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Abstract

Some essential estimates, especially the so—called extension theorems, are es-
tablished in this paper, for the nonconforming finite elements with their continuity
at the vertices or the edge midpoints of the elements of the quasi—uniform mesh.
As in the conforming discrete cases, these estimates play key roles in the theoret-
ical analysis of the nonoverlap domain decomposition methods for the solving of
second order self-adjoint elliptic problems discretized by the nonconforming finite
element methods.
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1. Introduction

For simplicity of the exposition, we consider the elliptic boundary value problem on
a bounded open polygonal domain  C R?

) = (f,v), VYoveH}Q
u =g, on 02
where
1
alw) = [ VuVe, (fo)= [ fo. fEHTQ), geHO).
Q Q
It is well-known that (1.1) has a unique solution v € H*(2) (cf.[7, 15, 16]).
Suppose that € = {e} is a quasi—uniform mesh of Q, i.e., 0}, satisfies
sup inf r <ch, inf sup r > Ch, (1.2)

eeQy, BrDe €e€Qn B.Ce

where e, a triangle or a quadrilater, represents the typical element in €, B, is a

region bounded by the circle of radius r, h = max he is the mesh parameter and
eclly
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he = Binf r. Here and later, ¢ and C, with or without subscript, denote generic positive
r€

constants independent of h. Let V}, be the finite element space on ) and 7, be the
corresponding interpolation operator. V; can be the space of Wilson elementsl®), Carey
membrane elements!? or Wilson-like elements!'¥, which are continuous at the vertices
of each e € Qy,. Also, Vj, can be the space of Crouzeix—Raviart elements!® or quartic
rectangular elements'3!, which are continuous at the edge midpoints of each e € €.
For briefness, the former is called the nonconforming elements of the first kind and the
latter is called the nonconforming elements of the second kind. V} can be written in
the following general form

Vi, = {v : v|. is a polynomial of finite order, v is continuous at the
vertices (edge midpoints) of e, Ve € Q4},
V2 ={veV,: v(z)=0, V interpolation point z € HQ}.

Denote A(w,v) = Z VwVu, |v|ian = vVA(v,v). Obviously, A(-,-),| - |1,on are
ecQy, €

the inner product of V}? and its induced norm respectively. The nonconforming finite

element discrete problem of (1.1) is

A(up,v) = (f,v), VYove V;?

1.3
up(z) = g(x), V interpolation point z € 92 (1.3)

up € Vi, : {

With the development of parallel computers, domain decomposition methods have
recently become an important focus in the field of computational mathematics. By
now, all kinds of domain decomposition algorithms have been developed to solve the
algebraic system of equations arising from the discretization of (1.1) via the conform-
ing finite element methods. It is noted that several fundamental inequalities, especially
the so—called extension theorems play key roles in the theoretical analysis of those
nonoverlap domain decomposition algorithms (substructuring methods)p’?”?o]. There-
fore, when considering the nonconforming finite element discrete problem (1.3), we
should establish those inequalities in V}, correspondingly. For this purpose, the con-
forming interpolation operator I is introduced to act as a bridge between V}, and the
piecewise linear continuous finite element space where many inequalities have already
been constructed?®!8). Since the regularity of the solution u of (1.1) depends on the
domain Q (cf.[7, 15, 16]), we investigate advanced error estimations of the nonconform-
ing approximate solution uy, of (1.1) under weaker assumption on the regularity. In this
way, we eventually establish a series of essential estimates in V},, some of which are the
extension theorems!®19, the Poincaré inequalities and the maximum norm estimate.

The remainder of this paper is organized as follows: Sect.2 gives advanced error
estimations of (1.3). Sect.3 introduces the conforming interpolation operator I, and
analyses its properties. Sect.4 describes and proves some essential estimates in V}, to
conclude the paper.

For the length of the present paper, we omit here their applications to the theoretical
analysis of nonoverlap domain decomposition methods for the solving of (1.3), which
can be referred to [8, 9, 11, 12].
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2. Advanced Error Estimations

Theorem 2.1. Let u,up, be the solutions of (1.1) and (1.3) respectively. Then

E(u,
lu —upl10n < c{ inf [u—vlon+ sup \(uw)}7 (2.1)
vevy wevo\{o} [WlLan
where
A ou
Blu,w) £ Auww) - (fw) = 3 [ S, (2.2)
ecQp 9e UM

Vii={veV,: v(x) =u(z), VY interpolation point x € 0N},

n = (v1,10)7 represents the unit outward normal vector of e.

