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CONVERGENCE PROPERTIES OF A MODIFIED BFGSALGORITHM FOR MINIMIZATION WITHARMIJO-GOLDSTEIN STEPLENGTHS�1)Nai-yang Deng Zheng-feng Li(Department of Mathemati
s, Beijing Agri
ultural Engineering University, Beijing 100083,China)Abstra
tThe line sear
h strategy is 
ru
ial for an eÆ
ient un
onstrained optimizationalgorithm. One of the reason why the Wolfe line sear
hes is re
ommended lies inthat it ensures positive de�niteness of BFGS updates. When gradient informationhas to be obtained 
ostly, the Armijo-Goldstein line sear
hes may be preferred. Tomaintain positive di�niteness of BFGS updates based on the Armijo-Goldstein linesear
hes, a slightly modi�ed form of BFGS update is proposed by I.D. Coope andC.J. Pri
e (Journal of Computational Mathemati
s, 13 (1995), 156{160), while its
onvergen
e properties is open up to now. This paper shows that the modi�edBFGS algorithm is globally and superlinearly 
onvergent based on the Armijo-Goldstein line sear
hes.Key words: BFGS methods, Convergen
e, Superlinear 
onvergen
e.1. Introdu
tionAssume that we are �nding the minimizer of the following un
onstrained optimiza-tion problem minx2Rn f(x); (1.1)and assume the 
urrent point is xk. To 
al
ulate xk+1 from xk by a line sear
h method,the following iteration xk+1 = xk + �kpk; k = 1; 2; � � � (1.2)is applied. In the BFGS algorithm the sear
h dire
tion pk is 
hosen so that Bkpk = gk,where gk = rf(xk), the matri
es Bk are de�ned by the update formula re
urrentlyBk+1 = Bk � BksksTkBksTkBksk + ykyTksTk yk (1.3)� Re
eived De
ember 5, 1995.1)Work supported by the National Natural S
ien
e Foundation of China and the Natural S
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eFoundation of Beijing.



646 N.Y. DENG AND Z.F. LIsk = xk+1 � xk (1.4)yk = gk+1 � gk (1.5)It is well known that if B1 is positive de�nite andsTk yk > 0 (1.6)then all matri
es Bk, k = 1; 2; � � �, generated by (1.3) are positive de�nite. One of theline sear
h strategies is the Wolfe line sear
hes whi
h require the steplength �k > 0 tosatisfy the inequalities f(xk + �kpk) � f(xk) + ��kgTk pk (1.7)g(xk + �kpk)T pk � �gTk pk (1.8)where � and � are 
onstants that satisfy 0 < � < � < 1 and � < 1=2. It is easy toshow that 
ondition (1.8) implies thatsTk yk � (� � 1)sTk gk > 0 (1.9)so that the BFGS updating formula 
an be applied with positive de�niteness beingmaintained automati
ally. A disadvantage is that to test 
ondition (1.8) requires anextragradient evaluation at ea
h trial value for �k. When gradient information has tobe obtained 
ostly, the Armijo-Goldstein line sear
hes�2�kpTk gk � f(xk+1)� f(xk) � �1�kpTk gk (1.10)may be preferred, where 0 < �1 < 1=2 < �2 < 1. However, 
ondition (1.10) does notensure that sTk yk > 0. To maintain positive de�niteness of BFGS updates based on theArmijo-Goldstein line sear
hes, a slightly modi�ed form of BFGS update is proposed byI.D. Coope and C.J. Pri
e in [2℄. They require the quadrati
 model, qk(x), interpolatingthe data qk(xk) = f(xk), qk(xk+1) = f(xk+1), and rqk(xk) = gk. Letzk = yk + 2(f(xk+1)� f(xk)� sTk gk)� sTk yksTk sk sk (1.11)Applying the standard BFGS update (1.3), they derive their modi�ed BFGS updatewith zk repla
ing yk Bk+1 = Bk � BksksTkBksTkBksk + zkzTksTk zk (1.12)Noti
e the 
ondition (1.10), we havesTk zk =sTk yk + 2(f(xk+1)� f(xk))� sTk gk)� sTk yk = 2(f(xk+1)� f(xk))� sTk gk)



