ((u* —wo) - V)w - (u* — wp)dz
J €2 Qs

_ /FQ (" — wo) - n((u* — wo) - w)dsa, (5.7)
/ (wo-V)w - wdz = / ((wg — u™) - V)w - wdz — a1 (u*, w, w), (5.8)

J Q2 197
./m“wo —u*)-V)w - wdr = %/FQ(MU —u*) - njw|*ds,. (5.9)

Moreover, due to (5.4) there hold
/ (u* — wp) - n(u* — wp) - wds, = O(R™1), (5.10)
Iy
1
—/ (wo — u*) - nlw|2ds, = O(R™). (5.11)
2 Jr,
Combining (5.6) with (5.7)—(5.11) yields
V\w\im + aq (w, v, w) + ay(u*, w,w) + a1 (u, w, w)

+ o ((u* = wp) - V)w - (u* — wy)dz = O(R™Y). (5.12)
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However, due to (2.5) and (5.5) we imply

ar(w,u”, w) + a1 (u*, w,w) = 2a1 (w, w,w) + a1 (w,u, w) + a1 (u, w, w), (5.13)
Ja (u, w,w)| < eoluli|wli, (4.14)
laq (w,u, w)| < coluli|wl|?, (4.15)
1/2
‘/ (u* —wp) - V)w - (u —wgd:v‘g(/ |Vw| d:v)/(/ lu —wo\d:p)/
Qo 195 2
< Yjwl g+ zfl/ lu* — wo|*da, (5.16)
4 ’ Qs
/ u* — woltdz = / O(jz| “Ydz = O(R™ ), (5.17)
Q2 Q2
201 (w, w,w) = / w - njw|?dz = O(R™"). (5.18)
Qo

So, (5.12) amd (5.13)—(5.18) yield
3vlwl] o — 12¢|uli|w|fq = O(R™). (5.19)

According to the paper [9], there holds

2
[uli < ~l1fl (5.20)

namely, we have

8
3v(1 - Seollfll.) lwfiq = OR™), (5.21)

Using again the uniqueness condition (4.3), we derive

= %co||f||* — a0, (5.22)
Therefore, (5.21) and (5.22) yield

u* —ul1.0 = O(RY?). (5.23)

Recalling again the discussions given in section 3, we obtain the approximate accuracy
of uy,.
Theorem 5.1. Assume that v, co(€21) and f satisfy the uniqueness condition (5.22),
then
lu* — uply = O(R™? + h). (5.24)

Next, it remains now to derive the convergence rate of u”.
Theorem 5.2. Assume that v,co(Q1), f and H satisfy the uniqueness condition
(4.3), then
lu* —upli = O(R™Y2 + h+ H?). (5.25)
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Proof. We set

h

E=u,—u'"=e+e, e=Ryup —y,e = — Ry)up, — 2

n=pn—p" =X — A"
Then problem (Qj) and problem (Q") yield

a(E,v) + a1 (up, B, v) + a1 (E,u",v) + a1 (2, 2, rpv) + (Y0, €)

—(n,div v) =0 Vv € X, (5.26)

1
b(&, ) — 5(70E,u> ~(G(wE),p) =0 Vu €Ty, (5.27)
(qdiv E) =0 Vg€ M,. (5.28)

According to Lemma 4.1, (5.27) implies that £ = A(yoF) satisfies

(VB Ay E)) >0, (5.29)
1€l -1 /2,0, < Bl (5.30)

Thus, taking v = F in (5.26) and using (5.28)—(5.29), we derive
VIE? 4+ a1 (up, B, E) + ay(E,u", E) + a1 (2, z,¢) = 0. (5.31)

Thanks to (2.5)-(2.6), we have

a1 (up, B, E) + a1 (E,u", B) < co(|u”]1 + lup|1)|E|?, (5.32)
1/4 1/4 1/4 1/4
la1(z,2,6)| < erlzly |21 |els el (5.33)

Recalling the paper [9], there holds
2
[unlt < — [ £l (5.34)
Referring again to the proof of Theorem 4.2, u” satisfies
h 3
e < Sl (5.35)
Thus, (5.32) and (5.34)-(5.35) give
5
|1 (un, B, B)| + ar|(u", B, B) < —col |+ B[ (5.36)
Using again (Hg) — (H7), (5.33) yields

a1 (z,2,)| <ery'PHY? |2 el < 1672y P H2 23 B)y

3
<=colf| BT + cH|z3. (5-37)
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Combining (5.31) with (5.36) (5.37) yields

a|Eff < cH||1, (5.38)

8
where @ = v — —¢q|| f|l« > 0.
v

Referring again to Ait Ou Ammi [7], there holds

1zl + H|z|; = [u" — Rpuly + H|u" — Rgu®|y < cH?|u"|».

Hence, we imply

2t < eH u];. (5.39)

This and (5.38) imply

|El, < cH®?. (5.40)

Combining (5.40) with (5.24) implies (5.25). The proof ends.

Remark According to Theorem 5.1 and Theorem 5.2, the nonlineaar Galerkin

scheme provides the same order of approximation as the classical Galerkin scheme

if we choose H = O(h?/®). However, in the nonlinear Galerkin scheme, the nonlinear-

ity is treated on the coarse grid finite element space Xz and only the linear problem

needs to be solved on the fine grid finite element increment space W},. For the classical

Galerkin scheme, the nonliearity needs to be treated in the fine grid finite element space

Xp,. Hence, the nonlinear Galerkin scheme is superior to the classical Galerkin scheme.
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