SUBSTRUCTURE PRECONDITIONERS FOR NONCONFORMING PLATE ELEMENTS*1)

Zhong-ci Shi
(The State Key Lab of Scientific \& Engineering Computing, ICMSEC, Chinese Academy of Sciences, Beijing 100080, China)
Zheng-hui Xie
(LASG, Institute of Atmospheric Physics
Chinese Academy of Sciences
P.O.Box 2718,Beijing 100080, China)

Abstract

In this paper, we consider the problem of solving finite element equations of biharmonic Dirichlet problems. We divide the given domain into non-overlapping subdomains, construct a preconditioner for Morley element by substructuring on the basis of a function decomposition for discrete biharmonic functions. The function decomposition is introduced by partitioning these finite element functions into the low and high frequency components through the intergrid transfer operators between coarse mesh and fine mesh, and the conforming interpolation operators. The method leads to a preconditioned system with the condition number bounded by $C\left(1+\log ^{2} H / h\right)$ in the case with interior cross points, and by C in the case without interior cross points, where H is the subdomain size and h is the mesh size. These techniques are applicable to other nonconforming elements and are well suited to a parallel computation.

Key words: Substructure Preconditioner, biharmonic equation nonconforming plate element

1. Introduction

In this paper, we generalize the BPS algorithm [1] to nonconforming element approximations of the biharmonic equation. We construct a preconditioner for Morley element by substructuring on the basis of a function decomposition for discrete biharmonic functions. The function decomposition is introduced by partitioning discrete biharmonic functions into low and high frequency components through intergrid transfer operators between coarse and fine meshes and a conforming interpolation operator. The method leads to a preconditioned system with the condition number bounded by $C\left(1+\log ^{2} H / h\right)$ in the case with interior cross points, and by C in the case without interior cross points, where H is the subdomain size and h is the mesh size. These

[^0]techniques are applicable to other nonconforming elements and are well suited to a parallel computation.

For conforming element discrete problems of a second order elliptic equation, Bramble et al [1] and Widlund [9] have obtained certain preconditioners which are easily inversed in parallel and can reduce the condition number of a discrete system from $O\left(h^{-2}\right)$ to $O\left(1+\log ^{2} H / h\right)$. The main idea is the decomposition as $v=\Pi_{H} v+\left(v-\Pi_{H} v\right)$, where Π_{H} is the interpolation operator on coarse meshes, and an extension theorem. Gu and $\mathrm{Hu}[5]$ have obtained a similar result for Wilson nonconforming element which is with continuity at the vertices. Zhang [11] has constructed preconditioners for certain conforming plate elements on the basis of a space decomposition by adding certain vertex spaces. However, for Morley element, since the finite element spaces are not nested, and the functions have bad continuities, the space decomposition similar to those mentioned above does not hold.

We introduce a conforming interpolation operator for Morley element and related intergrid transfer operators, and then construct a function decomposition for discrete biharmonic functions to overcome these difficulties. Brenner [2] has introduced the conforming interpolation operator E_{h} by taking averages of the nodal parameters associated with the function and its first derivatives among the relevant elements, and taking zero as the nodal parameters associated with its second-order derivatives, in order to deal with an overlapping domain decomposition method. To be suited to a parallel computation in the substructure preconditioning, we modify Brenner's approach so that the nodal parameters of $E_{h} v_{h}$ depend only on those of v_{h} on the boundaries of substructures. On the other hand, Zhang [11] has defined an interpolation operator for certain conforming plate elements by setting the nodal parameters for second-order derivatives be zero. We use it to define the intergrid transfer operator I_{H} from fine meshes to coarse meshes. Then we generalize the BPS algorithms and Widlund theory of substructure preconditioning to nonconforming plate elements.