Convergen
e Properties of a Modi�ed BFGS Algorithm for Minimization ... 647�2(�2 � 1)sTk gk > 0 (1.13)So, positive de�niteness of the update (1.12) is now maintained. Moreover, the updatingformula (1.12) is equivalent to (1.3) when the obje
tive fun
tion is a stri
tly 
onvexquadrati
 fun
tion. Now we are in a position to state formally Coope and Pri
e'sAlgorithm (Algorithm (CP))Algorithm (CP)1Æ Sele
t x1 and a symmetri
 and positive de�nite matrix B1. Set k = 1;2Æ Compuye gk = g(xk) = rf(xk). If kgkk = 0, stop; otherwise, go to step 3Æ;3Æ Set pk = �B�1k gk;4Æ Compute �k su
h that (1.10) are satis�ed, beginning by the trial steplength�k = 1;5Æ Set xk+1 = xk + �kpk;6Æ Compute gk+1 = g(xk+1). If kgk+1k = 0, stop; otherwise, go to step 7Æ;7Æ Set sk = xk+1 � xk, zk = yk + f[2(f(xk+1 � f(xk)� sTk gk)� sTk yk℄=sTk skgsk andBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk sk8Æ In
rease k by one, and go to step 3Æ.2. Main ResultsHereafter we will suppose that the following assumption on the obje
tive fun
tionf(x) holds.Assumption A(i) f(x) is twi
e 
ontinuously di�erentiable and x� is a minimizer of f(x);(ii) There exist positive 
onstants m and M su
h thatmkzk2 � zTG(x)z �Mkzk2 (2.1)for all z 2 Rn and x 2 D, where the level set D = fx 2 Rnjf(x) � f(x1)g is 
onvex,G(x) is the Hessian of f(x) at x;(iii) The Hessian G(x) is Lips
hitz 
ontinuous on D, i.e. there exists a 
onstant Lsu
h that kG(x) �G(x0)k � Lkx� x0k; for all x; x0 2 D (2.2)An immediate 
onsequen
e of Assumption A is that, if we de�nesk = xk+1 � xk; yk = gk+1 � gk;then we have kykk �Mkskk; (2.3)



