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Abstract

In this paper, following our original ideas!!, we first consider a weakly overlap-
ping additive Schwarz preconditioner according to the framework of [2] for Morley
element and show that its condition number is quasi-optimal; we then analyze in
detail the structure of this preconditioner, and after proper choices of the inexact
solvers, we obtain a quasi-optimal nonoverlapping domain decomposition precondi-
tioner in the last. Compared with [12], [13], it seems that according to this paper’s
procedure we can make out more thoroughly the relationship between overlapping
and nonoverlapping domain decomposition methods for nonconforming plate ele-
ments, and certainly, we have also proposed another formal and simple strategy to
construct nonoverlapping domain decomposition preconditioners for nonconform-

ing plate elements.
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1. Introduction

We consider, for simplicity, the following clamped plate bending problem:

{A%u:ﬁ (), 1)
u = Opu =0, (092), .

where € is a plane polygonal domain and n denotes the unit outward normal along the

boundary 02. The related variational form is
weV =HZQ),
{ 2@) )
a(u,v) = (f,v), weV,

where a(u,v) = [o[AuAv + (1 — v)(2012ubi2v — O11udxpv — Opudnv)lde, (f,v) =
Jo fvdz, v € (0,0.5) is the Poisson ratio. Clearly, the above bilinear form a(-, -) satisfies

* Received September 24, 1996.
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the boundedness and coercivity estimates:

{ a(v,w)] < L+ v)vloglwlage,  v,we HA(Q), (13)

a(v,0) = (L-v)lofyg.  ve H(Q).

Throughout this paper we adopt the standard conventions for Sobolev norms and semi-

norms of a function v defined on an open set G:

1ol = ( /G S (0% 2dz)?,

la]<m
g = ([ 3 0v0Pda)
G |a|=m
| m,00,g = max ”aaUHLOO(G)-

laj=m

We shall also denote the space of polynomials of degree less than or equal to [ on
G by P(G).

Let Q = U KeThK be a quasi-uniform and regular triangulation of Q4. the diameter
size of which is denoted by h, here each K € T}, is an open triangle. On this triangulation
we construct the so-called Morley element!*:[1]:

Vh = {v:v|g € Py(K), v(respectively, d,v) is continuous at each vertex

p of K(respectively, each edge midpoint m of K), V K € Tj},

Vi={veVh: vp)=0, ped, du(m)=0, med}. (1.4)

Here and henceforth, p and m (with or without subscript) represent a vertex and an
edge midpoint of the elements in T}, respectively. Then, based on (1.4), the discrete

problem of (1.2) reads as follows:

{ah(Uh,'Uh) = (favh)v Up € Voh’ (1.5)

Up € Voh,

where ap(v,w) =3 keq, [[AvAw + (1 — v)(20120012w — O11v022w — Opvd11w)]d.
It is well-known that the PCG is a proper method to solve (1.5), and the core step
is how to design a well-preconditioned and easily invertible in parallel preconditioner,
since the condition number of the discrete system (1.5) is O(h~*). In [2], S.C.Brenner
proposed a two-level additive Schwarz preconditioner for nonconforming plate elements;
the main ingredient is the construction of proper intergrid transfer operators which
build important bridges among nonconforming elements and their conforming relatives,
and thus the difficulty that subspaces are not nested for nonconforming element case

was overcome successfully. In [8], J.Gu and X.Hu presented some extension theorems
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for nonconforming plate elements with applications to two-subregions domain decom-
position method, but their results can not show the equivalence between the energy of
the discrete biharmonic function and the norm of its related boundary terms, which is
crucial to the construction of nonoverlapping domain decomposition method for many
subregions case. In [12], [13], using a modified intergrid transfer operator induced by
[2] and the continuity of the Morley element, Z.Shi and Z.Xie obtained the extension
theorems of that kind, they then followed the ideas of J.H.Bramble et allll and achieved

a quasi-optimal nonoverlapping domain decomposition preconditioner.