2. A Preconditioning Algorithm

Let Ω be a bounded polygonal domain in R^{2}. Consider the biharmonic problem in Ω with the clamped boundary conditions

$$
\begin{equation*}
\Delta^{2} u=f \text { in } \Omega, u=\partial_{n} u=0 \text { on } \partial \Omega \tag{2.1}
\end{equation*}
$$

The variational form of (2.1) is: Find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v), \quad \forall v \in H_{0}^{2}(\Omega) \tag{2.2}
\end{equation*}
$$

where

$$
a(u, v)=\sum_{|\alpha|=2} \int_{\Omega} D^{\alpha} u D^{\alpha} v d x, \quad(f, v)=\int_{\Omega} f v d x
$$

Let J_{h} and J_{H} be quasi-uniform triangulations of Ω with h and H as mesh parameters respectively. Assume that J_{h} can be obtained by refining J_{H}, so that J_{H} and J_{h} form a two-level triangulations on Ω. Let $S^{h}(\Omega)$ be Morley element space [8] and $S_{0}^{h}(\Omega)$ be
a subspace of $S^{h}(\Omega)$ with nodal parameters vanishing at boundary nodes. The Morley element discrete problem is: Find $u_{h} \in S_{0}^{h}(\Omega)$ such that

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v \in S_{0}^{h}(\Omega) \tag{2.3}
\end{equation*}
$$

where

$$
a_{h}(u, v)=\sum_{T \in J_{h}} \sum_{|\alpha|=2} \int_{T} D^{\alpha} u D^{\alpha} v d x, \quad(f, v)=\int_{\Omega} f v d x
$$

Let $J_{H}=\left\{\Omega_{k}\right\}_{k=1}^{N}$. The vertices of J_{H} will be labeled by v_{j} (ordered in some way) and $\Gamma_{i j}$ will denote the edge with endpoints v_{i} and $v_{j} . S_{0}^{h}\left(\Omega_{j}\right)$ will denote the subspace of $S_{0}^{h}(\Omega)$ consisting of functions with nodal parameters vanishing on $\bar{\Omega} \backslash \Omega_{j}$. In addition, $S^{h}\left(\Omega_{j}\right)$ will be the set of functions which are restrictions of those in $S_{0}^{h}(\Omega)$ to $\bar{\Omega}_{j}$. In what follows, c and C (with or without subscript) will denote generic positive constants which are independent of H, h and Ω_{k}.

We construct our preconditioner B through its corresponding bilinear form $B(\cdot, \cdot)$ defined on $S_{0}^{h}(\Omega) \times S_{0}^{h}(\Omega)$.

We decompose functions in $S_{0}^{h}(\Omega)$ as follows:
Write $w=w_{P}+w_{H}$, where $w_{P} \in S_{0}^{h}\left(\Omega_{1}\right) \oplus \cdots \oplus S_{0}^{h}\left(\Omega_{N}\right)$ and satisfies

$$
\begin{equation*}
a_{h}^{k}\left(w_{P}, \phi\right)=a_{h}^{k}(w, \phi), \quad \forall \phi \in S_{0}^{h}\left(\Omega_{k}\right), \text { for each } k \tag{2.4}
\end{equation*}
$$

where

$$
a_{h}^{k}(u, v)=\sum_{T \in J_{h}, T \subset \Omega_{k}} \sum_{|\alpha|=2} \int_{T} D^{\alpha} u D^{\alpha} v d x
$$

Notice that w_{P} is determined on Ω_{k} by the nodal parameters of w on Ω_{k} and that

$$
\begin{equation*}
a_{h}^{k}\left(w_{H}, \phi\right)=0 \text { for all } \phi \in S_{0}^{h}\left(\Omega_{k}\right) \tag{2.5}
\end{equation*}
$$

Thus on each Ω_{k}, w is decomposed into a function w_{P} whose nodal parameters vanish on $\partial \Omega_{k}$ and a function $w_{H} \in S^{h}\left(\Omega_{k}\right)$ which satisfies the above homogeneous equations and has the same nodal parameters as w at $\bigcup_{k} \partial \Omega_{k}$. We shall refer to such a function w_{H} as "discrete a_{h}^{k}-biharmonic".

We note that the above decomposition is orthogonal with respect to the innerproduct $a_{h}(\cdot, \cdot)$, and hence $a_{h}(w, w)=a_{h}\left(w_{P}, w_{P}\right)+a_{h}\left(w_{H}, w_{H}\right)$.

To define the bilinear form $B(\cdot, \cdot)$, we introduce a linear interpolation operator E_{h}, and an intergrid transfer operator I_{H}. The conforming relative of Morley element is Argyris quintic element. Let $A R^{h}(\Omega)$ be Argyris quintic element space associated with J_{h}, and $B^{H}(\Omega)$ be Bell element space associated with J_{H} [3].

