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Abstract

The line search strategy is crucial for an efficient unconstrained optimization
algorithm. One of the reason why the Wolfe line searches is recommended lies in
that it ensures positive definiteness of BFGS updates. When gradient information
has to be obtained costly, the Armijo-Goldstein line searches may be preferred. To
maintain positive difiniteness of BFGS updates based on the Armijo-Goldstein line
searches, a slightly modified form of BFGS update is proposed by I.D. Coope and
C.J. Price (Journal of Computational Mathematics, 13 (1995), 156-160), while its
convergence properties is open up to now. This paper shows that the modified
BFGS algorithm is globally and superlinearly convergent based on the Armijo-
Goldstein line searches.

Key words: BFGS methods, Convergence, Superlinear convergence.

1. Introduction

Assume that we are finding the minimizer of the following unconstrained optimiza-
tion problem

min f(z), (1.1)

and assume the current point is . To calculate zp 1 from x4 by a line search method,
the following iteration
Thk+1 =Tk + Mg, k=1,2,--- (12)

is applied. In the BFGS algorithm the search direction py is chosen so that Bipr = g,
where g, = Vf(z1), the matrices By are defined by the update formula recurrently

Bisksi By Ykyp

Byy1 = By, — (1.3)

T T
sy, By sy, Sk Yk
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Sk = Tk4+1 — Tk (14)

Yk = Gk+1 — 9k (1.5)

It is well known that if B; is positive definite and
stye >0 (1.6)

then all matrices By, k = 1,2, -+, generated by (1.3) are positive definite. One of the
line search strategies is the Wolfe line searches which require the steplength Ap > 0 to

satisfy the inequalities

F(@g + Mepr) < f(zr) + alegi pi (1.7)
9(zk + Aepr) P > Bai pr (1.8)

where a and [ are constants that satisfy 0 < o < f < 1 and a < 1/2. It is easy to
show that condition (1.8) implies that

skyk 2 (B~ 1)sigr >0 (1.9)

so that the BFGS updating formula can be applied with positive definiteness being
maintained automatically. A disadvantage is that to test condition (1.8) requires an
extragradient evaluation at each trial value for A\y. When gradient information has to

be obtained costly, the Armijo-Goldstein line searches

o Mepk gk < fzr1) — flor) < a1 Mepf gk (1.10)

may be preferred, where 0 < a; < 1/2 < ay < 1. However, condition (1.10) does not
ensure that s%yk > (0. To maintain positive definiteness of BFGS updates based on the
Armijo-Goldstein line searches, a slightly modified form of BFGS update is proposed by
I.D. Coope and C.J. Price in [2]. They require the quadratic model, g;(z), interpolating

the data g (zx) = f(z), qe(Tr41) = f(Tp41), and V() = gi. Let

2(f(zps1) — f(zk) — S)gk) — St Yk ”
shsy,

o5 = vk + (1.11)
Applying the standard BFGS update (1.3), they derive their modified BFGS update

with z; replacing yy,
Bkskszk zkz,z

By = By, — (1.12)

szksk s{zk

Notice the condition (1.10), we have

spzk =sp Yk + 2(f (@rs1) — Fzk) = spak) — spyk = 2(f (zrs1) — f(z1)) — 54 9k)
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>2(ag — 1)sfgr >0 (1.13)

So, positive definiteness of the update (1.12) is now maintained. Moreover, the updating
formula (1.12) is equivalent to (1.3) when the objective function is a strictly convex
quadratic function. Now we are in a position to state formally Coope and Price’s
Algorithm (Algorithm (CP))

Algorithm (CP)

1° Select 1 and a symmetric and positive definite matrix B;. Set k = 1;

2° Compuye g, = g(zx) = Vf(zk). If ||gk]| = 0, stop; otherwise, go to step 3°;

3° Set pr = — By, ' gk;

4° Compute A\, such that (1.10) are satisfied, beginning by the trial steplength
A =1;

5% Set L1 = Tk + AP

6° Compute gxr1 = g(Tgr1). If ||ges1|| = 0, stop; otherwise, go to step 7°;

7° Set s = xp11 — Tk, 2k = Y + {[2(f(xr11 — fzk) — s;{gk) - s;{yk]/sfsk}sk and

T T
Bksksk Bk ZE 2y

By, = By —
T T
sj, Brsk Zy, Sk

8° Increase k by one, and go to step 3°.

2. Main Results

Hereafter we will suppose that the following assumption on the objective function
f(z) holds.