In this paper, following our original ideasl®), we first consider a weakly overlapping
additive Schwarz preconditioner according to the framework of [2] for Morley element
and show that its condition number is quasi-optimal, equal to O((1+1log 2£)?), where H,
h denote the diameters of the coarse and the finite element triangulations respectively;
we then analyze in detail the structure of this preconditioner, and after proper choices
of the inexact solvers, we also obtain a quasi-optimal nonoverlapping domain decompo-
sition preconditioner in the last. Compared with [12], [13], it seems that according to
this paper’s procedure we can make out more thoroughly the relationship between over-
lapping and nonoverlapping domain decomposition methods for nonconforming plate
elements, and certainly, we have also given another formal and simple strategy to con-
struct nonoverlapping domain decomposition preconditioners for nonconforming plate

elements.
2. Algorithm Descriptions

In order to present the weakly overlapping domain decomposition preconditioner for
(1.5), we need, at first, give an arbitrary coarse triangulation of Q, Ty = {Q;},, which
is quasi-uniform and regular with the diameter size H, here each (); is a coarse open
triangle. As usual, we assume that 0€); is aligned with the finite element triangulation
Ty, BLOl. On this coarse triangulation, ay(-,-), V¥ (V") are defined as before. For
the purpose of global communication among the local subspaces, which is necessary
for a good preconditioner, we next introduce some intergrid transfer operators and
some interpolation operators. Let AR" denote the Argyris element associated with the
triangulation T},, which is defined below: For any v € AR", v|x € P5(K), and it has
the degrees of freedom { 8%v(p;), |a| < 2; dpv(m;) } HHI

121031 45 follows, which

We then construct an intergrid transfer operator Ej, [2I
builds an important bridge between the nonconforming element space V" and its con-
forming relative AR". For arbitrary vertex p of T},, we assign to it one of its adjacent
edge midpoint e,; we want that, if p € U, 0€); \ 0Q (respectively, 0€2), e, should also

belong to U™ ,0€; \ 0N (respectively, 0€2). Obviously, there is certain freedom for the
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choice of e,. After that, for any v € V" Eyv € AR" is defined by

Ehv(p) = U(p), Vvertex b,

8aEhv(p) =0, ‘O[| =2, (2 1)
OnEpv(m) = 0pv(m), Vmidpoint m, .

9 Epv(p) = div(ep), =12
The main ingredient of this construction is that for v € V", the slope of v, i.e. 9v,

i = 1,2, is continuous at any edge midpoint m. For the coarse spaces VH, ARY the

operator B : V1 — AR is defined in the same manner. We next denote by I the

conventional interpolation operator from C'(Q) onto V* 4. Now we can define an
intergrid transfer operator I% : VI — V' as
I =I,Egv, wveVH. (2.2)

Clearly, for v € Vi, I v € V. To apply the abstract framework of [2], we proceed to
construct some weakly overlapping subspaces. For arbitrary i, j € {1,2,---, M}, i # j,
we denote (i,7) € S if Q; and Q; have a common edge. For arbitrary (i,j) € S, we

introduce the following subspace:
Vl]; = {v € V" : nodal parameters of v are zero outside (£; U )%}

and the related orthogonal projection operator:

ap(Pijv,w) = ap(v, w), veV, weVh

Y
P"’U c Lh
2] 15

here, as usual for any point set B, B and B° denote its closure and interior point set

respectively.

Then we have a space decomposition of VUh:
Vo =TIVt + > vl (2.3)
(i,j)€S
Asin [2], let (.,.), and (.,.)y denote the discrete inner products on V{* and V' respec-
tively, i.e., Yo, w € V{,
(v, w)p = h* D v(p)w(p) +h428nv(m)8nw(m), (2.4)
P m

where the summation are taken over all vertices p and midpoints m of the triangulation

T}; the inner product (.,.)m is defined in the same way. Furthermore, we define Ay, :
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Vit = Vi Ay Vi VD

197 AH : VOH - VOH7 If{] : VOh _>‘/UH and Qij : ‘/Uh — ‘/l? b

(((Apv, w)), = ap(v, w), v, weVh

(Ajjv,w)p = ap(v, w), v, wE VZ;L,

(Agv,w)y = ay(v,w), v, weV, (2.5)
(o, w) g = (v, Ihw)y, ve Ve, weVy.

(Qijv, w)p = (v, w)p, veVl, we VZ;’

Then, based on (2.3), we have the following two-level additive Schwarz preconditioned

problem:
B=I5ALL + Y A;'Qy,
(id)es (2.6)
BApup = By,
where f;, € VJ and (f,v) = (fn,v)n, Yo € V.
We call (2.6) the weakly overlapping domain decomposition method for (1.5).

