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Abstract

This paper considers the generalized difference methods on arbitrary networks
for Poisson equations. Convergence order estimates are proved based on some a
priori estimates. A supporting numerical example is provided.
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1. Introduction

Consider the boundary value problem of the Poisson equation

—Au = f(ray)v (l’,y) € (11)
u=0, (z,y) e I' = 00 (1.2)

where 2 is a convex polygon regon; I' = 92 the boundary of Q and f(z,y) a known
function on ).

The generalized difference methods on quadrilateral networks for elliptic equations
are proposed in [11], where the convergence order estimates are given for rectangular
networks. Quadrilateral networks are structured networks, the so called ”finite volume
method on structured networks” (cf. [7] - [9]), a popular method in computational fluid,
is identical to the generalized difference method in [3](cf.[4] and [11]). The generalized
difference methods have the same convergence orders as the corresponding finite element
methods, but they require less computational expenses, and keep the mass conservation
(cf. [5]). The aim of this paper is to provide a theory for the generalized difference
method on arbitrary quadrilateral networks, and to obtain the optimal convergence
order estimates. A generalized difference method with bilinear element is constructed
in §2. Some a priori estimates are deduced in §3. §4 is devoted to the error order
estimates. Finally, a numerical example is given in §5 to show the effectiveness of the
method.

* Received February 29, 1998.
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2. Generalized Difference Methods

Let © be a convex polygonal region. Decompose €2 into the union of finite num-
ber of strictly convex and nonoverlapping quadrilateral elements.Two nodes are called
adjacent if they are the endpoints of the same side of an element. The set of all the
quadrilateral elements is denoted by T}, where h is the maximum length of all the sides.

Connect the midpoints of the opposite side of a quadrilateral element, and call the
joint of the two connecting lines the averaging center. Now we construct the dual sub-
division of T},. Let P be an inner node as in Fig.1; OPP, P, Py, OPP3; Py P;, OPPs Ps Py,
OPP;PgP; are the quadrilaterals with a common node P; and Qq,Q2,Q3,Q4 re-
spectively are their averaging center. Let M, My, M3, M4 be the midpoints of
PPy, PP;, PPs, PP;. Connect My, Q1, Mo, Qo, M3, Q3, My, g, My, successively to
obtain a polygonal region K7J, surrounding P, called a dual element. The set of all the
dual elements is denoted by T}, and called the dual subdivision (cf. [11] or [5]).

Fig. 1

Let €, be the set of nodes of T}; Solh: Q) — 0N the set of the inner nodes; and
2y the set of nodes of the dual grid. Denote by K¢ the quadrilateral element with
averaging center ) € Qf, and by Sg,Sp the areas of the element Kg and the dual
element K7, respectively.

Suppose T}, and T} are quasi-uniformly, that is, there exist constants C1,Cy > 0
independent of h, such that

C1h? < So < h?*, Qe (2.1)

C1h? < Sp < Coh?, P e, (2.1),

Remark 1. (2.1)5 can be deduced from (2.1); under the above assumptions on the
dual grid.

In order to define the trial function space U, we take a unite square K = E=
[0,1]x[0,1] on (£,n) plane as the reference element. For any convex quadrilateral
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Kq(Q € ), there is a unique invertible bilinear transformation (cf. [6])

T =11 +a1&+ an + azén
FKQI{ (2.2)1

y =1y +bi1&+ ban + b3én
a1 =@y =T, =03 T1, a3 = T4 — T3~ Ty + 1 (2.2)
2)9

bi=y2—y1, bo=y3s—y1, b3=ys—y3s —y2+uy

which maps E onto Kq, where (z;,y;) is the coordinate of the node P; of the element

Kg, see Fig. 2.

Fig. 2

Remark 2. When K is a parallelogram (including rectangular) we have a3 =
bz = 0, so the transformation (2.2); becomes linear (affine).