Theorem 2.1 is in fact the variant of the second Strang lemmal® in the nonhomo-
geneous boundary value case. Its proof is trivial, so we omit it here.

Let L. be the linear (bilinear) interpolation operator on e with the vertices of e as
its interpolation points. For any measurable set z, we define the mean value operator
M, : L*(z) — R by

1
Vovée LQ(z), MuweR, Muv= 7/1).
meas(z) J.
Let ¢é be the reference element, which is a square or an isosceles right triangle with O(1)
as its area. If there exists an invertible affine mapping

x=Fg(zt)=Bi+b: é—e (2.3)

such that e = F:(é), then we say that e is affine equivalent to é. Here, B € R?*2
is nonsingular. For any function v defined on e, let © be the corresponding function
defined on é such that o(z) = (v- Fg) (%), V T € é.

Lemma 2.2. Let u € H*4(Q) be the solution of (1.1) (¢ > 0). Then

1) For the first kind nonconforming element space Vi, V w € V}?, we have

2 ou ouy |2y 5 i
E(u,w) <c¢ / — — M. — 2 / lw — Low|?)?; (2.4)
(S5 [Jo (G [ o )
2) For the second kind nonconforming element space Vi, ¥ w € Vho, we have
) <ol S % [ 12 (29[S [ - mal)E 25)
’ o eeQ), i—1 de 1 0T; ¢ Ox; ceQ), Oe ¢ ' .

Proof. Let’s prove (2.4) first. V w € V2, Lew is a linear (bilinear) function on
e, and for each e € §j, we have L.w, which results in a piecewise linear (bilinear)
function on €, denoted L.w still. Obviously, Lsw € H'(2), thus E(u, Lew) = 0,
E(u,w) = E(u,w — Lew).
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On the other hand, one-by—one analysis shows that
/ vi(w—Lew) =0, i=1,2. (2.6)
Oe

Furthermore, we get (2.4) by the Schwarz inequality.

Now, let’s take the Carey membrane elements as an example to prove (2.6). Let
(x4,9i), © = 1,2,3 be the vertices of the triangle element e. F; denotes the opposite
edge of (z;,y;) whose length is [;. Let \; be the corresponding area coordinate. The
unit outward normal vector n = (vq,15)7 of e is

y = w) vy = _%, on F;, 1=1,2,3, (2.7)
1 K3

where z4 = 1, Y4 = Y1, T5 = T3, Y5 = Yo for notational convenience. Obviously, in
order to see (2.6) is right for the Carey elements, it suffices to show

/ Vi(>\1)\2 + AoA3 + )\3)\1) =0, 2=1,2. (28)
Ode

Note that, from (2.7), it is easy to obtain

3 3
Z/ v1(AMA2 + A2As + Agh1) = Z/ V1Aip1 Aig2
i=1"F =17

3 Yiro — i sl —s 21
:ZM/ S"ds =Y =(yit2 — yiy1) = 0.
i=1 li o li i = 6

Thus, (2.8) is true for ¢ = 1. Similarly, (2.8) is true for i = 2.
By now, we get (2.4).
Next, we prove (2.5). For the Crouzeix—Raviart elements, let F' be the edge of the
triangle element e € € . Obviously, / viw=0,1=1,2, VF C 909; if F is the
F
common edge of e, es, then it follows from the linearity of w on I’ and the continuity
of w at the midpoint of I’ that / viwgp = 0,1 =1,2. Here, wg is the jump of w on F.

F
Therefore, we have

E(u,w) = Z/@egzwz Z Z/ngw: Z Z/F{gz_MF(gz)}w

e€Qy, e€Q)y, FCoe e€Q)y, F'Coe
0 0
¥ (e v
< ST [l G (X fow- v’
ey Fche/F O on Fcoe’F

2

> {3 [lg - vl X f - b

e€Qy  FCoei=1

INA
N[

which implies that (2.5) holds.
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For the quartic rectangular elements, let F;, i = 1,2, 3, 4, be the four edges of e € {0},
and a; be their corresponding midpoints. I; is the length of F;. a5 denotes the centroid
of e. There exists an invertible affine mapping x = F;(Z) : é — e, é is the reference
element as shown in Fig.2.1.