3. Estimates of the Condition Number

To begin with, we give some standard conventions. Let G C ) be any open subset
aligned with the finite element triangulation 7;,. Then we define that V"(G) = V"|q,
VIMG) = {v € V(G), v(p) = Opv(m) =0, v, m € G}, and
(ollene=C > lvlix)'?  veVia),

KeT,NG

= ( Z ‘U%K

KeTpNG

ap, G(’U w) = Z / AvAw + (1 — I/) (2812’1)812’11) — 011v0w — ngvanw)]d
\ KeT,NnG

)2 wevhia),

(3.1)

Note that in order to make the following interpretation more conveniently we also apply
the above definition for v € H?(G).

To go on with the analysis of the condition number of (2.6), we next recall some
known results.

Lemma 3.1202:03] For the intergrid transfer operator EL(Ey) defined in §2, we

have )
Zhi|v — Epvli g < ChQ\v\Q’f(, veV" KeTy,
) (3.2)
ZHi\v—Eth,e SCHQ"U‘Q’é, ecTy, veVH.
i=0

Here and in the following K is the union of all elements in T, each of which has a

common edge (or vertex) with K, € is defined in the same way, and C(with or without
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subscript) denotes a generic constant independent of H and h, it may be different in
different places.
Lemma 3.212:4 For the operator I, the following estimate holds:

3
Zhi|U—IhU‘i,K§0h3‘U‘37K, ’UEH3(K).
=0
Lemma 3.3. Let E be a coarse triangle in {Q;}", ARh(E) = ARh\E. Then for
any v € ARME),

H .
[0[6 00, < C[(1 +log 7)|U|%,E +HJoff ). (3.3)

If there exists some point ¢ € E such that v(q) = 0, then the lower term in the above
estimate can be cancelled. Result (3.3) also holds for v replaced by O;v.

The proof can be given by the arguments similar to those employed in the derivation
of the Lemma 3.5 in [1].

Lemma 3.4. Let E be any coarse triangle in {$2;} ", with Ey, Fyj, 1,5,k € {1,2,3}
as its vertices and edges respectively. Assume v € V'(E) to be discrete ap,g-biharmonic,
i.e.

ap, (v, w) =0, w e VHME).
Furthermore, the nodal parameters of v are zero on Esg and Ey3(including endpoints
of the two edges). As in §2, we introduce a special intergrid transfer operator Ej :

VH(E) — AR"(E) such that for p € Eyo(which is looked upon as an open set), e, € Eyy;
forp € OE \ Eig, e, € OE \ E13. Then we have the following estimates:

ah,E(/va) S CQ[HaTEhUHi{ééQ(El?) + ||8nEhv||§{éé2(E12)]’

I 2 I 2
CrllOr B 2+ 100 B0z ] < an,i(0,0),

where T is the unit tangent direction along E19, and H.HHI/Q is the half norm"- "0 defined
00

by

w\r) —w 2
ey = [ [ D@t + [ i) (2 + (o)

|z —y[? Y jz =b1| [z — b

(E12)

where b, 1 = 1,2, are the two endpoints of the line segment «y respectively, s(z) denotes
the disc length parameter along ~y. In other words, the above estimates state that the
energy of the discrete ap p-biharmonic function is equivalent to the related norms for
the boundary terms.

Proof. After the proper choice of the intergrid transfer operator £),, the proof of the

above inequalities are formal in some sensel’:%, here, for completeness of this paper,
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we will present a somewhat detailed deduction, please see also similar results given in
[8],[12] and [13]. Without loss of generality, assume that diam(F) = min, ycp |z —y| =
1; results for general case can be obtained by the scale transformation z = diam(FE)z
and standard scaling argument. Let us first consider the proof of the first inequality
in the Lemma 3.4. It is clear from the construction of the interpolation operator Ej,
that |p,, € Hoy (Fr2), olop\m, = 0, (8u0)|m, € Hop' (Erz) and (9,0)lam s, = 0,
here o = Fjv, and as usual for any function w and any point set B, w|p means the
restriction of the function w on B, and meanwhile, Hgé2(E12) and HgéQ(En) denote the
conventional fractional order Sobolev spaces, please see e.g. [7], [10] for details. Thus,
from the trace theory on polygonal domain!”, we can find some function v € H*(E)

such that o|pg = 9|z, (On0)|ar = (On®)|sr and
I35, < CTIN g2 gy + 100272 ) (34)
We next introduce the following auxiliary problem:
A*w =0, (E),
wlop = U|ow, (3.5)
(Onw)|or = (OnD)]op-

Thus, thanks to (3.4) and the fundamental result that A? is an isomorphism from
H3(FE) N HE(E) onto H '(E) when E is a convex polygonal domain, we easily have
that problem (3.5) has a unique weak solution w € H?(E) and that the following
estimate holds:

il < ClElL 372 g,y + 100l a2, (36)

Pay attention to the fact that v is just the Morley element approximate solution of

(3.5), then by the well-known error estimates for Morley element/®:'!] we obtain that
|lw —v|onr < Chlw|s k. (3.7)
Therefore, from (3.6), (3.7) and the inverse inequalities we see that
an,i(v,v) <C[lv — w\%,h,E + |w %,E]
SO0l + 1000 )+ Tl 3.