Denote by Py 1 the space of all the bilinear function Py (&,1) = co +c1& + can+c3én
defined on E, Define the trial function space as:

Uy = {uh € CO(Q),uh\K = PEOFIFI,U}AF = O,PE S Pl,l} (23)

where K = Kg is any quadrilateral element and PﬁoFgl denotes the compound func-
tion of P;(£,m) and the inverse function Fit. For uy, € Uy, set up = up(P), then the

restriction of u, on Kg is
Uh‘f(Q = Pﬁ;OF[;é (2.4)

where F,, is defined in (2.2), and
Pp(&n) =co+ 1€+ can+e3én

Co=UP,,C1 =Up, —UP;, C2=UP, —UP,,C3=Up, —UP, —Up, TUP, (2.5)

The test function space is

Vi = {vn € L*(Q),vn| i3, = constant, P GSO)h} (2.6)

For any P €Q)y, denote by 9p the characteristic function of K}, then any v, € V}, can
be written:
op =Y vp(P)p (2.7)

o
PeQy,
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Let Iyu be the interpolation projection of u € U = H}(Q)NH2(Q) onto the trial
function space Uy, then we have (see [1])

lu — Mpuly, < Ch* ™ uly,m = 0,1 (2.8)

Let II} uj be the interpolation projection of uj € Up, onto the test function space Vj,.
As in [11](cf.[5]), the generalized difference method for (1.1),(1.2) is: Find uy, € Uy,
such that

alun, pry) = (f+1hpy) VP € (2.9)
where
a(un, Pp,) = 8Kf;0 (— G dy + Fdz) (2.10)
- dzd
(f:¥p,) K‘£0 fdxdy (2.11)

(2.10) is obtained by multiplying (1.1) by %p,, integrating it on K7 and applying the
Green formula. Let up, = up(F;),and let pp, be the basis function of the node P;,
namely,pp, (Pj) = 0ij,op, € Up. Soup, = > up,pp,, and (2.9) can be rewriten as:

Piefolh
Z UPﬂ(‘PP,-awPo):(fa'l/JPo) (2]_2)
PiEQh
where
dpp. dpp.
aleryn) = J (= S-dy + =5t dr) (2.13)
Pq

(2.9) is a linear system for {up, }. Its formation involves a great number of integrates
like (2.13). To simplify the computation, one should decomposite the integral (2.13)
into an integration sum over dKp, N Kq,(I = 1,2,3,4), and then transform it by the
bilinear transformation into a definite integral of £ and 7 on the reference element K.

3. A Priori Estimates

In this section we shall prove the positive definiteness of a(up, I} uy), which is the
key point to the error estimates.

As in Fig.3, let the four nodes of the quadrilateral element K¢ be P; = (z;,y;)(1 =
1,2,3,4), and the midpoints of the four sides by M; = (za,yn;) (@ = 1,2,3,4). Q
denotes the joint of MMz and MyMy, that is, the averaging center of Kg, then @
becomes the midpoint of both My M3 and MyMy. Py Py and P, P3 are the two diagonals
intersecting at R.
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Py

L wm
1 8

P P

Fig. 3
Let us write
fi=x4—x3, fo=mx4— 32, di =Tp — Tapy, do =Ty — T,
g1 = Y4 — Y3, 92 = Y4 — Y2, €1 =YM; —YM;, €2 =YM, — YM,
lho = PP, Lz = PP, lu=|PyPy, I3 = | P3Py
ll = |P2P3‘, lg = ‘P1P4|, mi = ‘MlMg‘, mo = ‘M2M4|

0 =/M;QM,, ¢=/PsRP,
Let |RP2‘ = klll, |RP1‘ = leQ, then
RP;) = (1 — k)1, |RPi| = (1 — ks)ls

Denote the areas of the quadrilateral Ko, AP PoP3, APy Py Py, AP, Py Py and A P, P,y Ps,
respectively, by S, Si23, S124, S143, S243, then

Si24 = k1S, S123 = k2S, S1a3 = (1 — k1) S, Soaz = (1 — kg) (3.1)

Introduce over Uy the discrete semi-norm

1

lunlin = ( X |unl? gy )2 (3.2)
Qe
where
unlf g = (up, —up)? + (up, —up,)? + (up, — upy)® + (up, —up,)? (3.3)

up;, = Uh(Pl),'L = 1727374'

Proposition 1. The semi-norms |up|1p and |up|1 are equivalent over Uy, that is,
there exist constants 51 and Py independent of h such that

Biluplip < |lunli < Boluplipn Yuy, € Uy, (3.4)

Proof. We only have to show the equivalence of |up|ix, and |up|i ko n. By
(2.4),(2.5), we have