Fig. 2.1
It is easy to see that

9= S Lae BEL - R R L) e

By the affine mapping = = F3(Z) : é — e, we obtain that
/FI/](U) waz 72 w w( )),3:1,2. (2.10)

It follows from Fig.2.1 and [13] that

/Fz v (W = () =0, /ﬂ v (@ — i(as)) =0,
W — (@) = w(asz) ; w(d4)i:2 n w(az) + 7@(24) - 2w(d5)¢(§:2), on I,

1 1
where ¢(t) = 2(5t* — 3t?). Since / Zodie =0, / ¢(22)dzo = 0, we have / 2 (1@ -
—1 —1 i)

vi (W — (@) = 0. Therefore,
I3

12)(&1)> = 0. In the same manner, it is easy to get /
4

by (2.10), we obtain that Z/ v (w - w(ai)> =0.
i=1"F

4
Similarly, Z / 12 <w - w(ai)) = 0 can be established.
i=17 L

Furthermore, it follows from (2.9) and the Schwarz inequality that

)= T3 [ (5 - ()] - i)

ecQy i=1
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Z/ ‘ax] %Z/ = wiai)|)
zz/] 52/@ Mowf?)?,

D=

—_

from which (2.5) follows. Hence the proof of the lemma is complete. O
Lemma 2.3. Fore € (0,1), we have

|Mewloe < lwloe, ¥ we L3(e) (2.11)
lw — Mewlloe < chflw]ee, ¥ w € HE(c) (2.12)

Proof. By the Schwarz inequality, it is easy to get (2.11). We next prove (2.12).
Note that M.c = ¢, V ¢ € R, thus the error estimate of the finite element interpolation!®
yields

|w — Mowlloe < chew|ie < che|lw|1e, ¥ we H (e)

= e =

It follows from (2.11) that ||w — Mewl|oe < c||w]loe, V w € L?(e). Therefore, I — M, :
L%(e) — L?(e) and I — M, : H'(e) — L?(e) are bounded linear operators. Since H¢(e)
is the interpolation space between L?(e) and H'(e), (2.12) can be established by the
interpolation theorem of Sobolev spaces!t:15), a

1
Lemma 2.4. If e is affine equivalent to the reference element é (1 >e > 5), then

/ w? < e{h;
Oe

A |w(z) — w(y)|?
where ]w\?je :/ Wdfﬂdy
eJe

2+ B2 w2}, Y w e He(e)

Proof. In the reference element ¢, the trace theorem!1? yields

| @) < el <
€

It follows from the affine equivalence of e and é that

blIg ¢ + ]2 2}

o1 < ch 2wl fol2e < ch2 2l [ @)z et [
€

Oe

With above inequalities, we see that Lemma 2.4 holds. ]
1
Lemma 2.5. Let u € H'*¢(Q) be the solution of (1.1) (1 >e > 5) We have

E(u7w) < ChEHUHH1+5(Q)‘w’1,Q7h7 Vwe Vi?

Proof. (2.12) gives

I, ~ () o

< ch:

u
Ao e < chellulliec,
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oM (5, = Lo

Combining them with Lemma 2.4, we obtain

co S lulliee

8u 2
ecQy i=1 81’1)‘
<y Z{ r () o+ - (L)
eeQy =1

SczjXXﬁf@wwam+h?ﬂmmmJSCM%wwzmmy
ecQy, i=1 (2.13)

On the other hand, It follows from the interpolation error estimates and the inverse
inequalitiesl® that

flw — LewHO,e < Ch2|w|2e < Che’w|1,ea |w — MewHO,e < Che|w|1,6>

= e e = =

’w - Lewll,e < Che‘wbe < C‘wll,ea |w - Mew‘l,e < C|w le

— ,e = —

Furthermore, Lemma 2.4 indicates

> [ = Lew? < e 300w = Lowlf o+ helw = Lewf? )

eeNy, e€Qy,
<Y helw, < chluf g (2.14)
EEQh
Similarly, we have
}:‘/ w — Mow|? < chlwl2q . (2.15)
eceQy,
Lemma 2.5 follows from (2.4), (2.5), (2.13), (2.14) and (2.15). O