IN

~ 112 -2 2
C[HUHH%?(EQ) + ||‘9"””H;g2(E12) + |w|2,E]-

Note also that from the minimal potential principle, w(solution of (3.5)) is the unique

solution of the following variational problem:

J(w) = gélvril/ J(w), (3.9)
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where W = {w € H*(E) : w|or = 9|or, (0n0)|or = (0nD)|sr} and J(w) = ap p(w, w).
On the other hand, from the trace theory on polygonal domain!”! there exists some
w € H?(E) such that @|sp = 0|og, (0,0)|sr = (0,0)|sr and

I < CU g gy + 1007 g3 (3.10)
Consequently, from (1.3), (3.9) and (3.10) we know

w3, <Cap,p(w,w) < Cap,p (i, w) < Cllo]f3 G
3.11
<ClIo)? 5. b)12 ). :

_C[”UHH%Z(EM) + ||8TLIU||HS[<Z(E12)]

Therefore, combining (3.8) and (3.11) we achieve the first inequality in the Lemma 3.4.

Now we proceed with the demonstration of the second inequality in the Lemma
3.4. Tt follows from the trace theory on polygonal domain (7, generalized Poincare
inequality 1914 and the Lemma 3.1 that

~112 ~112 ~112 ~12
[||37U||H362(E12) + ||anv||H362(E12)] <Clloll3,r < Clola.m
<C[3 p < Capp(v,v).

The desired result then follows in the last.
We also want to borrow the following important result:
Lemma 3.52. For the two-level additive Schwarz preconditioned problem(2.6) the

following estimate holds:
COTLdQ(BAh) = )\ma’[(BAh)/)‘mzn(BAh) S Cﬁ,
where B is a generic constant such that, for any v € Voh, there exist vy € V{H, v € %4

K
such that, v = Ihvg + . (ij)es Vi, and

ag(vo,v0) + Y an(vig, vi) < CPap(v,v).
(i.5)es
After the above preparations, now we can verify the following main theorem:

Theorem 3.6. For the preconditioned problem (2.6), we have
H.,
Condy(BAy) < C(1+ log F) .

That is to say the condition number of the problem (2.6) is quasi-optimal.

Proof. According to the Lemmad.5 it suffices to bound the corresponding constant
(G in more details. For any v € Voh, we choose vy = Iy Epv; the construction of v;; is
complicated comparatively. Without loss of generality, we consider a coarse triangle e

in {€;}™, which has three adjacent coarse triangles {e;}?_;.
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Obviously, the decomposition functions on the subdomains (eUe¢;)", when restricted
on e, should satisfy that 1. the sum is ¥ = v — I"yvy (Note that © is zero at each vertex
of €); 2. they satisfy the support restriction conditions. These are also the sufficient
conditions. Thus we first decompose the function v/, into the following three functions

on e, which are associated with the three edges of e respectively:

ah,e(veUeiaw) = 07 w € VOh(e)a
veue; (D) = U(p), P € Yivit1; or 0, for other cases, (3.12a)

Onveue, (m) = Opo(m), m € yyi41; or 0, for other cases,

VeUes = U — VeUe; — Veles- (312b)

Here, v;, ¢ = 1,2,3, denote the three vertices of e respectively, and ~y;7y;41 represents
the edge of e connecting 7; and ~;51, and for simplicity of exposition we have also
used the recursive index convention, e.g., 4 = 1. Obviously, there is certain freedom
of construction, e.g. we can also choose Veye,, Veue, to be discrete ay o-biharmonic
and veye, is then constructed as (3.12b) similarly. It should be pointed out that if
e is a boundary element of 2, then the decomposition function associated with the
edge belonging to the boundary 9 should be discrete aj, -biharmonic function, at this
time, this function is just the zero function. Notice also that v, denotes the related
decomposition function on e, which is associated with the common edge of e and e;.
Furthermore, we can get the global decomposition functions by patching together those

related local functions in a proper way to ensure the continuity restrictions. As a matter
vo,uQ;, on

