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ON THE DOMAIN DECOMPOSITION METHOD FOR MORLEYELEMENT {FROM WEAK OVERLAP TO NONOVERLAP�Jian-guo Huang(Department of Applied Mathemati
s, Shanghai Jiao Tong University, Shanghai 200240,China)Abstra
tIn this paper, following our original ideas[9℄, we �rst 
onsider a weakly overlap-ping additive S
hwarz pre
onditioner a

ording to the framework of [2℄ for Morleyelement and show that its 
ondition number is quasi-optimal; we then analyze indetail the stru
ture of this pre
onditioner, and after proper 
hoi
es of the inexa
tsolvers, we obtain a quasi-optimal nonoverlapping domain de
omposition pre
ondi-tioner in the last. Compared with [12℄, [13℄, it seems that a

ording to this paper'spro
edure we 
an make out more thoroughly the relationship between overlappingand nonoverlapping domain de
omposition methods for non
onforming plate ele-ments, and 
ertainly, we have also proposed another formal and simple strategy to
onstru
t nonoverlapping domain de
omposition pre
onditioners for non
onform-ing plate elements.Key words: Morley element, Domain de
omposition, Weak overlap.1. Introdu
tionWe 
onsider, for simpli
ity, the following 
lamped plate bending problem:(�2u = f; (
);u = �nu = 0; (�
); (1.1)where 
 is a plane polygonal domain and n denotes the unit outward normal along theboundary �
. The related variational form is(u 2 V � H20 (
);a(u; v) = (f; v); v 2 V; (1.2)where a(u; v) � R
[�u�v + (1 � �)(2�12u�12v � �11u�22v � �22u�11v)℄dx, (f; v) �R
 fvdx, � 2 (0; 0:5) is the Poisson ratio. Clearly, the above bilinear form a(�; �) satis�es� Re
eived September 24, 1996.



616 J.G. HUANGthe boundedness and 
oer
ivity estimates:( ja(v; w)j � (1 + �)jvj2;
jwj2;
; v; w 2 H2(
);a(v; v) � (1� �)jvj22;
; v 2 H2(
): (1.3)Throughout this paper we adopt the standard 
onventions for Sobolev norms and semi-norms of a fun
tion v de�ned on an open set G:kvkm;G � (ZG Xj�j�m j��vj2dx)1=2;jvjm;G � (ZG Xj�j=m j��vj2dx)1=2;jvjm;1;G � maxj�j=m k��vkL1(G):We shall also denote the spa
e of polynomials of degree less than or equal to l onG by Pl(G).Let �
 = [K2Th �K be a quasi-uniform and regular triangulation of 
[4℄, the diametersize of whi
h is denoted by h, here ea
hK 2 Th is an open triangle. On this triangulationwe 
onstru
t the so-
alled Morley element[4℄;[11℄:V h � fv : vjK 2 P2(K); v(respe
tively, �nv) is 
ontinuous at ea
h vertexp of K(respe
tively, ea
h edge midpoint m of K), 8 K 2 Thg,V h0 � fv 2 V h : v(p) = 0; p 2 �
; �nv(m) = 0; m 2 �
g: (1.4)Here and hen
eforth, p and m (with or without subs
ript) represent a vertex and anedge midpoint of the elements in Th respe
tively. Then, based on (1.4), the dis
reteproblem of (1.2) reads as follows:( ah(uh; vh) = (f; vh); vh 2 V h0 ;uh 2 V h0 ; (1.5)where ah(v; w) �PK2Th RK [�v�w + (1� �)(2�12v�12w � �11v�22w � �22v�11w)℄dx.It is well-known that the PCG is a proper method to solve (1.5), and the 
ore stepis how to design a well-pre
onditioned and easily invertible in parallel pre
onditioner,sin
e the 
ondition number of the dis
rete system (1.5) is O(h�4). In [2℄, S.C.Brennerproposed a two-level additive S
hwarz pre
onditioner for non
onforming plate elements;the main ingredient is the 
onstru
tion of proper intergrid transfer operators whi
hbuild important bridges among non
onforming elements and their 
onforming relatives,and thus the diÆ
ulty that subspa
es are not nested for non
onforming element 
asewas over
ome su