Lemma 2.6. Suppose that 7 : H'(é) — L%(é) is the linear operator on the reference
element é, which satisfies that there exists a positive constant c; = ¢1(7), such that

I#8lloe < rllollne, ¥ 6 € H (@) (2.16)
fe=é VeeR (2.17)

Suppose that the element e is affine equivalent to é and mw, is a linear mapping on e
defined by
Tov =70, Y v H(e) (2.18)

Then there exists a positive constant ca = co(7, €), such that
[v —Tev|oe < c2he|v]ie, Vv E Hl(e)
Proof. ¥V ¢ € R, (2.16) and (2.17) yield

[ — #lloe = 10+ &) — 75+ O)lloe < (1 +en)llé +Ele ¥ o € HY()
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Furthermore, it follows from Theorem 3.1.10! that

1o = #dlloe < (1+e1) mf |0+ Ell1e < eslolre, VO € H'(e)

On the other hand, (2.18) implies © — 70 = © — 7,0, hence Theorem 3.1.20%] gives

1

1o X _
lv = 7evllo,e < ¢[det B|2[[0 = 70loe, [0h,e < ¢l|Bll[det B|"2[v]1,c,

where det B is the determinant of matrix B in the affine equivalence of e and é. ||B]|
represents the Euclidean norm of B in ®2. It follows from Theorem 3.1.3 that || B|| <
he/p, where p 2 sup r. Obviously, p = O(1).
Brce
With the above facts in mind, we end the proof of Lemma 2.6. O

Remark 2.1. By the imbedding theorem!!, the Schwarz inequality and the trace
theorem, it is easy to see that (2.16) is true for finite element interpolation operators.

Let P(e) be the polynomial space on e of finite order. Define the L? projection
operator Q. : L?(e) — P(e) as follows

(Qev,w)r2(e) = (V, W) [2(e), YV w € Ple) (2.19)

Lemma 2.7. If the element e is affine equivalent to the reference element €, then
we have

1Qev]1e < clvlie, Y oveE H () (2.20)
v — Qevlloe < chelv|ie, YveE H'(e) (2.21)

Proof. Analogously to (2.19), we can define the L? projection operator on &, which
is denoted by Q. It is easy to see that

Qev = Qed,
which implies that (2.20) is equivalent to
1Qedl1e < cld]1e, Vo€ HYE) (2.22)
It follows from the definition of Qs and the Schwarz inequality that
1Qe00,e < [|9]]o,e- (2.23)

Note that the norms of the finite dimensional space P(¢é) are equivalent, thus we obtain

|Qed1e < cf|Qed
Qet]1e = [Qe(0+E)1e < cllo+¢l[1e, VEER

lo,e < cl[ollo,e < cl[Df]1,e,

Furthermore, Theorem 3.1.16) yields

Qetlue < einf 5+ 2l < el
ceR
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which is (2.22). Therefore, (2.20) holds.
(2.23) implies that

16— Qedlloe < 2[|0lloe < 2/

1,6,

10 — Qetllo,e = [[(0 4 ¢) — Qe(0 + &)[loe < 2[|(0 + &)

1,6 VeeR
Applying Theorem 3.1.215), Theorem 3.1.3"°! and Theorem 3.1.11%), we have

lv — Qevllo,e < chel|l0 — Qedll0e < che ;I€1£ 10+ ¢lle < chelt]ie < che|v]ie.

Hence, (2.21) is established. O
Lemma 2.8. Let é,7,e,m. be those in Lemma 2.6. 0 < e < 1. If m. satisfies

v —mev|1e < chF|v]lks1e, Vv e H(e) (2.24)
for some integer k > 1, then
[ — Tev)1e < chilvl|er1e, Vv € H(e) (2.25)
Proof. Tt follows from the inverse inequality, Lemma 2.6 and Lemma 2.7 that

O,e}

te +1Qev — mev|1e < cf[v]1e + by | Qev — mev
< f|vl1e + hoHQev — vlloe + by v — mevlloe} < cfvfie.