For an arbitrary vertex p of J_{h}, we assign to it one of its adjacent edge midpoints e_{p}. If $p \in \bigcup \Gamma_{i j}$, we assign to it e_{p} which belongs to $\bigcup \Gamma_{i j}$. If $p \in \partial \Omega$, we assign to it e_{p} which belongs to $\partial \Omega$. Let e_{p}^{\prime} be a vertex of J_{h} such that e_{p} is the midpoint of segment $p e_{p}^{\prime}$ (cf. Figure 2.1). For $v \in S_{0}^{h}(\Omega)$, we define $E_{h} v \in A R^{h}(\Omega)$ such that

$$
\begin{align*}
& E_{h} v(p)=v(p), \quad \forall \text { verties } p \\
& \partial_{n} E_{h} v(m)=\partial_{n} v(m), \quad \forall \text { midpoint } m \tag{2.6}
\end{align*}
$$

$$
D^{\alpha} E_{h} v(p)=0, \quad|\alpha|=2 ;
$$

and

$$
\begin{align*}
& \partial_{x} E_{h} v(p)=\partial_{n} v\left(e_{p}\right) \cos \beta+\frac{v(p)-v\left(e_{p}^{\prime}\right)}{l_{p e_{p}^{\prime}}} \sin \beta, \\
& \partial_{y} E_{h} v(p)=\partial_{n} v\left(e_{p}\right) \sin \beta+\frac{v\left(e_{p}^{\prime}\right)-v(p)}{l_{p e_{p}^{\prime}}} \cos \beta ; \tag{2.7}
\end{align*}
$$

where $n=(\cos \beta, \sin \beta), s=(-\sin \beta, \cos \beta)$ are the unit normal and tangential vector respectively, $l_{p e_{p}^{\prime}}$ is the length of the segment $p e_{p}^{\prime}$ (cf. Figure 2.1). We note that (2.6) is defined as Brenner [2] but (2.7) is different.

Figure 2.1
About the operator E_{h} we can prove the following proposition by the argument similar to that in [2].

Proposition 1. For arbitrary $v \in S_{0}^{h}(\Omega), T \in J_{h}$ we have

$$
\begin{equation*}
\left\|v-E_{h} v\right\|_{L^{2}(T)}+h\left|v-E_{h} v\right|_{1, T}+h^{2}\left|E_{h} v\right|_{2, T} \leq C h^{2} \sum_{\overline{T^{\prime}} \cap \bar{T} \neq \phi}|v|_{2, T^{\prime}} . \tag{2.8}
\end{equation*}
$$

where and from now on $|v|_{i, T}^{2}=|v|_{H^{i}(T)}^{2}$ and $T^{\prime} \in J_{h}$.
From the definition of the conforming interpolation operator E_{h} we can see that nodal parameters of $E_{h} v_{h}$ on $\cup \Gamma_{i j}$ depend only on those of v_{h} on $\cup \Gamma_{i j}$. This property is important in our discussion.

The nodal interpolation operator $\Pi_{h}: B^{H}(\Omega) \longrightarrow S_{0}^{h}(\Omega)$ is defined by (cf.[11])

$$
\left\{\begin{array}{l}
\Pi_{h} v(p)=v(p), \text { for arbitrary vertex } p \text { of } J_{h} \tag{2.9}\\
\partial_{n} \Pi_{h} v(m)=\partial_{n} v(m), \text { for all internal midpoint } m \text { of } J_{h} .
\end{array}\right.
$$

The intergrid transfer operator $I_{H}: A R^{h}(\Omega) \longrightarrow B^{H}(\Omega)$ is defined by

$$
\left\{\begin{array}{l}
D^{\alpha} I_{H} v(p)=D^{\alpha} v(p), \text { for arbitrary vertex } p \text { of } J_{h},|\alpha| \leq 1 \tag{2.10}\\
D^{\alpha} I_{H} v(p)=0, \text { for }|\alpha|=2
\end{array}\right.
$$

The operator Π_{h} have the following property.
Proposition 2.

$$
\begin{equation*}
\left\|v-\Pi_{h} v\right\|_{L^{2}(T)}+h\left|v-\Pi_{h} v\right|_{1, T}+h^{2}\left|\Pi_{h} v\right|_{2, T} \leq C h^{2}|v|_{2, T}, \quad \forall T \in J_{h}, \tag{2.11}
\end{equation*}
$$

for arbitrary $v \in B^{H}(\Omega)$.