essfully. In [8℄, J.Gu and X.Hu presented some extension theorems
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onforming plate elements with appli
ations to two-subregions domain de
om-position method, but their results 
an not show the equivalen
e between the energy ofthe dis
rete biharmoni
 fun
tion and the norm of its related boundary terms, whi
h is
ru
ial to the 
onstru
tion of nonoverlapping domain de
omposition method for manysubregions 
ase. In [12℄, [13℄, using a modi�ed intergrid transfer operator indu
ed by[2℄ and the 
ontinuity of the Morley element, Z.Shi and Z.Xie obtained the extensiontheorems of that kind, they then followed the ideas of J.H.Bramble et al[1℄ and a
hieveda quasi-optimal nonoverlapping domain de
omposition pre
onditioner.In this paper, following our original ideas[9℄, we �rst 
onsider a weakly overlappingadditive S
hwarz pre
onditioner a

ording to the framework of [2℄ for Morley elementand show that its 
ondition number is quasi-optimal, equal to O((1+log Hh )2), where H,h denote the diameters of the 
oarse and the �nite element triangulations respe
tively;we then analyze in detail the stru
ture of this pre
onditioner, and after proper 
hoi
esof the inexa
t solvers, we also obtain a quasi-optimal nonoverlapping domain de
ompo-sition pre
onditioner in the last. Compared with [12℄, [13℄, it seems that a