v — mev]1,e < |V — Qv

Thus (2.25) is true for ¢ = 0. Furthermore, with (2.24) and the interpolation theorem
of Sobolev spacest"*?! we know that (2.25) is true for € > 0. O
Theorem 2.9. Let u € H'*¢(Q) be the solution of (1.1) (s > %) If uy, is the
solution of (1.3), then
lu — ’I,Lh|17Q7h < ch€||u|\H1+s(Q). (2.26)

Proof. Note that 7, : H'¢(Q)) — Vj}, is the finite element interpolation operator,
which satisfies (mpw)|e = Tew, Ve € Qp,, Vw € H'T(Q). Then mpu € V). Since (2.24)
is the finite element error estimate, by (2.25) we get

inf |u—ovlion < |u—mhulion < ch®|lull grieq)-
veVy
Therefore (2.26) follows from Theorem 2.1 and Lemma 2.5. O

3. The Conforming Interpolation Operator I,

First of all, we construct another mesh Qh of 2 based on €, as follows: for the
nonconforming elements of the first kind, if e is a quadrilateral, then e is divided
into two triangles by connecting the opposite vertices of e as shown in Fig.3.1; for
the nonconforming elements of the second kind, e is divided into several triangles by
connecting the interpolation points on e as shown in Fig.3.2 and Fig.3.3. Denote
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Q= {&} where é C e € Q is a triangle. Let S*(€2) be the piecewise linear continuous
finite element space on €2,.

Fig. 3.1 Fig. 3.2 Fig. 3.3
The conforming interpolation operator I, : Vi, — S?(Q) is defined as follows

Vo€V, IyveS"Q), such that
1) for the nonconforming elements of the first kind,
(Inv)(b) = v(b), V vertex bof e, Veecy

2) for the nonconforming elements of the second kind,

v(a), V interpolation point z = a €
%(U((Il) +wv(az)), V vertex x of e € Qp,
x is not the corner point of 2
(Ipv)(z) = 0, Y corner point x of €2,
a,az € 00Q,v(ay) -v(ag) =0
v(ay), Y corner point z of €,
a,az € 0Q,v(ay) -v(ag) #0

Here, a1, as represent the midpoints of any two edges of the elements with x as their
common endpoint. Generally, if possible, we select a1, as such that a1, x,as are in a
line. But, when z € 0f) is the vertex of some element e, we select a1, as € 0. Although
there might be different way to select a1, as, we always have

Theorem 3.1. If the conforming interpolation operator Iy on Vj is defined as
above, then

||’U — IhUHL2(Q) < Ch|'U‘]_7Q7h, Vovel, (3.1)

v — Ipvlion < cvlion YveV,

max ||v — Ipv|[peee) < clvlion, Y v eV
GGQh

Proof. ¥ v € Vp,, if (3.1) is true, then the inverse inequalities yield

w—"Twliagn= > lv—ITwli, < Y ch?v— Iyl
e€Qy, e€Qy,
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<ch” 2||U - Ihv||L2 < C|U|1 Qs

max [|v — Ipvf| poo(e) < [lv - IhUHLoo(eo) < ch o — Illoe < clvlion.

h

Here, ep € Q,. Thus, (3.1) implies (3.2) and (3.3). Therefore, it suffices to show (3.1).
For the nonconforming elements of the first kind, I, is the (piecewise) linear inter-

polation operator on e. It follows from the interpolation error estimate and the inverse

inequality that

lo = Invllfay = D o= Twle < D eh'polse < Y eh®loli, < ch?lufi g,
ey, e€Qy, <1978

hence, (3.1) is established in this case.

For the nonconforming elements of the second kind, construct a function v on 2,
such that 7|, is the unique piecewise linear continuous function determined by v|e and
Dle is linear on € C e, V e € Qy,. Refer to Fig.3.2 and Fig.3.3. Obviously, Ipv = I,0, on
Q). The interpolation error estimates and the inverse inequalities yield

o =3lI3e =D llv =33z < D_ch*jof3z = ch¥vf, < ch®[ulf,,

éCe &ce
lv—3lf. =D lv—0[{; <> ch?Pl3;: < cluli,,

&Ce Ce

[v—"2llr2) < chlv|i0.n, (3.4)
v —?|1,04 < c|v]1,0.h
vl1,0,h- (3.5)
If we can show that

[0 = InollL2(q) < chlo]i0.n, (3.6)

then it follows from Iv = I;0, on €, (3.4) and (3.5) that

v = Invl L2y < lv =9l 2@) + 17 = Invllr2) = v — Ol r2() + 19 — In0| L2(q)
< chlvlian + chlolian < chlvlian,

which is (3.1). Hence, what is left is to prove (3.6).
For the quartic rectangular elements, Ipv = v, on &;, 1 = 5,6,7,8. Refer to Fig.3.4.