Oup Ouy, 0€ Oup, On

Qup _ Qup 8§ | Ouy 91
or —  0f Ox on Ox (3 5)
dy — 0t dy " In By
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where
{ Egl—g = c1 + can, %% =c9 + 38 (3.6)
€1 =Up, = Up;,C2 = Upy — Up,C3 = Up; — Up; — Up, T UP,
Then, transformation (2.2) results in
§—§ =a +a3777§—gn5 = ay + azé
B — by + by, GL = by + byt
Denote the Jacobian of (2.2) by J(z,y), then
detJ(:I:,y) = (albg — agbl) + (a1b3 - a3b1)§ + (a3b2 — a2b3)’l7 (37)
By the differentiation of inverse functions we have
{ e = (by + b3&) /detJ (w,y), 55 = —(ag + as) /detJ (z, y) 58)
GL = — (b1 + bym) /et (w, y), G = (a1 + agn) /det ] (z,y)
Combining (3.5), (3.6) and (3.8) leads to
{ Gt = [(e1 + eam) (b2 + ba€) — (e2 + ea€) (by + ban)]/det] (z, ) 39)
%L; = [~(c1 + e3n)(az + azf) + (c2 + c38) (a1 + azn)]/detJ (z,y)

dup  Oup

Qup OU)T Gy, = (3_6’ o )T. Then (3.5) gives

Write VU}Z = (W’ a—y

Vuh = J(éun)ﬁuh
vun = J € n)Tun

where
o8 On a1 + agn by + byn
J(&,mn) = ( Ou  Ou >,J1(§,n)=(J(§,n))1=< ! )
5= o az + az€ by + bt

Use || 7 unl|2, |[J(&,m)||2 and ||J(&,n)||F to denote the Euclidian norm of vectors, and
the spectral norm of matrices and the Frobenius norm of matrices, respectively, then

7 unl 3 < L€ Bl [7unllF < (176 m)IF]|7unll3
Il < 1T HEMIBI wnlls < 1T E )R] unll3

So

up

TKg = Kf | 7 unl3dady < [(||7(€,n)||%det] (z,y))||7un|[3dédn (3.10)
Q E

and

JNIvunllzdédn < [ (1771 E 7| v unl[3dEdn
E e (3.11)

< Kf (11T m) [ /det (z, )| 7 unl|3dwdy
Q
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A direct calculation gives

(&, n)|[7-det ] (z,y)
= [T, n) |7 /det T (x, y) (3.12)
= [(a1 + azn)? + (b1 + bsn)? + (a2 + az&)® + (ba + b3€)?]/detJ (z,y)

By (3.1), (3.7) and the relations between the area and the node coordinates of the

triangle, one get

detJ(z,y) = 28123 + 2(S124 — S123)€ + 2(S143 — S123)7n

= [2ky + 2(k1 — k)€ +2(1 — k1 — k2)n)S (3.13)

where (¢,7) € E =[0,1] x [0,1].
Suppose that ki, ko satisfy

o< ki,ky <1-—oa, 0<o<

N —

and note that detJ(z,y) is a linear function of £, 1, then on the reference element E

we have

detJ(z,y) > min{detJ(z(0,0),y(0,0)),det J(x(0,1),y(0,1)),
detJ(z(1,0),y(1,0)),det J(z(1,1),y(1,1))}
= min{ZkQS, 2(1 - k}l)S, 2’6‘15, 2(1 - k‘g)S}
> 208

On the other hand, we have for the numerator of the right-hand side of the second
equality of (3.12)

(a1 + azn)? + (by + b3n)? + (az + az€)? + (by + b3)?
= [ar(1 —n) + fin]* + [b1(1 — ) + g17)?
+laa(1 =€) + f26]% + [b2(1 — €) + go&]?
2[(af +67)(1=n)*+(f2+97)n* + (a3 +035) (1 =€)+ (f3 +95) %)
20135 (1 — n)® +13,m* 4+ 113(1 — €)% + 15,7
2[max{l3,,13,} + max{i3;,13,}]
4h?

IA A

Hence
2
1T (E w2 /et (o, ) = [1T(€,m) (2 detd (o) < 422 < 2
This together with (3.10) and (3.11) leads to

o < JIIvunl3dédn < 25
E

1Ko (3.14)
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set
Z1 = Up, —Up,, 22 = Up, — UP;, 23 = Up, — UP,,24 = Up, — UP, (3.15)
Then .
[ Ivun|[3dédn = (27 + 23 + 2120 + 23 + 25 + 2324)
E
It is easy to show that the right-hand side of the above equality is a positive definite
quadratic form of 21, 29, 23 and zy, and hence is equivalent to 2% + 25+ 23 +27. Therefore
lunl1,ko,n and |upl1 i, are equivalent by (3.3) and (3.14). This completes the proof.
Next we turn to show the positive definiteness of a(up, ITjup). As in [11], we rear-
range the line integrals of the rigth-hand side of (2.10) to get

alun, Mhap) = 3 Ig(up, 1 up) (3.16)
Qeq;
where
Io(up, up) = Y [ (—%dy+ %L—Jdm)ﬂh(P) (3.17)
perKpNKqQ ’