ording tothis paper's pro
edure we 
an make out more thoroughly the relationship between over-lapping and nonoverlapping domain de
omposition methods for non
onforming plateelements, and 
ertainly, we have also given another formal and simple strategy to 
on-stru
t nonoverlapping domain de
omposition pre
onditioners for non
onforming plateelements. 2. Algorithm Des
riptionsIn order to present the weakly overlapping domain de
omposition pre
onditioner for(1.5), we need, at �rst, give an arbitrary 
oarse triangulation of 
, TH = f
igMi=1, whi
his quasi-uniform and regular with the diameter size H, here ea
h 
i is a 
oarse opentriangle. As usual, we assume that �
i is aligned with the �nite element triangulationTh [5℄;[6℄. On this 
oarse triangulation, aH(�; �), V H(V H0 ) are de�ned as before. Forthe purpose of global 
ommuni
ation among the lo
al subspa
es, whi
h is ne
essaryfor a good pre
onditioner, we next introdu
e some intergrid transfer operators andsome interpolation operators. Let ARh denote the Argyris element asso
iated with thetriangulation Th, whi
h is de�ned below: For any v 2 ARh, vjK 2 P5(K), and it hasthe degrees of freedom f ��v(pi); j�j � 2; �nv(mi) g [4℄;[11℄ .We then 
onstru
t an intergrid transfer operator Eh [2℄;[12℄;[13℄ as follows, whi
hbuilds an important bridge between the non
onforming element spa
e V h and its 
on-forming relative ARh. For arbitrary vertex p of Th, we assign to it one of its adja
entedge midpoint ep; we want that, if p 2 [mi=1�
i n �
 (respe
tively, �
), ep should alsobelong to [mi=1�
i n �
 (respe
tively, �
). Obviously, there is 
ertain freedom for the
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hoi
e of ep. After that, for any v 2 V h, Ehv 2 ARh is de�ned byEhv(p) = v(p); 8vertex p;��Ehv(p) = 0; j�j = 2;�nEhv(m) = �nv(m); 8midpoint m;�iEhv(p) = �iv(ep); i = 1; 2: (2.1)The main ingredient of this 
onstru
tion is that for v 2 V h, the slope of v, i.e. �iv,i = 1; 2, is 
ontinuous at any edge midpoint m. For the 
oarse spa
es V H ; ARH , theoperator EH : V H ! ARH is de�ned in the same manner. We next denote by Ih the
onventional interpolation operator from C1(�
) onto V h [4℄. Now we 
an de�ne anintergrid transfer operator IhH : V H ! V h asIhHv = IhEHv; v 2 V H : (2.2)Clearly, for v 2 V H0 ; IhHv 2 V h0 . To apply the abstra
t framework of [2℄, we pro
eed to
onstru
t some weakly overlapping subspa
es. For arbitrary i, j 2 f1; 2; � � � ;Mg; i 6= j,we denote (i; j) 2 S if 
i and 
j have a 
ommon edge. For arbitrary (i; j) 2 S, weintrodu
e the following subspa
e:V hij = fv 2 V h0 : nodal parameters of v are zero outside (
i [ 
j)0gand the related orthogonal proje
tion operator:f ah(Pijv; w) = ah(v; w); v 2 V h0 ; w 2 V hij ;Pijv 2 V hij ;here, as usual for any point set B, �B and B0 denote its 
losure and interior point setrespe
tively.Then we have a spa
e de
omposition of V h0 :V h0 = IhHV H0 + X(i;j)2S V hij : (2.3)As in [2℄, let (:; :)h and (:; :)H denote the dis
rete inner produ
ts on V h0 and V H0 respe
-tively, i.e., 8v; w 2 V h0 ,(v; w)h � h2Xp v(p)w(p) + h4Xm �nv(m)�nw(m); (2.4)where the summation are taken over all verti
es p and midpointsm of the triangulationTh; the inner produ
t (:; :)H is de�ned in the same way. Furthermore, we de�ne Ah :
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omposition Method for Morley Element... 619V h0 ! V h0 , Aij : V hij ! V hij ; AH : V H0 ! V H0 , IHh : V h0 ! V H0 and Qij : V h0 ! V hij by8>>>>>>>>><>>>>>>>>>:
(Ahv; w)h = ah(v; w); v; w 2 V h0 ;(Aijv; w)h = ah(v; w); v; w 2 V hij ;(AHv; w)H = aH(v; w); v; w 2 V H0 ;(IHh v; w)H = (v; IhHw)h; v 2 V h0 ; w 2 V H0 :(Qijv; w)h = (v; w)h; v 2 V h0 ; w 2 V hij : (2.5)Then, based on (2.3), we have the following two-level additive S
hwarz pre
onditionedproblem: 8><>:B � IhHA�1H IHh + X(i;j)2SA�1ij Qij ;BAhuh = Bfh; (2.6)where fh 2 V h0 and (f; v) = (fh; v)h; 8v 2 V h0 :We 
all (2.6) the weakly overlapping domain de
omposition method for (1.5).3. Estimates of the Condition NumberTo begin with, we give some standard 
onventions. Let G � 
 be any open subsetaligned with the �nite element triangulation Th. Then we de�ne that V h(G) � V hjG;V h0 (G) � fv 2 V h(G); v(p) = �nv(m) = 0; v; m 2 �Gg; and8>>>>>>>><>>>>>>>>:

kvkk;h;G � ( XK2Th\G kvk2k;K)1=2; v 2 V h(G);jvjk;h;G � ( XK2Th\G jvj2k;K)1=2; v 2 V h(G);ah;G(v; w) � XK2Th\G ZK [�v�w + (1� �)(2�12v�12w � �11v�22w � �22v�11w)℄dx:(3:1)Note that in order to make the following interpretation more 
onveniently we also applythe above de�nition for v 2 H2(G):To go on with the analysis of the 
ondition number of (2.6), we next re
all someknown results.Lemma 3.1[2℄;[12℄;[13℄. For the intergrid transfer operator Eh(EH) de�ned in x2, wehave 8>>>>><>>>>>: 2Xi=0 hijv �Ehvji;K � Ch2jvj2; ~K ; v 2 V h; K 2 Th;2Xi=0Hijv �EHvji;e � CH2jvj2;~e; e 2 TH ; v 2 V H : (3.2)Here and in the following ~K is the union of all elements in Th, ea
h of whi
h has a
ommon edge (or vertex) with K, ~e is de�ned in the same way, and C(with or without