648 N.Y. DENG AND Z.F. LImkskk2 � sTk yk �Mkskk2; (2.4)and msTk yk � kykk2 �MsTk yk; (2.5)To prove the global and superlinear 
onvergen
e of Algorithm (CP), with the te
h-niques due to Byrd and No
edal[1℄, we only need to show that the analogues of thetheorem 2.1 ([1℄, pp.729{730), the theorem 3.2 ([1℄, 734{735) and their respe
tive propo-sitions are true, the only di�eren
es lie in the fa
t we are repla
ing the di�eren
e yk ofgradients with zk de�ned by (1.13). We shall �rst give some lemmas.Lemma 2.1. Let Assumption A hold. Consider the sequen
e fxkg beginning at x1and having the following property: for ea
h k = 1; 2; � � �, there exist pk 2 Rnnf0g su
hthat(1) pTk gk < 0;(2) The steplength �k > 0 satis�esf(xk + �kpk) � f(xk) + ��kgTk pkwhere 0 < � < 1;(3) xk+1 = xk + �kpk = xk + skThen 1Xk=1 kskk2 < +1.Proof. See [4℄ pp.105{122.Lemma 2.2. Let fBkg1k=1 be generated byBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk skwhere B1 is symmetri
 and positive de�nite and where, for all k � 1, zk and sk satisfyzTk sksTk sk � 
 > 0; kzkk2zTk sk � 
0where 
 and 
0 are 
onstants. Then for any 
 2 (0; 1) there exist 
onstants 
1; 
2; 
3 > 0su
h that, for any k > 1, the relations
os �j � 
1
2 � kBjsjkksjk � 
3
1holds for at least [
k℄ values of j 2 [1; k℄, where �j is the angle between sj and �gj.Proof. See [1℄ pp.729{731.Lemma 2.3. Let x1 be a starting point for whi
h f satis�es Assumption A, andsuppose that fxkg is generated by xk+1 = xk � �kB�1k gk, where �k is 
hosen so that
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e Properties of a Modi�ed BFGS Algorithm for Minimization ... 649(1:10) is satis�ed. Suppose in addition that the matri
es Bk are positive de�nite andthat there exist 
 2 (0; 1) and �3; �4 > 0, su
h that for any k � 1, the inequalities
os �j � �3;kBjsjkksjk � �4;hold for at least [
k℄ values of j 2 [1; k℄, where sj = xj+1� xj and �j is de�ned as thatin Lemma 2:2. Then fxkg ! x�, moreover1Xk=1 kxk � x�k <1;and there is a 
onstant 0 � � < 1 su
h thatf(xk+1)� f(x�) � �k[f(x1)� f(x�)℄holds for all k.Proof. See [1℄ pp. 732{733.By the above Lemmas, we 
an prove the following theorem.Theorem 2.1. Let x1 be a starting point for whi
h f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequen
e fxkg generated by Algorithm (CP ),
onverges to x�. Moreover 1Xk=1 kxk � x�k <1;and there is 
onstant � 2 [0; 1℄ su
h thatf(xk+1)� f(x�) � �k[f(x1)� f(x�)℄holds for suÆ
iently large k.Proof. We just need to show that the hypotheses of Lemma 2.2 are satis�ed. lemma2.1 ensures that limk!1 kskk = 0, so there exists a 
onstant k1 su
h that for k � k1kskk � 1: (2.6)By the mean value theorem, we havef(xk+1) = f(xk) + sTk gk + 12sTk Z 10 (1� t)r2f(xk + t(xk+1 � xk))dtsksTk yk = sTk Z 10 r2f(xk + t(xk+1 � xk))dtsk (2.7)whi
h, together with (2.1) and (2.2) yieldszTk sksTk sk = 2[f(xk+1)� f(xk)� sTk gk℄sTk sk = sTk R 10 (1� t)r2f(xk + t(xk+1 � xk))dtsksTk sk � m:(2.8)



650 N.Y. DENG AND Z.F. LILet �k = 2[(f(xk+1 � f(xk)� sTk gk℄� sTk yksTk sk (2.9)then we have by (2.7)j�kj =���sTk R 10 (1� t)r2f(xk + t(xk+1 � xk))dtsk � sTk R 10 r2f(xk + t(xk+1 � xk))dtsksTk sk ���=sTk R 10 (1� t)r2f + t(xk+1 � xk))dt� R 10 r2f(xk + t(xk+1 � xk))dtsksTk sk�Lkskk3sTk sk = Lkskk: (2.10)Therefore, noti
ing (2.3), (2.4) and (2.6), we getkzkk2z�ksk =kykk2 + 2�kyTk sk + �2kkskk2zTk sk � kykk2msTk sk + 2�k sTk ykmsTk sk + 1m�2k�M2m + 2MLm kskk+ L2m kskk2 � M2m + 2MLm + L2m (2.11)for all k � k1.Then by lemma 2.2 we know that the matri
es Bk satisfy the hypotheses of Lemma2.2 and the result follows.We now dis
uss the superlinear 
onvergen
e of Algorithm (CP). First, we give alemma.Lemma 2.4. Let fBkg1k=1 be generated byBk+1 = Bk � BksksTkBksTkBksk + zkzTkzTk skwhere zTk sk > 0 for all k. Furthermore assume that fskg and fzkg are su
h thatkzk �G�skkkskk � "k (2.12)for some symmetri
 and positive de�nite matrix G�, and for some sequen
e f"kg withthe property 1Xk=1 "k <1. Then limk!1 k(Bk �G�)skkkskk = 0 (2.13)and the sequen
es fkBkkg, fkB�1k kg are bounded.Proof. See [1℄ pp.734{735.The following theorem is 
ru
ial to prove the superlinear 
onvergen
e of Algorithm(CP).