Now we construct a preconditioner. Set the node set

$$
V=\left\{p, e_{p}, e_{p}^{\prime} ; p \text { is a vertex of } J_{H}\right\}
$$

We decompose $w_{H} \in S^{h}\left(\Omega_{k}\right)$ into $w_{H}=w_{E}+w_{V}$, where $w_{V} \in S^{h}\left(\Omega_{k}\right)$ is a discrete a_{h}^{k}-biharmonic function such that the nodal parameters of w_{V} on $\cup \partial \Omega_{k} \backslash V$ are those of $\Pi_{h} I_{H} E_{h} w_{H}$, and the nodal parameters of w_{V} on V are those of w_{H}. Thus w_{E} is a discrete a_{h}^{k}-biharmonic function in Ω_{k} for each k, and the nodal parameters of $I_{H} E_{h} w_{E}$ vanish at all nodes of coarse meshes. In virtue of this decomposition, we now define the bilinear form $B(\cdot, \cdot)$ as follows

$$
\begin{align*}
B(w, \phi)= & a_{h}\left(w_{P}, \phi_{P}\right)+\sum_{\Gamma_{i j}}\left\{\left\langle\partial_{s} \bar{w}_{E}, \partial_{s} \bar{\phi}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}_{E}, \partial_{n} \bar{\phi}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}\right\} \\
& +\sum_{\Gamma_{i j}}\left\{\left(w_{V}\left(v_{i}\right)-w_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right)\right. \\
& \cdot\left(\phi_{V}\left(v_{i}\right)-\phi_{V}\left(v_{j}\right)-D \bar{\phi}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right) H^{-2} \\
& \left.+\left(D \bar{w}_{V}\left(v_{i}\right)-D \bar{w}_{V}\left(v_{j}\right)\right)\left(D \bar{\phi}_{V}\left(v_{i}\right)-D \bar{\phi}_{V}\left(v_{j}\right)\right)\right\} \tag{2.12}
\end{align*}
$$

where and from now on $\bar{v}=E_{h} v$, and $\langle\cdot, \cdot\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}$ means $H_{00}^{1 / 2}\left(\Gamma_{i j}\right)$-inner product which is defined by

$$
\begin{aligned}
\langle v, w\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}= & \int_{\Gamma_{i j}} \int_{\Gamma_{i j}} \frac{(v(x)-v(y))(w(x)-w(y))}{|x-y|^{2}} d s(x) d s(y) \\
& +\int_{\Gamma_{i j}} v(x) w(x)\left(\frac{1}{\left|x-v_{i}\right|}+\frac{1}{\left|x-v_{j}\right|}\right) d s(x), v, w \in H_{00}^{1 / 2}\left(\Gamma_{i j}\right)
\end{aligned}
$$

We shall demonstrate how the linear system $B w=g$ can be solved efficiently.
Given g, the problem of solving $B w=g$ reduces to finding the functions w_{P} and w_{H}. The function w_{P} restricted to Ω_{k} satisfies

$$
\begin{equation*}
a_{h}^{k}\left(w_{P}, \phi\right)=(g, \phi) \text { for all } \phi \in S_{0}^{h}\left(\Omega_{k}\right) \tag{2.13}
\end{equation*}
$$

Thus it can be obtained by solving in parallel the corresponding biharmonic Dirichlet problem (2.13) on each subdomain. With w_{P} known, we are left with the equation

$$
\begin{align*}
& \sum_{\Gamma_{i j}}\left\{\left\langle\partial_{s} \bar{w}_{E}, \partial_{s} \bar{\phi}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}_{E}, \partial_{n} \bar{\phi}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}\right\} \\
&+\sum_{\Gamma_{i j}}\left\{\left(w_{V}\left(v_{i}\right)-w_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right)\right. \\
& \cdot\left(\phi_{V}\left(v_{i}\right)-\phi_{V}\left(v_{j}\right)-D \bar{\phi}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right) H^{-2} \\
&\left.+\left(D \bar{w}_{V}\left(v_{i}\right)-D \bar{w}_{V}\left(v_{j}\right)\right)\left(D \bar{\phi}_{V}\left(v_{i}\right)-D \bar{\phi}_{V}\left(v_{j}\right)\right)\right\} \\
&=(g, \phi)-a_{h}\left(w_{P}, \phi\right) \tag{2.14}
\end{align*}
$$