Assumption A

(i) f(z) is twice continuously differentiable and z, is a minimizer of f(x);

(ii) There exist positive constants m and M such that
ml|z|? < 2" G(z)z < M|2||? (2.1)
for all z € R" and = € D, where the level set D = {z € R"|f(z) < f(z1)} is convex,

G(z) is the Hessian of f(z) at =;
(iii) The Hessian G(z) is Lipschitz continuous on D, i.e. there exists a constant L

such that
|G(z) — G(2")|| < L||z — 4'||, forallz,z’ € D (2.2)

An immediate consequence of Assumption A is that, if we define
Sk = Tk41 — Tky Yk = Gk+1 — Gk;
then we have

lyell < Mk, (2.3)
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ml|skll” < shyr < M|sgll?, (2.4)

and
msiyk < llyell* < Msfys, (2.5)

To prove the global and superlinear convergence of Algorithm (CP), with the tech-
niques due to Byrd and Nocedall!, we only need to show that the analogues of the
theorem 2.1 ([1], pp.729 730), the theorem 3.2 ([1], 734 735) and their respective propo-
sitions are true, the only differences lie in the fact we are replacing the difference y; of
gradients with z; defined by (1.13). We shall first give some lemmas.

Lemma 2.1. Let Assumption A hold. Consider the sequence {xy} beginning at 1
and having the following property: for each k =1,2,---, there exist pp € R"\{0} such
that

(1) ngk <0;

(2) The steplength & > 0 satisfies

flak + Ekpr) < f(ok) + abrgp pr

where 0 < a < 1;
(3) Th41 = Tk + Ekpr = T + Sk
oo
Then [sk]|? < 4o0.

k=1
Proof. See [4] pp.105 122.

Lemma 2.2. Let {By}32, be generated by

Bksks;{Bk zkz,{
By11 = By —

SszSk szsk

where By is symmetric and positive definite and where, for all k > 1, 2z, and sy satisfy

T 2
%5k 5 o, Iall g
Sp; Sk Zj, Sk

where ¢ and ¢ are constants. Then for any vy € (0,1) there exist constants ¢y, ca,c3 > 0

such that, for any k > 1, the relations

cosf; > ¢

< IBjsill _es

Isill — &
holds for at least [yk] values of j € [1,k], where 6; is the angle between s; and —g;.
Proof. See [1] pp.729 731.

Lemma 2.3. Let 1 be a starting point for which f satisfies Assumption A, and

suppose that {zy} is generated by x4 = xp — )\kBlzlgk, where A\, is chosen so that
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(1.10) is satisfied. Suppose in addition that the matrices By are positive definite and
that there exist vy € (0,1) and as,aq > 0, such that for any k > 1, the inequalities

cos0; > ag;
B‘S‘
[1Bjs;l <
s,

hold for at least [yk] values of j € [1,k], where s; = 11 — x; and 6} is defined as that

in Lemma 2.2. Then {z} — ., moreover

oo
Z |zr — 24| < o0,
k=1

and there is a constant 0 < 7 < 1 such that

flopn) — fl@a) < TP[f(@1) — (2]

holds for all k.

Proof. See [1] pp. 732-733.

By the above Lemmas, we can prove the following theorem.

Theorem 2.1. Let x1 be a starting point for which f satisfies Assumption A. Then
for any positive definite matriz By, the sequence {xzy} generated by Algorithm (CP),

converges to .. Moreover
oo
Z |zr — 24| < o0,
k=1

and there is constant T € [0,1] such that

Flapsr) = fla) < TP () = f (2]

holds for sufficiently large k.
Proof. We just need to show that the hypotheses of Lemma 2.2 are satisfied. lemma

2.1 ensures that klim llsk|l = 0, so there exists a constant ki such that for & > k;
—00
[[skll <1. (2.6)

By the mean value theorem, we have
T 1ot 2
flaker) = flan) + sp.gn + 55 /o (L =)V f @k + t(@hr1 — k) disy

1
shye =k | V3ot o —n))dtsy 27)
which, together with (2.1) and (2.2) yields

sk 20f(wern) = flae) —stor]  sEJo (L= 0)V2f (0 + Hapg — o)) dbsi S
Te T = T = m.
LSk Sk Sk Sk Sk
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Let - -
2[(f(zpg1 — flxg) — Sk gk — Sk Yk
s%sk

b =

(2.9)

then we have by (2.7)

sl :‘ sk Jo (U= )V (@g + t(zgpn — zp))dtsy — ] fo V2f (0 + Hopg — o)) disy ‘

shsy,
sk o (L) F 4tz — xp))dt — fy V2F (2 + togsr — ap))dtsy
sksy,
L||sk|)?
< HTkH = L|sk|. (2.10)
51, Sk

Therefore, noticing (2.3), (2.4) and (2.6), we get

2 l? _ llyel® + 2¢nyi sk + Srllsell® _ llyell® + 24 Sk Yh L Ly
25, Sk szsk - msgsk msgsk m'F
M? ML L? M? ML L?
< 42— Ispll 4+ —ls]? < — 42— + — (2.11)
m m m m m m

for all & > k.