_ It is clear from the above
V0, UQ,, On ;.

construction that these functions satisfy the above restriction conditions.

of fact, if (¢,7) € S, then we can define v;; = {

Thus, in order to bound g, it suffices to give the estimates of ar (v, vo), an.e(Veue, : Veue, ),
ah,e(Veles, Veue, )- We first consider the term ap(vg,vp). In fact, from (1.3) and scaling

argument we have that

an (vo,v0) < Clogl3 o = C( Y |volse)'/?,
ecTy

3 (3.13)
wo[3,. < C [0 (vg — T1vg) ()],

i=1

where I; is the conventional piecewise linear conforming interpolation operator on the
coarse triangulation Ty, and m;, ¢ = 1,2, 3, denote the edge midpoints of e. Then, by

the maximum norm estimates of the Lemma 3.3, and note that 9, (vg — Ivg)(m;) =
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On( Epv — I Epv)(m;), we know
> H
> 10 (vo — Iiwg) (my)|* <C[(1 + log 5w = Lwl3,+H ?lw—Lwl ]
i=1
H
< C(1+1og 3l
here and henceforth, w = Ejv.

Therefore, it follows from the Lemmad.1 that

H
ag (vo,v0) < C(1 + log — )\Ehv|2n < C(1+ log — )|U|2hQ (3.14)

and

ape(0,0) < C[|U|g,h,e

sne) < Cllvfpe + lvolsél- (3.15)
Secondly, for the term ay, (Veue,  Veue, ), it follows from the Lemma3.4 that

ah,e(veUel s 'UeUel) < C[”aTE'h’D”ZI/Q
0

OnEnv|? 1. . 3.16
o (ry2) i hUHHééZ(%W)] ( )

For the sake of brevity, we might as well put y;yo = [0, H] x {0}, Z = Eyv, and Z(z1,0)
is denoted by Z(z1). Then

H
0, Eyol|? 1, :/
|| T hU”Hégz(’Yl’)’Q) 0 [

2
Thinking of the symmetry, it suffices to bound fOH %dzl and

Z A 2
/ / 0 2(w) 0. 2P,
|T1 *y1|2

Z( 7z 2
|8 Z‘ dLEl—l—/ / |a £U1 —or (yl)‘ dx1dyy .
[z1 =y ]?

From the trace theorem, we easily have

0. Z(x 0.7 2 - 7
/ / | |;1 = (y1)| dz1dy, < C|Eyol3, < Clo]3 .. (3.17)

On the other hand, Z € HZ(v172), applying the standard technique as in [1], [9], we

see

H.
S C(1+10g 7)2|U|3,h,e' (318)

H a,-ZQ
/[] ‘ ‘ du 1 <C(1—|—10g ) sY172

71

Now we proceed to attack the estimate of the second term in (3.16). Note that 9,2

€ H}(v172), utilizing the similar deduction as above, we know

H| ‘2
/ 2 dzy < C(1+ log — )
Jo h

H. o
, < C+log ) o2, (3.19)
A h
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and

OnZ (x OnZ 2
/ / | ‘;1 m—— WO g, < Clof3.e- (3.20)

The estimate of ah,e(veUeQ, VeUe,) can be achieved in the same manners. Consequently,
from (3.12)-(3.20) and the quasi-uniformity and the regularity of the triangulations 7},

and T, we have

H H
ar(vo,v0) + Y ap(vij,vij) < C(1+log — ) wl3p0 < C(1+log ﬁ) ap(v,v).
(i,7)€S

Theorem 3.6 then follows in the last.

4. From Weak Overlap to Nonoverlap

We shall first give the matrix description of the preconditioned problem (2.6) in
order to understand it more intuitively and make out the concrete structure of the in-
duced preconditioner. Let €2, with element number [Q|, be the interior nodal parameter
set of the Morley element, on which we define a proper order; the point set Qij C Qjj,
with element number \Q¢j|, is defined as above similarly, on which there exists the same
order as that on Q. Here, for (i,5) € S, €2;; is the quadrilateral formed by €2; and
2;. We denote by {¢;} the shape basis functions of Voh according to the above order,
and Ay, and flij are the related stiffness matrices for the original and the induced local
problems, i.e., Ay = (an(¢i 85)); jeqr Aij = (an (k> 1)y geq,,- We next introduce the

following extension operator F;; for (i,7) € S:

E;j Rl R‘m, for arbitrary v € R‘Q”‘,

. (4.1)
Eijju(k) =v(k), k€ 0, otherwise.