Convergen
e Properties of a Modi�ed BFGS Algorithm for Minimization ... 651Theorem 2.2. Let x1 be a starting point for whi
h f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequen
e fBkg generated by Algorithm (CP ),satis�es the 
ondition limk!1 k(Bk �G(x�))skkkskk = 0 (2.14)and the sequen
es fkBkkg, fkB�1k kg are bounded.Proof. To prove that (2.14) is true, a

ording to Lemma 2.4, we only need to showthat there exists a sequen
e f"kg su
h thatkzk �G�skkkskk � "k (2.15)and 1Xk=1 "k <1 (2.16)In fa
tkzk �G(x�)skkkskk = kyk �G(x�)sk + �kskkkskk � kyk �G(x�)skkkskk + k�kskkkskkwhere �k is de�ned by (2.9). By Assumption A, we havekyk �G(x�)skkkskk � Lmaxfkxk+1 � x�k; kxk � x�kgwhi
h, together with (1.11), yieldskzk �G(x�)skkkskk � L0maxfkxk+1 � x�k; kxk � x�kg (2.17)where L0 = 2L.Let "k = L0maxfkxk+1 � x�k, kxk � x�kg. The inequality (2.15) is obviously trueby (2.17). On the other hand, the validity of (2.16) is a 
on
lusion of Theorem 2.1.Thus the theorem is 
ompleted.Noti
e that the �rst trial steplength is � = 1 in Algorithm (CP). We will showthat the steplength �k = 1 always satis�es the 
ondition (1.10) when k is suÆ
ientlylarge. For simpli
ity of notation, we use the Landau symbol a = o(!), whi
h meansthat there exists a positive sequen
e fekg with limk�1 ek = 0 su
h that jaj � ek! for anysmall ! > 0.Noti
ing that Bksk = ��kgk, we have from (2.14)limk!1 kgk �G(x�)B�1k gkkkB�1k gkk = limk!1 k(Bk �G(x�))skkkskk = 0 (2.18)



652 N.Y. DENG AND Z.F. LIThusgTk B�1k gk � (B�1k gk)TG(x�)(B�1k gk) = (gk �G(x�)B�1k gk)T (B�1k gk) = o(kB�1k gkk2)and gTk B�1k gk = (B�1k gk)TG(x�)((B�1k gk)) + o(kB�1k gkk2) (2.19)Sin
e kB�1k k is bounded from above and gk ! 0, so the value o(kB�1k gkk) is valid.Therefore, by Assumption A, there exists a 
onstant � > 0 su
h that for suÆ
ientlylarge k gTk B�1k gk � �kB�1k gkk2 (2.20)By Taylor' formula and Assumption A,f(xk �B�1k gk)� f(xk) = �gTk B�1k gk+ 12(B�1k gk)T Z 10 (1� t)r2f(xk + tB�1gk)dt((B�1k gk))= �12gTk B�1k gk + o(kB�1k gkk2) (2.21)for some uk between xk+1 and xk. So for suÆ
iently large k, �k = 1 satis�es the
ondition (1.10).Sin
e we have shown that limk!1�k = 1, then applying Theorem 2.1, together withthe results of Dennis and More [3, Corollary 2.3℄, we get the superlinear 
onvergen
eof Algorithm (CP), stated as the following.Theorem 2.3. Let x1 be a starting point for whi
h f satis�es Assumption A. Thenfor any positive de�nite matrix B1, the sequen
e sequen
e fxkg generated by Algorithm(CP) 
onverges to the minimizer of f(x) superlinearly.Referen
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