Then by lemma 2.2 we know that the matrices By satisfy the hypotheses of Lemma
2.2 and the result follows.

We now discuss the superlinear convergence of Algorithm (CP). First, we give a
lemma.

Lemma 2.4. Let {By}32, be generated by

T T
Bisgsy By zpzj,

By, = By —
T T
s), B sk Zy, Sk

where 2L s, > 0 for all k. Furthermore assume that {s;} and {zx} are such that

2k — Gusi

< &g (2.12)
skl

for some symmetric and positive definite matriz G, and for some sequence {e} with

oo
the property Z e < 0o. Then
k=1

[(Br — Gx)sell _

lim =0 (2.13)

k=00 skl
and the sequences {]|By |1}, {I1B; |} are bounded.
Proof. See [1] pp.734 735.
The following theorem is crucial to prove the superlinear convergence of Algorithm

(CP).
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Theorem 2.2. Let x1 be a starting point for which f satisfies Assumption A. Then
for any positive definite matriz By, the sequence {By} generated by Algorithm (CP),

satisfies the condition

I(By — G )sell _ (2.14)

lim

k=00 [kl
and the sequences {||Bg||}, {1 B, ||} are bounded.
Proof. To prove that (2.14) is true, according to Lemma 2.4, we only need to show

that there exists a sequence {ej} such that

~ G,

IER sk < &g (2.15)
[kl

and
o
> ep < oo (2.16)
k=1
In fact
lze = G)skll _ llyn — Glz)se + sl _ llye — Glza)sell | [ drskl
skl skl B skl skl

where ¢y is defined by (2.9). By Assumption A, we have

lye — G () 51|
sk

< Lmax{||zp1 — 2l [l — 2.}

which, together with (1.11), yields

26 — G(z)sk |
skl

< L' max{ g — o), g — 2.} (2.17)

where L' = 2L.

Let e = L' max{||zx11 — 2|, ||z — z«]|}. The inequality (2.15) is obviously true
by (2.17). On the other hand, the validity of (2.16) is a conclusion of Theorem 2.1.
Thus the theorem is completed.

Notice that the first trial steplength is A = 1 in Algorithm (CP). We will show
that the steplength A\ = 1 always satisfies the condition (1.10) when k£ is sufficiently
large. For simplicity of notation, we use the Landau symbol a = o(w), which means
that there exists a positive sequence {ej} with khfr;lo er = 0 such that |a| < egw for any
small w > 0.

Noticing that Bgsy = —Aggk, we have from (2.14)

o -1

k—o00 1By, gl k=00 (EAl

I(Bk = Glz))sill _ (2.18)
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Thus

9r By 'gr — (B 'gr) TG (x.) (B, Ygk) = (91 — G(z.) By 'ax) " (B, *gr) = o(|| By "gkl?)
and
9k By g = (B, 'gi) T G(:) ((By, 'gr)) + o(|| By ' gre|I”) (2.19)

Since | B, || is bounded from above and g — 0, so the value o(|| B, 'gx||) is valid.
Therefore, by Assumption A, there exists a constant 7 > 0 such that for sufficiently
large k

9% By 'gr > nll B, i (2.20)

By Taylor’ formula and Assumption A,

flzr — By 'gx) — f(zk) = —gi By, g

1, 1 _ _
+ 5B 90" [ (1= O aw+ 1B g d(B, 1)
1 _ _
= 5ol By g+ ol B, aul) (2:21)
for some wy between zy,; and zg. So for sufficiently large k, Ay = 1 satisfies the

condition (1.10).

Since we have shown that hm Ar = 1, then applying Theorem 2.1, together with
the results of Dennis and More [3 Corollary 2.3], we get the superlinear convergence
of Algorithm (CP), stated as the following.

Theorem 2.3. Let x1 be a starting point for which f satisfies Assumption A. Then
for any positive definite matriz By, the sequence sequence {x} generated by Algorithm

(CP) converges to the minimizer of f(x) superlinearly.
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