Denote by [O( the set of the four nodes of K¢ = OP; P,P3P(cf. Fig.3), and merge the
two integrals with opposite directions on the same segment of the right-hand side of
(3.17), then we have

To(un, Map) = [ (—Gdy + Sid) (un (P1) — un(Py))
M Q

_I_

(— % dy + Gt dz) (wn(Ps) — un(Py))

QM3
+ [ (-~ %ndy +8“hdr)(ﬂh(P3)fﬂh(P1)) (3.18)
M>Q
+ [ (-~ %ndy +8“hdr)(ﬂh(P4)fﬂh(P2))
QMy

It is easy to see by Fig. 3, transformations (2.2), (3.9) and (3.15), that on M;QMs;
(€=3)

{ 2= (@ + har) + (a2 + has)n = o, + i (3.19),
y = (y1 + 5b1) + (b2 + 3b3)n = ynr, +ean) |
%un = [(z1(1 — ) + zan)er + S (23 + 24)(—b1 — bn)]
JdetJ (z(3,m), y(3,m)) (3.19),
G = [(21(1 =) + 20m)(—di) + § (23 + 20) (a1 + azn)] |
/detJ(:I:(§, n), (% 1))
and on MaQMy(n = %)
e e e T
y = (y1 + gb2) + (b1 + 3b3)€ = yar, + €2 |



Generalized Difference Methods on Arbitrary Quadrilateral Networks 661

G = [5(21 + 22) (ba + b3t) + (23(1 —
[det I (z(€, 5),y(&, 3))

G = [5(21 + 20)(—a2 — as€) + (23(1 = £) + 24€) ]
JdetJ (z(€, 5),y(&, 5))

Insert (3.19); and (3.20); into (3.18), to obtain

§) + 216)(—e2)]
(3.20)5

IQ(uha huh)

; 8 (3.21)
+ fo —Gae2 + ld

+f1 8uh ey + 8uh

Write

1
3 detJ (z(5,m).y(5.m)) (3.22)

H
My M3
o
MM,

H
—
=PP, -

ﬂ

My M3, 00 = frdi + greq
H

MoMy, ay = foda + gaes

H
—
=P P;

oy = ardy + breg (3.23)
a3 = agdg + b262

By (3.21), (3.19)2, (3.20)3, (3.22), (3.23) and (3.15), we have

Ig(up, 1T} up)
= [(z141 + 2249)m? — %(23 +21)(Aran + Asar)] 5%
+[(z145 + 22 Ag)m? — L(z3 + 24) (Agon + Agan)] 22
+[=3(21 + 22)(Bias + Byau) + (23B1 + 24 B)m3]3
+[—% (21 + 22)(Bsas + Baau) + (23Bs + 24 By)m3] 2
= 21wz

(3.24)

23
25
24
25

where

z = (21,22, 23,21)"

B1a3 + 32014
B30£3 + B40é4

—2A9m?
—2A4m?
Bias + Byay
Bsas + Byay

Arag + Asan
Az + Agop
—2B1m3
—~2B3m3

Arag + Asap
Az + Agan
—2Bym?
—2Bym}

(3.25)
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Using (3.13) we compute the integrals in (3.22):

A= rlgl-b - SR A= gl 4 o)

A = el + St A= il - Sy
Bi=iqlf- SR gy = by ek (520
B = -3+ SR, b=l - )

where k = k1 + ko, E=1- k1 + ko9, k1 and ko are defined as before, 0 < k1, ko < 1.
Remark 1. If k,k — 1, in (3.26), then by Taylor Formula we have

A =34+0(k-1), Ay=1+0(k-1)

A3—§+0(/j:—1), A4—%+O(/j:—1) (3.27)
Bi=3+0(k 1), By=1+0(k 1) '
By=1+0(k-1), Bi=2+0(k-1)