620 J.G. HUANGsubs
ript) denotes a generi
 
onstant independent of H and h, it may be di�erent indi�erent pla
es.Lemma 3.2[2℄;[4℄. For the operator Ih, the following estimate holds:3Xi=0 hijv � Ihvji;K � Ch3jvj3;K ; v 2 H3(K):Lemma 3.3. Let E be a 
oarse triangle in f
igmi=1, ARh(E) � ARhjE. Then forany v 2 ARh(E), jvj20;1;E � C[(1 + log Hh )jvj21;E +H�2jvj20;E ℄: (3.3)If there exists some point q 2 E su
h that v(q) = 0, then the lower term in the aboveestimate 
an be 
an
elled. Result (3.3) also holds for v repla
ed by �iv.The proof 
an be given by the arguments similar to those employed in the derivationof the Lemma 3.5 in [1℄.Lemma 3.4. Let E be any 
oarse triangle in f
ig mi=1, with Ek; Eij, i; j; k 2 f1; 2; 3gas its verti
es and edges respe
tively. Assume v 2 V h(E) to be dis
rete ah;E-biharmoni
,i.e. ah;E(v; w) = 0; w 2 V h0 (E):Furthermore, the nodal parameters of v are zero on E23 and E13(in
luding endpointsof the two edges). As in x2, we introdu
e a spe
ial intergrid transfer operator �Eh :V h(E)! ARh(E) su
h that for p 2 E12(whi
h is looked upon as an open set), ep 2 E12;for p 2 �E n E12, ep 2 �E nE12. Then we have the following estimates:ah;E(v; v) � C2[k�� �Ehvk2H1=200 (E12) + k�n �Ehvk2H1=200 (E12)℄;C1[k�� �Ehvk2H1=200 (E12) + k�n �Ehvk2H1=200 (E12)℄ � ah;E(v; v);where � is the unit tangent dire
tion along E12, and k:kH1=200 (E12) is the half norm[1℄;[10℄de�nedbykwk2H1=200 (
) � Z
 Z
 j(w(x) � w(y)j2jx� yj2 ds(x)ds(y) + Z
(w(x))2( 1jx� b1j + 1jx� b2j)ds(x);where bi, i = 1; 2, are the two endpoints of the line segment 
 respe
tively, s(x) denotesthe dis
 length parameter along 
. In other words, the above estimates state that theenergy of the dis
rete ah;E-biharmoni
 fun
tion is equivalent to the related norms forthe boundary terms.Proof. After the proper 
hoi
e of the intergrid transfer operator �Eh, the proof of theabove inequalities are formal in some sense[1℄;[9℄, here, for 
ompleteness of this paper,