That is to say Ej;; is an extension operator which, keeping its original order, transfers
a local expression to the related global one. For the coarse triangulation Ty, Qu and
etc. are defined in the same way. Here and henceforth, all definitions for 7}, can also be
converted for Ty. Let Dj, denote the matrix description of (-,-)p, i.e., for v, w € V!,
which have the nodal parameters z, y € R respectively, the following equality holds:

(Uu w)h - [thay]u

where [+, -] is the euclidean natural inner product. Obviously, Dy, is a diagonal matrix.
We also denote by I}h{ the matrix description of IIh{ , i.e., for v € V! with the nodal
parameters € R‘QH‘, the nodal parameters of IIh{U is just I}h{ T € R‘m; f,{l is defined
similarly. Then, from their definitions in (2.5), we get I 1 = D '(I% )' Dy, here

t means the transpose operation. In the same way, we can also see that the matrix
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description of Ay, is D,;lfih and the related description of A;leijAh = P is Ez-jfi;jl
Efj . Hence, we know the matrix description of (2.6) is
By = IpA I + Y EyAL'EY,
(i.5)€S (4.2)
BiAyu = B f,
here @ is the nodal parameters of uj,, and f denotes the vector with the components
(f,d:), 1 € (). Thus, the preconditioner is By. After that, we proceed to simplify
this preconditioner by substituting some spectrally equivalent matrices for A;Il and
A;jl. Suppose v € Vi, with nodal parameters y € RI®u! Then from the proof of the

Theorem3.6, we see

3 ~
[Any,y] = ag(v,v) = Z Z |On (v — 1'11))(7le')|2 = [Any,y].
e€Ty i=1

Hence, Ay is spectrally equivalent to EH Here and from now on, f = ¢ means that
there exist two constants C; and Cy independent of H and h such that C1g < f < Cayg.
In practice, we do not change Ap for ZH so as to keep the convenience of program
compiling. In order to discuss the other terms, we first give several definitions. Let I';; =
(09 N 99;) (open set) denote the common edge of ; and Q. Then Q;, T;; are defined
as before, F; is the extension operator from fli to Q, and Ep,; is the extension operator
from fij to €, they both are defined by (4.1) similarly. Moreover, A; denotes the

stiffness matrix on €, i.e., A; = (ah’Qi(d)k,d)l))k’leQi, Aiij = (ahyﬂi(d’kvd)l))kefzi,lefij'
Then, noting that A;; is the local stiffness matrix in €;;, by the Lemma3.4 and the

standard deduction for two-subregions domain decomposition method, we get to know

A;; is spectrally equivalent to Aij = 0 Aj Ajii |, where
Ay Ay Wi
Wij = Bij + Aj ;A Ay + Af 1 A A,

and Bij is defined by

[Bijy. yl = [10: (Epv) ot 10 (Erv) |17

2
|| 1/2 1/2
Hob*(T; Hod?(Ti)’

for any v € Vl’;, which is discrete biharmonic in €2; and €2;, and has nodal parameters
y in T;;. The construction of B;; is similar to that in [1].
Therefore, we achieve the following spectrally equivalent preconditioner for Bi:
_ . _ =—1
By=INAL' T + Y EjjA; B
(i.5)€S
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By a direct computation, we easily have, for = € R‘m, [Byz,x] is equivalent to

M
Ui Ay I e, 2] + Y [EA Bl xl + Y (B i vigls
i=1 (i,7)€S

A;lEf — At A-*lE;):r = Z;jz. Thus, in other words, B is

= L Al
where y;; = (Ep, — A; e

9,3

spectrally equivalent to

M
B=IsAL I+ EBATE + > 7B Zy. (4.3)
i=1 (i,7)€S
Consequently, the following theorem holds clearly:
Theorem 4.1. For the nonoverlapping preconditioner B defined by (4.3), the fol-

lowing estimate holds:

Condy(BAp) < C(1 + log %)2

Finally, we give a remark on the computation of Bz, which is the main work for each
iteration of the PCG algorithm, i.e., we can first compute A;lEf:r, 1=1,---,M, and
then use these information for the computation of Z;;z.
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