Therefore, ||o — 10§ . = Z |0 — Ino|3 2
On the other hand, on €, 1t is easy to see that
77([)1) = U(bl) = v(al) + U(CL4) — v(a5) = 17(@1) + ?~)(CL4) — T)(a5).

If by is not the corner point of 2, without loss of generality, we assume that (1;,0)(b1) =
3(9(a1) + 9(ag)). Then

15— In9[13, < chlo(br) — (1,0)(b1))]
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< chlo(ar) + 0(as) — 0(as) — = (8(a1) + 0(ag))|

< ch{|0(ar) — ¥(as)| + [8(as) — B(a1)| + [(as) — (ag)|}
< Ch{”t~)|17g5 + ‘@’1,59'}

If by is the corner point of  and (I,0)(b1) = 9(a1), then
10 = Inolloe, < ch|o(b1) — (In0)(b1)] < chlv(as) — 0(as)| < ch|]1é,.
By now, we obtain that

[0 = Inolloe < ch{|0]1,c +[0]1e},

where € is the union of the elements adjacent to e. Furthermore, summing up with
e € Oy, we get (3.6).

Fig. 3.4 Fig. 3.5

For the Crouzeix—Raviart elements, V e € Qp, v — [0 = 0, on &y. Refer to Fig.3.5.
It suffices to consider |0 — I;0||0,. Here, ép, €1 C e. In @, it is easy to see that

0(a1) = (In0)(ar),  0(a2) = (In0)(az),
0(b) = v(b) = v(a1) + v(a2) — v(ag) = v(a1) + v(az) — v(ap).

N

Without loss of generality, assume that (I0)(b) = é(f}(ai) +9(aj)), where a;,a; (i < j)
are the midpoints of any two edges of the elements with b as their endpoint. It follows
from the quasi-uniformness of €2, that there exists a positive integer J, independent of
h, such that j < J. An elementary calculation yields

10— Intlloe, < chlo(b) — (In0)(b)|

< chlifar) + o(az) ~ tlao) — 5 (B(as) + i(ay))|
< ch{|v(az) — v(ao)| + |0(a1) — v(ai)| + [0(a1) — v(a;)|}-
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On the other hand, we have h|t(a2) — 0(ag)| < c|0]1,6,

i1 i-1
ho(ar) — (ai)| < h Y [o(ar) — D(ars1)| < ¢ [0]1e,,
k=1 k=1
j—1
hlo(ar) = o(ay)| < e |0] -
k=1

Hence

j—1
16 = Indllogr < e{ Bl + 2 9]0 }-
k=1

Summing up with é; C e, e € Q, leads to (3.6). By now, the proof of Theorem 3.1 is
finished. O
4. The Fundamental Inequalities

In this section, d = diam €2 represents the diameter of €.
Theorem 4.1. (Poincaré inequalities in the nonconforming space V)

D) ol < (@l an+d? [ oF), Yoen,

2) d_QHUHQLQ(Q) < c[v|%Q’h, VoeV

3) Ifv eV, satisfies v(x) = 0, V interpolation point x € T, where I' C 982 has
at least two interpolation points, then

diQHUH%Q(Q) < cvlf gp-

Proof. Y v € Vj, Iyv € S"(Q) c H'(Q). It follows from the Poincaré inequality in
H'(Q) that

||IhU”2L2(Q) < c(dQIIhvﬁp(Q) +d_2’ /thv‘z)
C{dﬂ]}ﬂ)ﬁp(g)+d_2’/ﬂv|2+d_2’/ﬂ(v_lhv)‘2}

< c{dQ\vﬁQh + d?|v — Ihvﬁ’ﬂyh + d_g‘ /QU‘Q + d_2(/Q 12) |lv — Ihv||%2(9)}.