On the Domain De
omposition Method for Morley Element... 621we will present a somewhat detailed dedu
tion, please see also similar results given in[8℄,[12℄ and [13℄. Without loss of generality, assume that diam(E) � minx;y2E jx� yj =1; results for general 
ase 
an be obtained by the s
ale transformation x = diam(E)x̂and standard s
aling argument. Let us �rst 
onsider the proof of the �rst inequalityin the Lemma 3.4. It is 
lear from the 
onstru
tion of the interpolation operator �Ehthat ~vjE12 2 H5=200 (E12), ~vj�EnE12 = 0; (�n~v)jE12 2 H3=200 (E12) and (�n~v)j�EnE12 = 0,here ~v � �Ehv; and as usual for any fun
tion w and any point set B, wjB means therestri
tion of the fun
tion w on B, and meanwhile, H5=200 (E12) and H3=200 (E12) denote the
onventional fra
tional order Sobolev spa
es, please see e.g. [7℄, [10℄ for details. Thus,from the tra
e theory on polygonal domain[7℄, we 
an �nd some fun
tion ~~v 2 H3(E)su
h that ~~vj�E = ~vj�E , (�n~~v)j�E = (�n~v)j�E andk~~vk3;E � C[k~vkH5=200 (E12) + k�n~vkH3=200 (E12)℄: (3.4)We next introdu
e the following auxiliary problem:8>><>>:�2w = 0; (E);wj�E = ~vj�E;(�nw)j�E = (�n~v)j�E : (3.5)Thus, thanks to (3.4) and the fundamental result that �2 is an isomorphism fromH3(E) \ H20 (E) onto H�1(E) when E is a 
onvex polygonal domain, we easily havethat problem (3.5) has a unique weak solution w 2 H3(E) and that the followingestimate holds: kwk3;E � C[k~vkH5=200 (E12) + k�n~vkH3=200 (E12)℄: (3.6)Pay attention to the fa
t that v is just the Morley element approximate solution of(3.5), then by the well-known error estimates for Morley element[8℄;[11℄ we obtain thatjw � vj2;h;E � Chjwj3;E : (3.7)Therefore, from (3.6), (3.7) and the inverse inequalities we see thatah;E(v; v) �C[jv � wj22;h;E + jwj22;E ℄�C[h2(k~vk2H5=200 (E12) + k�n~vk2H3=200 (E12)) + jwj22;E ℄�C[k~vk2H3=200 (E12) + k�n~vk2H1=200 (E12) + jwj22;E ℄: (3.8)Note also that from the minimal potential prin
iple, w(solution of (3.5)) is the uniquesolution of the following variational problem:J(w) = min�w2W J( �w); (3.9)



622 J.G. HUANGwhereW � f �w 2 H2(E) : �wj�E = ~vj�E ; (�n �w)j�E = (�n~v)j�Eg and J( �w) � 12ah;E( �w; �w):On the other hand, from the tra
e theory on polygonal domain[7℄ there exists some~w 2 H2(E) su
h that ~wj�E = ~vj�E , (�n ~w)j�E = (�n~v)j�E andk ~wk2;E � C[k~vkH3=200 (E12) + k�n~vkH1=200 (E12)℄: (3.10)Consequently, from (1.3), (3.9) and (3.10) we knowjwj22;E �Cah;E(w;w) � Cah;E( ~w; ~w) � Ck ~wk22;E�C[k~vk2H3=200 (E12) + k�n~vk2H1=200 (E12)℄: (3.11)Therefore, 
ombining (3.8) and (3.11) we a
hieve the �rst inequality in the Lemma 3.4.Now we pro
eed with the demonstration of the se
ond inequality in the Lemma3.4. It follows from the tra
e theory on polygonal domain [7℄, generalized Poin
areinequality [10℄;[14℄ and the Lemma 3.1 that[k�� ~vk2H1=200 (E12) + k�n~vk2H1=200 (E12)℄ �Ck~vk22;E � Cj~vj22;E�Cjvj22;E � Cah;E(v; v):The desired result then follows in the last.We also want to borrow the following important result:Lemma 3.5[2℄. For the two-level additive S
hwarz pre
onditioned problem(2.6) thefollowing estimate holds:Cond2(BAh) � �max(BAh)=�min(BAh) � C�;where � is a generi
 
onstant su
h that, for any v 2 V h0 , there exist v0 2 V H0 , vij 2 V hij ,su
h that, v = IhHv0 +P(i;j)2S vij, andaH(v0; v0) + X(i;j)2S ah(vij ; vij) � C�ah(v; v):After the above preparations, now we 
an verify the following main theorem:Theorem 3.6. For the pre
onditioned problem (2.6), we haveCond2(BAh) � C(1 + log Hh )2:That is to say the 
ondition number of the problem (2.6) is quasi-optimal.Proof. A