(The last equality holds since $\left.a_{h}\left(w_{P}, \phi_{H}\right)=0\right)$. Notice that the value of $(g, \phi)-$ $a_{h}\left(w_{P}, \phi\right)$ for each ϕ depends only on the nodal parameters of $\bar{\phi}$ on all $\Gamma_{i j}$. From the
definition of the interpolation operator E_{h}, we see that the value of $(g, \phi)-a_{h}\left(w_{P}, \phi\right)$ for each ϕ depends only on the nodal parameters of ϕ on all $\Gamma_{i j}$. Thus (2.14) gives rise to a set of equations which can be treated as follows: for each $\Gamma_{i j}$, choose ϕ in a subspace of $S_{0}^{h}(\Omega)$ such that the nodal parameters of ϕ vanish in the all interior mesh points of every Ω_{k} and those of $\bar{\phi}$ vanish on all other $\Gamma_{i j}$. Thus, on this subspace, (2.14) decouples into independent problems of finding $\bar{w}_{E} \in A R_{0}^{h}\left(\Gamma_{i j}\right), I_{H} \bar{w}_{E}=0$ given by

$$
\begin{align*}
& \left\langle\partial_{s} \bar{w}_{E}, \partial_{s} \bar{\phi}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}_{E}, \partial_{n} \bar{\phi}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)} \\
& \quad=(g, \phi)-a_{h}\left(w_{P}, \phi\right), \forall \phi \in S_{0}^{h}(\Omega), I_{H} \bar{\phi}=0, \bar{\phi} \in A R_{0}^{h}\left(\Gamma_{i j}\right) \tag{2.15}
\end{align*}
$$

for each $\Gamma_{i j}$. Note that these are local problems with unknowns corresponding to the nodes on $\Gamma_{i j}$ and may be solved in parallel.

Next we solve for \bar{w}_{V} on the edges. We consider the subspace $\left\{\phi \in S_{0}^{h}(\Omega)\right.$; nodal parameters of $\bar{\phi}$ on $\cup \partial \Omega_{i} \backslash V=$ those of $\Pi_{h} I_{H} \bar{\phi}$ on $\cup \partial \Omega_{i} \backslash V$, those of ϕ on all Ω_{i} vanish, then (2.14) reduces to

$$
\begin{align*}
& \sum_{\Gamma_{i j}}\left\{\left(w_{V}\left(v_{i}\right)-w_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right) \cdot\left(\phi_{V}\left(v_{i}\right)-\phi_{V}\left(v_{j}\right)-D \bar{\phi}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right) H^{-2}\right. \\
& \left.\quad+\left(D \bar{w}_{V}\left(v_{i}\right)-D \bar{w}_{V}\left(v_{j}\right)\right)\left(D \bar{\phi}_{V}\left(v_{i}\right)-D \bar{\phi}_{V}\left(v_{j}\right)\right)\right\} \\
& =(g, \phi)-a_{h}\left(w_{P}, \phi\right) \tag{2.16}
\end{align*}
$$

The nodal parameters of \bar{w}_{V} at nodes of $T \in J_{H}$ determine those of w_{V} on all edges $\Gamma_{i j}$, and hence $w_{H}=w_{E}+w_{V}$ is known on all edges $\Gamma_{i j}$.

The last step consists of determining w_{H} in each Ω_{k} so that

$$
\begin{equation*}
a_{h}^{k}\left(w_{H}, \phi\right)=0 \text { for } \phi \in S_{0}^{h}\left(\Omega_{k}\right) \tag{2.17}
\end{equation*}
$$

This problem is similar to (2.13), which can also be solved in parallel on each subdomain. Hence the solution of $B w=g$ is determined by $w=w_{P}+w_{H}$.