IN

Furthermore, by the triangle inequality and Theorem 3.1 , we obtain
[vl|72() < 2{llv = Tnvll 220 + 1 Tnv]1720) }
< c{d2|v\iﬂ,h + d*Q‘ / v]? + h2]v|iﬂ7h}.
Q

Hence, 1) is right.
In the same manner, 2) and 3) can be proved. O
Theorem 4.2. (Mazimum norm estimate in the nonconforming space Vy,)

d
2 —2 2 2
max 0] ) < e{d 2 olfa) + (14D )lelian}, VoV
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Proof. ¥ v € Vj, Iyv € S"(Q) € H'(Q). Tt follows from Lemma 3.3/ and Theorem
3.1 that

e e T e G T RE
< c{d-quu%Q(m +d 2o = L] Fa(q)
+ (D) oR o+ (0 )l — Tl )

c{d vl fa@) + (In Dwkank.

ma [0l o) < 2( max v = Lyl ) + 1n0 i)

| /\

| /\

{2 ey + (1 +In D) ol 00}

By now, the theorem is proved. O
Theorem 4.3. (Extension theorem) Let I' C 02 be an open boundary. {&;}1"

(m > 2) denotes the set of the interpolation points on T' (ordered in some way). Give
A= (A, Ao, -, A)T € R™. If wy, € V), satisfies

A(wp,v) =0, Voel

wp(z) =0, V interpolation point x € OOQ\I'
then
cldall? 1 < Alwnown) < CIIP (4.2)
HGh(T) HG(T)

where A\, denotes the piecewise linear continuous function on I' which satisfies
A(&) =Xj, j=1,2,---,m, \(v) =0, V endpoint v of T.
Proof. Construct the harmonic function w € H'(Q), which satisfies
a(w,v) =0, Vv e HEHQ)

w = Ap, on I (4.3)
w =0, on OOQ\T'

It follows from the priori estimate of the elliptic problems!”!%6 that even if Q is
concave, there exists ¢ > —, such that w € HT(Q). In addition, we note that wy, is

the nonconforming finite element approximation of w.
Theorem 2.9 indicates that

Alwn,wn) < 2{A(w,w) + A(w — wp,w — wp)} < efa(w, ) + [w — walf g}
< c{llwliE ) + P lwllfm @)}
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Furthermore, with the priori estimate of the elliptic problems and the fractional order
inverse inequality implied by the interpolation theorem of Sobolev spaces, we have
Awp,wp) < efllw|?y  + hQEIIwH2

a1
H?2(69) =2 (50)
<cllwl?y = cllAnl®

1 1 1 (4.4)
H?2(69) HEZ(T) HEZ,(T)

< cf|w]®

In the above last inequality, we have applied the fact that |w|| 1 is equivalent to
H2(5Q)

for w =0 on OQ\I" (cf.[2]).

)
the other hand, it follows from the construction of I; that

[[]]
H,
0

B Sl

Iywy, € HYQ), Tyw, =0, on OO\, Iw, = Ay, on T
With Theorem 3.1, the Poincaré inequality and the trace theorem, we obtain

A(wp, wp) = C\whﬁ,n,h 2 C|Ihwh|§11(9) = CHIhwhH%Il(Q)
> o[ Iywp | | >c|lwwnll® 1 =cllMal? 1,
a2 (0%) Hi (1) He (T)

Therefore, (4.2) follows from (4.4). O
Lemma 4.4. Suppose that d > h and there exists a positive constant 3, such

that sup r > Bd. Let v be a corner point of ). v is the piecewise linear continuous
B,CQ
function on 02 which satisfies

v(z) = 0, VY interpolation point x € I, v(v) =0, ¥V corner point v of Q, v # v.
Then, there exists a positive constant c, independent of d, such that

loll 1 <clo(n)l] (4.5)
H?2(09)

Proof. Without loss of generality, we assume that 2 is a triangle. Let I'y,I's,T"3 be
the three edges of Q with vy, 15, v3 as their opposite corner points. The definition of

1
the Sobolev space H2(05?) is (cf.[15])

2 A 1 / 2 / / z) — v(y)]?
v = ds + —ds x)ds
I HH%(@Q) meas(aQ) oQ oo oo |z —yl (2)ds(v)

- meas(@ﬂ) /asz vids + Z / / |x_y|2|2d5(az)ds(y).