ording to the Lemma3.5 it suÆ
es to bound the 
orresponding 
onstant� in more details. For any v 2 V h0 , we 
hoose v0 = IHEhv; the 
onstru
tion of vij is
ompli
ated 
omparatively. Without loss of generality, we 
onsider a 
oarse triangle ein f
igmi=1, whi
h has three adja
ent 
oarse triangles feig3i=1.
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omposition Method for Morley Element... 623Obviously, the de
omposition fun
tions on the subdomains (e [ ei)0, when restri
tedon e, should satisfy that 1. the sum is �v � v� IhHv0 (Note that �v is zero at ea
h vertexof e); 2. they satisfy the support restri
tion 
onditions. These are also the suÆ
ient
onditions. Thus we �rst de
ompose the fun
tion �vje into the following three fun
tionson e, whi
h are asso
iated with the three edges of e respe
tively:8>><>>: ah;e(ve[ei ; w) = 0; w 2 V h0 (e);ve[ei(p) = �v(p); p 2 
i
i+1; or 0; for other 
ases;�nve[ei(m) = �n�v(m); m 2 
i
i+1; or 0; for other 
ases; (3.12a)ve[e3 = �v � ve[e1 � ve[e2 : (3.12b)Here, 
i, i = 1; 2; 3; denote the three verti
es of e respe
tively, and 
i
i+1 representsthe edge of e 
onne
ting 
i and 
i+1, and for simpli
ity of exposition we have alsoused the re
ursive index 
onvention, e.g., 4 = 1: Obviously, there is 
ertain freedomof 
onstru
tion, e.g. we 
an also 
hoose ve[e2 , ve[e3 to be dis
rete ah;e-biharmoni
and ve[e1 is then 
onstru
ted as (3.12b) similarly. It should be pointed out that ife is a boundary element of 
, then the de
omposition fun
tion asso
iated with theedge belonging to the boundary �
 should be dis
rete ah;e-biharmoni
 fun
tion, at thistime, this fun
tion is just the zero fun
tion. Noti
e also that ve[ei denotes the relatedde
omposition fun
tion on e, whi
h is asso
iated with the 
ommon edge of e and ei.Furthermore, we 
an get the global de
omposition fun
tions by pat
hing together thoserelated lo
al fun
tions in a proper way to ensure the 
ontinuity restri
tions. As a matterof fa
t, if (i; j) 2 S, then we 
an de�ne vij � f v
i[
j ; on �
i;v
j[
i ; on �
j: It is 
lear from the above
onstru
tion that these fun
tions satisfy the above restri
tion 
onditions.Thus, in order to bound �, it suÆ
es to give the estimates of aH(v0; v0), ah;e(ve[e1 ; ve[e1);ah;e(ve[e2 ; ve[e2). We �rst 
onsider the term aH(v0; v0). In fa
t, from (1.3) and s
alingargument we have that8>>>><>>>>: aH(v0; v0) � Cjv0j22;H;
 = C( Xe2TH jv0j22;e)1=2;jv0j22;e � C 3Xi=1 j�n(v0 � I1v0)(mi)j2; (3.13)where I1 is the 
onventional pie
ewise linear 
onforming interpolation operator on the
oarse triangulation TH , and mi, i = 1; 2; 3; denote the edge midpoints of e. Then, bythe maximum norm estimates of the Lemma 3.3, and note that �n(v0 � I1v0)(mi) =