We summarize the process by outlining the steps for obtaining the solution of

$$
B(w, \phi)=(g, \phi) \text { for all } \phi \in S_{0}^{h}(\Omega)
$$

and hence for computing the action of B^{-1}.
Algorithm.

1. Find w_{P} by solving biharmonic Dirichlet problems on subdomains. The solution of each individual Dirichlet problem on subdomains may be done in parallel.
2. Find \bar{w}_{E} on $\Gamma_{i j}$ by solving one-dimensional equation on each $\Gamma_{i j}$, which may be done in parallel.
3. Find \bar{w}_{V} on $\bigcup \Gamma_{i j}$ by solving a coarse mesh equation and then extending it to all edges $\Gamma_{i j}$ by operator Π_{h}.
4. Find w_{H} by extending the nodal values of $w_{E}+w_{V}$ on $\cup \Gamma_{i j}$ to all subdomains. As step 1, the solution may be done in parallel.

3. Estimates of the Condition Number

We have the following theorem.
Theorem 1. There are positive constants λ_{0}, λ_{1} and C such that

$$
\begin{equation*}
\lambda_{0} B(w, w) \leq a_{h}(w, w) \leq \lambda_{1} B(w, w), \quad \forall w \in S_{0}^{h}(\Omega), \tag{3.1}
\end{equation*}
$$

where $\lambda_{1} / \lambda_{0} \leq C\left(1+\log ^{2} H / h\right)$. If all of the nodes of Ω_{k} lie on $\partial \Omega$, then $\lambda_{1} / \lambda_{0} \leq C$.
It means that the condition number grows at most like $\left(1+\log ^{2} H / h\right)$ as h tends to zero so that the preconditioned iteration converges rapidly.

The theorem will be proved in the last of the section.
Set $\mathbf{Q}=\left\{v \in H^{2}\left(\Omega_{i}\right) ;\right.$ there exist an $v_{h} \in A R_{h}\left(\Omega_{i}\right),\left.v\right|_{\partial \Omega_{i}}=\left.v_{h}\right|_{\partial \Omega_{i}},\left.\partial_{n} v\right|_{\partial \Omega_{i}}=$ $\left.\left.\partial_{n} v_{h}\right|_{\partial \Omega_{i}}\right\}$. Let $\Pi_{h}^{\prime}: \mathbf{Q} \longrightarrow S^{h}(\Omega)$ be defined by (cf. Figure 2.1)

$$
\left\{\begin{array}{l}
\Pi_{h}^{\prime} v(p)=v(p), \quad \forall p \text { vertex of } T, T \in J_{h}, T \subset \Omega_{i} \tag{3.2}\\
\partial_{n} \Pi_{h}^{\prime} v(m)=\partial_{n} v(m), \text { if } m \in \partial \Omega_{i} \\
\partial_{n} \Pi_{h}^{\prime} v(m)=\frac{1}{|e|} \int_{e} v(s) d s, \text { if } m \in \Omega_{i}
\end{array}\right.
$$

here m is the midpoint of an edge $e, e \subset \Omega_{i}$.
Proposition 3. For the operator Π_{h}^{\prime} we have the following stability estimate:

$$
\begin{equation*}
\left|\Pi_{h}^{\prime} v\right|_{2, T} \leq C|v|_{2, T}, \quad \forall v \in \mathbf{Q}, \quad \forall T \in J_{h} \tag{3.3}
\end{equation*}
$$

For completeness we shall include a proof of Proposition 3 at the end of this section.
The derivation of the estimates in this section requires the use of various norms defined on the subdomain boundaries. Let Ω_{i} be a subdomain of J_{h} (as defined in section 2) and β_{i} be the set of indices $j k$ with $\Gamma_{j k} \subset \partial \Omega_{i}$, hence $\partial \Omega_{i}=\cup_{j k \in \beta_{i}} \Gamma_{j k}$ or $j k \in \beta_{i}$. The Sobolev space of order one half on $\partial \Omega_{i}$ will be denoted $H^{1 / 2}\left(\partial \Omega_{i}\right)$ and is defined in $[4,7]$. Define the weight norm on $H^{1 / 2}\left(\partial \Omega_{i}\right)$ as [1] by