Note k — 1,]% — 1 are equivalent to k; — %,k‘g — %
Since My, My, M3 and M, are the midpoints of the corresponding sides (sse Fig. 3),

we have
— L — — L —
M M= 3(P1 Py + P, Py), MyMy= 5(P1 Py + P3Py)
So
— — — — — —
Py Py=My M3 + MyMy, Py Py=M M3 + MM,

By the definition of k; and k9, we have

— — — — — —
Py Py=ky P3Py +ko Py Py, PsPy= (1 — k) P3Py +(1 — k) P1 Py
— — — — — —
PiP3= (1 — k1) PyP3 +ky PPy, PyPy=ky PyP3 +(1 = ky) PPy
So R
ay = (k — 1)m? + kmymacosf
ay = El —E)ym? 4+ (2 - k)leLQcosH (3.28)
ag = kmimacosd + (k — 1)m3
s = (2 — k)ymimacost + (1 — k)m3
where k = ki + ko, k = 1 — k1 + ko, k1, ko as defined before.
We symmetrize the quadratic form (3.24) to obtain
IQ(uh, H}:’uh) = ZTWOZ (329)

where

z= (21,22, 23,21)"
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ain a2 a1z a4
W, — % ai2 G2 Q23 Q24
a3 a3 a3z a3q
a4 Q22 G34 Q44

aj]p = 2A1m%, ajp = (AQ + A3)m%, agy — 2A4m%

ass
ajz = fl(Alozl + Asaog + Bras + B2044)
a4 = %(Alozl + Ascg + Byag + B4O[4)
asy = —5(Asan + Ay + Bras + Boay)
ass = —5(Asan + Ay + B + Byay)
Set
_ _k In(2—k
Gi = 11+ %), Go = 11 - nfka)]
_ 1k Ink. = Lok In(2—k)
Gs = ;1 + ] G =3[ 7
Then by (3.26), (3.28), (3.31) and (3.32) we have
a3 = %(Glml + G3m3) — mimacosh
a4 = %(Glml + G4m%) — mymacost
ags = _%(Ggm% + G3m%) — mimacost
a9y = 7%(G2m% + G4m3) — mymaycost

= ZBlm%, azq = (BQ + B3)m%, a9 — ZB4m%

663

(3.30)

(3.31)

(3.32)

(3.33)

To estimate the minimum eigenvalue Ay, of Wy, we decomposite Wy into a sum of

three matrices:

Wy = Wi+ Wy + W:
0 45( 1+ Wa + Ws)
where
my 3my c c
Wi = 2 ? 3m2  m?2 ’
c ¢ =5t T
2 2
bi1 bia O 0 0 0 b3
b b 0 0 0 0 b
W, = 12 boo Wy = 03
0 0 b3z b3 biz bag 0
0 0 b34 b44 b14 b24 0
¢ = —mimycost
bin = (241 — 2)m3, b1y = (Ay + Az — 3)m?, by = (244 —
b3z = (231 3)m3,b3y = (By + By — 5)m3, by = (2B4 —
biz = (Glml + G3m2), by = ——(Glml + G4ym3)
bog = —2(Gam? + Gym3), byy = —2(Gam? + Gym3)

b14

bag

0

0
§)mi
$)m3

(3.34)

(3.35)
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Next we estimate successively the minimum eigenvalue Ay, of Wi and the spectral
radii p(Ws), p(W3).
Assume mo > mq, and let mg = 7mq, then 7 > 1.

It is easy to show that the four eigenvalues of W; are

2 2
)\1 - ml, )\2 - m2
A3 =mi+mj+ \/(m% + m3)% — 4m?mZsin26

A =m? +mi - \/(m% +m3)? — 4m2m2sin26

Obviously, A3 > Ay > Aq.
Write p = sinf, we have

M =mi[l+ 72— /(1 +72)2 —472p?]

Let >\min — min{)\l, )\2, )\3, )\4} = min{)\l, )\4}, then

N m2, pe[V1+272/27 1] (3.36)
TRl M pe (0,VTF272/21] '
For any €y € (0,1) in order to have
Mo > g (3.37)
we need only
p>po=12e(1 +79)/2r = (1 + 5)]* V&
that is
RS (90, = 90) (338)
where 6y > 0 is small enough.
Thus, if (3.38) holds, we have
Amin > gom? (3.39)

We denote by Dy and Dy the up-left and down-right two-by-two matrices of Whs.
Then the eigenvalues of Wy are the eigenvalues of D; and Djy. The bigger eigenvalues
in norm of Dy and D», respectively, are