624 J.G. HUANG�n( Ehv � I1Ehv)(mi), we know3Xi=1 j�n(v0 � I1v0)(mi)j2 �C[(1 + log Hh )jw � I1wj22;e +H�2jw � I1wj21;e℄� C(1 + log Hh )jwj22;e;here and hen
eforth, w � Ehv.Therefore, it follows from the Lemma3.1 thataH(v0; v0) � C(1 + log Hh )jEhvj22;
 � C(1 + log Hh )jvj22;h;
 (3.14)and ah;e(�v; �v) � C[jvj22;h;e + jIhHv0j22;h;e℄ � C[jvj22;h;e + jv0j22;~e℄: (3.15)Se
ondly, for the term ah;e(ve[e1 ; ve[e1), it follows from the Lemma3.4 thatah;e(ve[e1 ; ve[e1) � C[k�� �Eh�vk2H1=200 (
1
2) + k�n �Eh�vk2H1=200 (
1
2)℄: (3.16)For the sake of brevity, we might as well put 
1
2 = [0;H℄�f0g, Z � �Eh�v, and Z(x1,0)is denoted by Z(x1). Thenk�� �Eh�vk2H1=200 (
1
2) = Z H0 [ 1x1+ 1H � x1 ℄j��Zj2dx1+Z H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1:Thinking of the symmetry, it suÆ
es to bound RH0 j��Zj2x1 dx1 andZ H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1:From the tra
e theorem, we easily haveZ H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1 � Cj �Eh�vj22;e � Cj�vj22;h;e: (3.17)On the other hand, Z 2 H20 (
1
2), applying the standard te
hnique as in [1℄, [9℄, wesee Z H0 j��Zj2x1 dx1 � C(1 + log Hh )j��Zj20;1;
1
2 � C(1 + log Hh )2j�vj22;h;e: (3.18)Now we pro
eed to atta
k the estimate of the se
ond term in (3.16). Note that �nZ2 H10 (
1
2), utilizing the similar dedu
tion as above, we knowZ H0 j�nZj2x1 dx1 � C(1 + log Hh )j�nZj20;1;
1
2 � C(1 + log Hh )2j�vj22;h;e; (3.19)
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omposition Method for Morley Element... 625and Z H0 Z H0 j�nZ(x1)� �nZ(y1)j2jx1 � y1j2 dx1dy1 � Cj�vj22;h;e: (3.20)The estimate of ah;e(ve[e2 ; ve[e2) 
an be a
hieved in the same manners. Consequently,from (3.12)-(3.20) and the quasi-uniformity and the regularity of the triangulations Thand TH , we haveaH(v0; v0) + X(i;j)2S ah(vij ; vij) � C(1 + log Hh )2jvj22;h;
 � C(1 + log Hh )2ah(v; v):Theorem 3.6 then follows in the last.4. From Weak Overlap to NonoverlapWe shall �rst give the matrix des
ription of the pre
onditioned problem (2.6) inorder to understand it more intuitively and make out the 
on
rete stru
ture of the in-du
ed pre
onditioner. Let 
̂, with element number j
̂j, be the interior nodal parameterset of the Morley element, on whi
h we de�ne a proper order; the point set 
̂ij � 
ij,with element number j
̂ijj, is de�ned as above similarly, on whi
h there exists the sameorder as that on 
̂. Here, for (i; j) 2 S, 
ij is the quadrilateral formed by 
i and
j. We denote by f�ig the shape basis fun
tions of V h0 a