Since d > h, sup r > (d, a simple calculus calculation yields
B.CQ

1 2 2
—_— ds <
meas(09) /39 vids < o)l
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/pl / = / / = / / < co(n)P,
/1,2 /1“2 < 2Jv(m)P?, /1“2 /1“3 = /1“3 /1“2 < 2/v(v) %,
/F3 /F& < 2lu(), /Fd /n :/n /Fd < co(m)]%.

Here, we omit the integrands for conciseness and c is independent of d, h.

By now, (4.5) is established. O

Lemma 4.5. Let I'j, be the quasi-uniform mesh of the interval T' = [0, L]. Suppose
that v(x) is the piecewise linear continuous function on I'y, and v(0) = 0. Then, there
exists a constant c, independent of L, such that

(v(2))? Lyona
The proof of Lemma 4.5 is trivial, so we omit it here.
Theorem 4.6. (Extension theorem) Suppose that d > h and there exists a positive

constant 3, such that sup r > Bd. Let {v}{ be the set of the corner points of €.
B,.CQ
I';; € 08 denotes the edge of Q with v;,v; as its endpoints. Suppose that Vj, is the

nonconforming finite element space of the second kind. Then

lv]?

i <c(i+4hn %) {(14m %)w@@h + (1 +d ) olaq ) Yo e
H@(Tij)

where v is the piecewise linear continuous function on I';; which satisfies
v (z) = v(x), ¥ interpolation point x € Tyj, v (1) = v (v;) =0,

and the positive constant c is independent of d.

Proof. Let vB be the piecewise linear continuous function on 9, such that v = v¥
on I';;, VI';; C 0. Let vy, k =1,2,---,J be the piecewise linear continuous function
on 0f, such that

v (vg) = (Ihv)(u;c)7 ve(v;) =0, 7=1,2,--- k=1, k+1,---,J,
vg(x) = 0, V interpolatoin point z € 0€.
J

It is easy to see that v = vP + Z v, on 0f). It follows from the definition of the
k=1

1
Sobolev space Hg(T;;) that!21%]

2y <e{oP)?
H (Ts5) H2

@) | [0 (@)
(69) " /Fz-j ( + )ds(fv)}- (4.7)

v =il e =
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With the trace theorem, Lemma 4.4, Lemma 3.3[2 and Theorem 3.1, we have

[l

= [T — Z og||?

1 1
H2(0Q) H?2(69) H2(69)

< 1wl o) + Z [(100) )P} < el ol ) + 1nvlF oo }
k=1

<c{llmol?;  + Z ek e }

(6

{(1+m g) Lol + (L4 d ) T ]Fa |

<A1+ m DY e g+ (1 +d ) olFage) ) (48)

IN

It follows from Lemma 4.5, Lemma 3.3[ and Theorem 3.1 that

/Fi_('“”@)'ﬂ'“ij<f“>'2)ds<> (1410 ) e,

o =il e =

<c(l+lns )Hfhvumm
gc(1+ln%){( ) s @y + 42100 e
<e(t+m D { (0 D o +d 2 0la) ) (4.9)

(4.7), (4.8) and (4.9) indicate that Theorem 4.6 holds. O
Remark 4.1. Although we deal with the Dirichlet form a(u,v) = / VuVuv in this
Q

paper, all the above conclusions are true for the general form

o) = [ [ 3 anto) oo 2 4 (o],

1,j=1

where a;;j(x),ao(x) are bounded, piecewise smooth on €, ag(x) > 0 and (a;j) is a
symmetric, uniformly positive definite matrix on 2.

Remark 4.2. Besides [4, 5, 14], the nonconforming finite element space of the first
kind may include other elements which are continuous at the vertices of the elements
of the mesh, if (2.6) is true.

Remark 4.3. Besides [6,13], the nonconforming finite element space of the second
kind may include other elements which are continuous at the midpoints, even the
Gaussian quadrature points, of the edges of the elements of the mesh, if (2.5) and (3.6)
are established.
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