Ap, = U(k)m3, Ap, = U(k)ymj

where

U(k) = (A1 + Ay — %)—F\/(Al — A+ (Ag+ Ay - 1)?
U(k) = (By + By — %)—I—\/(Bl — By)? + (By + B3 — %)2

(3.40)

Noting (3.26), we know that U(k) and U (k) are the values of the same function U(t)
at t = k and k respectively.
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By (3.27) and (3.40), we obtain

Uk) = Ok — 1),k — Lor Ky, ks —

o) . (3.41)

N[—= N[

Ok — 1),k — 1,or ki, ky —

In addition, the function U (k) is symmetric on (0, 2) with respect to k = 1, and for
taking o € (0,0.5], we have
max U(k) = U(20)

k€[20,1]
Write D, = {(kl,kg),a < kl,kg <1-— 0',0 <o < 05}
Then
max  p(Ws) = maz{U(20)m?,U (20)m?3
(k1 k2) €Dy { ! 2} (3.42)
= U(20)7%m?

Next, we consider the spectral radius of W3. By solving the square of the eigenvalues
of W3, we obtain

[p(W3)]? = 3[(Gim? + Gsm3)? + (Gim} + Gym3)?
+(G2m% + Ggm%)Q =+ (GQm% + G4m%)2]
+1 % \/(Grm? + Gamd)? + (Gam? + Gym3)?x
V(G1m? + Gam3)? + (Gam? + Gam3)?

(3.43)

From (3.32) we know that the right-hand side of (3.43) is a function of k(k = k1 + k2)
and l%(l; =1 k1 + ko) for fixed m; and mg, then we have

2 2
(klf]rcga;épg[p(wﬂ] = [p(W3)I"| (k1 k2)=(0.0)

2.4, 4
(1-20)%7%m{

So
p(W3) < (3 — o)r®m3, (k1. k2) € D, (3.44)
)

Finally, by (3.39), (3.42), (3.44) and
1

S = §l1l23m¢> = myimsysinb
we obtain
Awy > 15leom? — U(20)7%m3 — (3 — o)72mi]
m? 2 (1 2
= dmimasind [EO - U(QU)T - (§ - U)T ] (345)
> Lieg - U(20)7? — (4 —0)r?]

Thus,we have
Proposition 2. Suppose

(].) T1 S T = ma < 79 (346)1

m; —
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(2) There exists 0y > 0, such that
O <0 <m—¥b (3.46),
(3) k1, ko approzimate % such that
U20)7m2 + (5 — 0)m2 < &1 < g9
Or replace (3) by
(3)! kiks — %, as h—0 (3.46)3
Then for sufficiently small h, there exists constant Cy > 0 such that
Aw, = Co (3.47)

Hence
Ig(up, IMup) > Col|z|3 = Colun

Ko (3.48)
By (3.48) and Proposition 1 we have

2
1,Kq

I(un, Wup) > Cluy

So (3.16) implies
alup, Wjup) > Clug|? > ||up|} (3.49)

Where C, vy are positive constants.

This is the positiveness of a(up, II}uy). From this one can deduce the existence and
uniqueness of the solutions of the generalized difference methods.

Remark 2. Denote the midpoints of P, Py and P,P; by M4 and My3 respectively,
then

— — — —
| PPy + PPy | = | PLPy + PyPs | = 2| M4 Mos| (3.50)

Also note
(MyaMas|? = (k—1)2m2+ (k— 1)2m2+2(k—1)(k—1)mimacosd (3.51)

Suppose OP, P, P3Py is a quasi-paralell quadrilateral element, namely (cf.[5])
— —
| PP+ PP | < Ch? (3.52)
(3.50) shows that the condition (cf. [10])
|My4Mas| < Ch? (3.53)

is equivalent to (3.52).
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By (3.50)-(3.53), we know the condition (3.46)3 of the Proposition 2 is similar to
(3.52) and (3.53), moreover, we can deduce that the condition (3.46)3 is weaker than

(3.52) and (3.53).