ording to the above order,and �Ah and �Aij are the related sti�ness matri
es for the original and the indu
ed lo
alproblems, i.e., �Ah � (ah(�i; �j))i;j2
̂, �Aij � (ah(�k; �l))k;l2
̂ij . We next introdu
e thefollowing extension operator Eij for (i; j) 2 S:8<:Eij : Rj
̂ij j ! Rj
̂j; for arbitrary v 2 Rj
̂ij j;Eijv(k) = v(k); k 2 
̂ij; 0; otherwise: (4.1)That is to say Eij is an extension operator whi
h, keeping its original order, transfersa lo
al expression to the related global one. For the 
oarse triangulation TH , 
̂H andet
. are de�ned in the same way. Here and hen
eforth, all de�nitions for Th 
an also be
onverted for TH . Let Dh denote the matrix des
ription of (�; �)h, i.e., for v, w 2 V h0 ,whi
h have the nodal parameters x, y 2 Rj
̂j respe
tively, the following equality holds:(v; w)h = [Dhx; y℄;where [�; �℄ is the eu
lidean natural inner produ
t. Obviously, Dh is a diagonal matrix.We also denote by �IhH the matrix des
ription of IhH , i.e., for v 2 V H0 with the nodalparameters x 2 Rj
̂H j, the nodal parameters of IhHv is just �IhH x 2 Rj
̂j; �IHh is de�nedsimilarly. Then, from their de�nitions in (2.5), we get �I Hh = D�1H (�IhH )t Dh, heret means the transpose operation. In the same way, we 
an also see that the matrix
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ription of Ah is D�1h �Ah and the related des
ription of �A�1ij QijAh = Pij is Eij �A�1ijEtij . Hen
e, we know the matrix des
ription of (2.6) is8><>: �B1 � �IhH �A�1H (�IhH)t + X(i;j)2SEij �A�1ij Etij ;�B1 �Ah�u = �B1 �f; (4.2)here �u is the nodal parameters of uh, and �f denotes the ve
tor with the 
omponents(f; �i), i 2 
̂. Thus, the pre
onditioner is �B1. After that, we pro
eed to simplifythis pre
onditioner by substituting some spe
trally equivalent matri
es for �A�1H and�A�1ij . Suppose v 2 V H0 , with nodal parameters y 2 Rj
̂H j. Then from the proof of theTheorem3.6, we see[ �AHy; y℄ = aH(v; v) � Xe2TH 3Xi=1 j�n(v � I1v)(mi)j2 � [ �~AHy; y℄:Hen
e, �AH is spe
trally equivalent to �~AH . Here and from now on, f � g means thatthere exist two 
onstants C1 and C2 independent of H and h su
h that C1g � f � C2g.In pra
ti
e, we do not 
hange �AH for �~AH so as to keep the 
onvenien
e of program
ompiling. In order to dis
uss the other terms, we �rst give several de�nitions. Let �ij =(�
i\�
j)0(open set) denote the 
ommon edge of 
i and 
j. Then 
̂i, �̂ij are de�nedas before, Ei is the extension operator from 
̂i to 
̂, and E�ij is the extension operatorfrom �̂ij to 
̂, they both are de�ned by (4.1) similarly. Moreover, �Ai denotes thesti�ness matrix on 
i, i.e., �Ai � (ah;
i(�k; �l))k;l2
̂i ; �Ai;ij � (ah;
i(�k; �l))k2
̂i;l2�̂ij .Then, noting that �Aij is the lo
al sti�ness matrix in 
ij, by the Lemma3.4 and thestandard dedu
tion for two-subregions domain de
omposition method, we get to know�Aij is spe
trally equivalent to �~Aij = 264 �Ai 0 �Ai;ij0 �Aj �Aj;ij�Ati;ij �Atj;ij Wij 375, whereWij � �Bij + �Ati;ij �A�1i �Ai;ij + �Atj;ij �A�1j �Aj;ij;and �Bij is de�ned by[ �Bijy; y℄ � k�� ( �Ehv)k2H1=200 (�ij ) + k�n( �Ehv)k2H1=200 (�ij );for any v 2 V hij ; whi
h is dis
rete biharmoni
 in 
i and 
j , and has nodal parametersy in �ij. The 
onstru
tion of �Bij is similar to that in [1℄.Therefore, we a
hieve the following spe
trally equivalent pre
onditioner for �B1:�B2 � �IhH �A�1H �IHh + X(i;j)2SEij �~A�1ij Etij :
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t 
omputation, we easily have, for x 2 Rj
̂j, [ �B2x;x℄ is equivalent to[�IhH �A�1H �IHh x; x℄ + MXi=1[Ei �A�1i Etix; x℄ + X(i;j)2S[ �B�1ij yij; yij℄;where yij � (Et�ij � �Ati;ij �A�1i Eti � �Atj;ij �A�1j Etj)x � Zijx. Thus, in other words, �B1 isspe
trally equivalent to�B � �IhH �A�1H �IHh + MXi=1Ei �A�1i Eti + X(i;j)2SZtijB�1ij Zij: (4.3)Consequently, the following theorem holds 
learly:Theorem 4.1. For the nonoverlapping pre
onditioner �B de�ned by (4.3), the fol-lowing estimate holds: Cond2( �BAh) � C(1 + log Hh )2:Finally, we give a remark on the 
omputation of �Bx, whi
h is the main work for ea
hiteration of the PCG algorithm, i.e., we 
an �rst 
ompute �A�1i Etix, i = 1; � � � ;M , andthen use these information for the 
omputation of Zijx.A
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