4. Error Estimates

Let u € HJ(2) N H?(Q) be the solution to the problem (1.1), (1.2) and uy, € Uy, to

the generalized difference scheme (2.9). Then

a(u, My vy) = (f, O} vp), Yo, € Uy,
a(’U,h,H;;Uh) = (fa H;kzvh)a V’Uh € Uh
So
a(u — up, jvp) =0, Yo € Up

By the positive definiteness (3.49), we have

My — up||? < %a(Hhu — up, I} (ITpu — up))
= Sa(llyu —u, 1T} (M — up))

Hence . .
Thu = unlly < 2 sup |a(Mpu — u, T wh)|
7 wely wa |1
where
a(llpu — u, I wp) = ng Io(Tpu — u, I wp)
h
Note
* o _ )
Io(Upu —u, Mjwy) = [ | (ng u)dy - (ng u)dm](WP2 —wp,)
I
+ f [ Hhu 2 dy — a(HgZ u)dm](WH
+ f [ Hhu u) dyf 8(HgZ u)d$](wP4
MiQ

It follows from the definition (3.3) of the discrete semi-norm that

lwp, —wp,| < |whl1,Kq .h (wpy —wp,| < |whl1,Kg.0
lwp, — wpy| < w1 kg0 [wp, — wp,| < w1 kgn
Write 1 = 78(1]’5;’“)’ 09 = 78(H’5:7u), then
| ey - At gl (k= 1,2,3,4)
M Q
< J (g1l + lp2l)ds (4.7)
M Q .
< Ch3[ [ (i +¢3)ds]>

MQ

- wP4)
- is)

- sz)

(4.1)

(4.2)

(4.5)

(4.6)
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The inverse transformation F]}é of (2.2) transforms the element K¢ into the ref-

erence element R’Q, the functions ¢;(7,y) on Kq into functions ¢;(§,n) = ¢z, y)(i =
1,2), and Q, My, P, into Q, My, Py(k = 1,2,3,4) respectively. Then

I leil’ds <h [ |@gil*ds, i=1,2

(4.8)
M Q M Q

The trace formula implies that there exists a constant C' > 0 independent of K¢, such
that

AfA |¢i|2d5 < H@lHif(Qv i=1,2 (4_9)
M Q
Also note
5. . =11, .
‘%1|0,KQ <Ch ‘(701|0’KQ7. 1=1,2 (4.10)
‘gpi|1’[A(Q SC‘SDZ 1,KQ7 Z:172
Combining (4.8)-(4.10) and using (2.8), we have
I lgil*ds < ChIIGlI;
MQ
= Ch(|¢ ﬁj(Q + [ @i if(Q)
< Chllgily i, + 18111 1)’ (4.11)
< Ch(h™eilo,kol + |@il1,x0)?
< Ch(hil‘u — Hhu|1,KQ + |’LL — Iju Q’KQ)Q
2
< Ch\u|2,KQ
Insert this into (4.7) and employ (4.6), then we have from (4.5) that
Iy =, ur) < Chluls scg wn 1 kg (4.12)

Finally, the continuity estimate results from (4.12), (4.4) and the equivalence (3.4) of
the norms:
a(llpu — w, I3 wy)| < Chlu|z|wy| (4.13)

Substitute (4.13) into the right-hand side of (4.3) to obtain
|| Ipu — upl|li < Chlulg (4.14)
Then we have the error estimate for the generalized difference method:
lu = uplly < [pu — uplly + [[Hpu — uf|y < Chlul, (4.15)

Thus we have proved the following theorem.

Theorem 1. Let u € H}(2) N H?%(Q) be the solution to (1.1),(1.2), and uy € Uy, to
(2.9). Suppose the quasi-uniformly subdivision condition (2.1) and the condition (3.46)
of the proposition 2 are valid. Then the following error estimate holds

[lu — up[|1 < Chluly (4.16)



Generalized Difference Methods on Arbitrary Quadrilateral Networks 669

Remark 1. Obviously, the result (4.16) holds for rectangular grids. And in [11], the
superconvergence estimate whose order is higher than (4.16) is obtained for rectangular
grids.

Remark 2. As known, an error estimate like (4.16) can be found in [2]. But there
are two important differences from those in [2]. Firstly, the method in our paper is based
on the Petrov-Galerkin formulations, so we can construct the higher accuracy methods
by taking tried and test spaces in higher order. On the contrary, the accuracy of the
method in [2] can not be increased, one can not obtain the scheme with higher accuracy
by methods in [2]. Secondly, the estimate in [2] is obtained on a strict restriction, i.
e., the networks must be locally irregular networks, in other words, the elements of the
subdivision consist essentially of equilateral triangles and rectangles.

5. Numerical Example

As a numerical example we use the generalized difference method to solve the fol-
lowing problems:

“Au= f(z,y), (r,y) €Q=(0,1)x (0,1
Examplel, uw=f(z,y), (2,y) (0,1) x (0,1) (5.1)
u=0, (z,y) € O
where f(z,y) = 2n%sintzsinTy, and the true solution is u = sinTrsinmy.
—Au = f(z,y), (z,y) € 2= (0,1) x (0,1)
0 =u(l =0, 0<y<l1
Example2. u(0,y) = u(l,y) R (5.2)
u(z,0) = sinmz, 0<z<1
u(z,1) = e(sinmz), 0<z<1
where f(z,y) = (72 — 1)eYsinmz, and the true solution is u = e¥sinzz.
To solve these two problems, we decomposite the region Q = [0,1] x [0, 1] into

10 x 10 = 100 small squares, ending up with a square mesh as in Fig.4; Then we obtain
a triangular mesh by drawing the diagonal of each small square as in Fig. 5.

Two generalized difference methods are used to solve (5.1) and (5.2).

(1)The linear element generalized difference method on triangular meshes (see [3]),
denoted by TGD M.

(2)The generalized method on quadrilateral networks (see [11] and this paper),
denoted by QGDM.
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(1, 1)

(1,0)

Fig. 5

Gaussian elimination method is used to solve the generalized difference equations

of the above two methods. The numerical results of (5.1) (respectively (5.2)) and the

corresponding true solutions (7'S) are given in Table 1(respectively Table 2). We see

that for Example 1, the generalized difference method on the triangular mesh behaves

better than the one on the quadrilateral mesh, while for Example 2, the quadrilateral

network is better. In practice, it depends on the geometry of the region {2 to determine

which kind of mesh to use.

Table 1
(zi,y5) | TGDM | QGDM TS
up, up, u

(0.1,0.9) | 0.096281 | 0.097473 | 0.095491
(0.2,0.9) | 0.183137 | 0.185406 | 0.181636
(0.3,0.9) | 0.252066 | 0.255189 | 0.250000
(0.4,0.9) | 0.296322 | 0.299993 | 0.293893
(0.5,0.9) | 0.311571 | 0.315431 | 0.309017
(0.2,0.8) | 0.348347 | 0.352662 | 0.345491
(0.3,0.8) | 0.479458 | 0.485398 | 0.475528
(0.4,0.8) | 0.563637 | 0.570620 | 0.559017
(0.5,0.8) | 0.592643 | 0.599985 | 0.587785
(0.3,0.7) | 0.659918 | 0.668093 | 0.654508
(0.4,0.7) | 0.775780 | 0.785391 | 0.769421
(0.5,0.7) | 0.815703 | 0.825809 | 0.809017
(0.4,0.6) | 0.911984 | 0.923282 | 0.904508
(0.5,0.6) | 0.958917 | 0.970796 | 0.951056
(0.5,0.5) | 1.008265 | 1.020755 | 1.000000
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Table 2
(zi,y;) | TGDM | QGDM TS
up, up, U

(0.1,0.9) | 0.761336 | 0.760967 | 0.760059
(0.2,0.9) | 1.448147 | 1.447446 | 1.445719
(0.3,0.9) | 1.993203 | 1.992238 | 1.989861
(0.4,0.9) | 2.343151 | 2.342016 | 2.339222
(0.5,0.9) | 2.463735 | 2.462542 | 2.459603
(0.1,0.8) | 0.689988 | 0.689192 | 0.687730
(0.2,0.8) | 1.312054 | 1.310921 | 1.308140
(0.3,0.8) | 1.805887 | 1.804328 | 1.800501
(0.4,0.8) | 2.122948 | 2.121114 | 2.116615
(0.5,0.8) | 2.232199 | 2.230272 | 2.225541
(0.1,0.7) | 0.624762 | 0.624042 | 0.622284
(0.2,0.7) | 1.188367 | 1.186999 | 1.183654
(0.3,0.7) | 1.635647 | 1.633764 | 1.629160
(0.4,0.7) | 1.922819 | 1.920605 | 1.915193
(0.5,0.7) | 2.021771 | 2.019444 | 2.013753
(0.1,0.6) | 0.565698 | 0.564932 | 0.563066
(0.2,0.6) | 1.076021 | 1.074565 | 1.071015
(0.3,0.6) | 1.481016 | 1.479012 | 1.474125
(0.4,0.6) | 1.741039 | 1.738682 | 1.732938
(0.5,0.6) | 1.830637 | 1.828159 | 1.822119
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