$$
\begin{equation*}
\|w\|_{1 / 2, \partial \Omega_{i}}=\left(\int_{\partial \Omega_{i}} \int_{\partial \Omega_{i}} \frac{(w(x)-w(y))^{2}}{|x-y|^{2}} d s(x) d s(y)+H^{-1}|w|_{L^{2}\left(\partial \Omega_{i}\right)}^{2}\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

where s is arc length along $\partial \Omega_{i}$. For a smooth function v on $\partial \Omega_{i}$ with support contained in one of the edges $\Gamma_{j k} \subset \partial \Omega_{i}$, define $\|v\|_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}$ by the square root of

$$
\int_{\Gamma_{j k}} \int_{\Gamma_{j k}} \frac{(w(x)-w(y))^{2}}{|x-y|^{2}} d s(x) d s(y)+\int_{\Gamma_{j k}}\left(\frac{(w(x))^{2}}{\left|x-v_{j}\right|}+\frac{(w(x))^{2}}{\left|x-v_{k}\right|}\right) d s(x) .
$$

Similarly we define the weight norm of $H^{3 / 2}\left(\partial \Omega_{i}\right)$ as follows

$$
\begin{aligned}
\|u\|_{H^{3 / 2}\left(\partial \Omega_{i}\right)}^{2}= & H^{2} \int_{\partial \Omega_{i}} \int_{\partial \Omega_{i}} \frac{\left(\partial_{s} w(x)-\partial_{s} w(y)\right)^{2}}{|x-y|^{2}} d s(x) d s(y) \\
& +H \int_{\partial \Omega_{i}}\left(\partial_{s} w(x)\right)^{2} d s(x)+\frac{1}{H} \int_{\partial \Omega_{i}}(w(x))^{2} d s(x) .
\end{aligned}
$$

and the weight norm of $H_{00}^{3 / 2}\left(\Gamma_{j k}\right)$ as

$$
\begin{aligned}
\|u\|_{H_{00}^{3 / 2}\left(\Gamma_{j k}\right)}^{2}= & H^{2} \int_{\Gamma_{j k}} \int_{\Gamma_{j k}} \frac{\left|\partial_{s} u(x)-\partial_{s} u(y)\right|^{2}}{|x-y|^{2}} d s(x) d s(y) \\
& +H^{2} \int_{\Gamma_{j k}}\left|\partial_{s} u\right|^{2}\left(\frac{1}{\left|x-v_{j}\right|}+\frac{1}{\left|x-v_{k}\right|}\right) d s(x)
\end{aligned}
$$

We shall need several lemmas which will be used in the proof of the main theorem.
Lemma 1. Let $w \in S^{h}(\Omega)$ be discrete a_{h}^{i}-biharmonic i.e.

$$
\begin{equation*}
a_{h}^{i}(w, v)=0, \forall v \in S_{0}^{h}\left(\Omega_{i}\right) \tag{3.5}
\end{equation*}
$$

and $I_{H} \bar{w}=0$, then

$$
\begin{equation*}
a_{h}^{i}(w, w) \leq C \sum_{j k \in \beta_{i}}\left\{\left\langle\partial_{s} \bar{w}, \partial_{s} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}+\left\langle\partial_{n} \bar{w}, \partial_{n} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}\right\}, \tag{3.6}
\end{equation*}
$$

where $j k \in \beta_{i}$ means that $\Gamma_{j k}$ is an edge of Ω_{i}, and $\bar{w}=E_{h} w$.
Proof. It is not difficult to see (by scaling Ω_{i} to unite size) that it suffices to prove (3.6) under the assumption that Ω_{i} is a standard element. Let $\Gamma_{j k}$ be any edge of Ω_{i} and let $w_{j k} \in S_{0}^{h}(\Omega)$ be the discrete a_{h}^{i}-biharmonic function for Morley element such that

$$
\begin{equation*}
a_{h}^{i}\left(w_{j k}, v\right)=0, \forall v \in S_{0}^{h}\left(\Omega_{i}\right), w_{j k} \in S_{0}^{h}(\Omega) \tag{3.7}
\end{equation*}
$$

whose nodal parameters on $\Gamma_{j k}$ are equal to those of $\Pi_{h} \bar{w}$ on $\Gamma_{j k}$ and vanish on all the other edges of $\partial \Omega_{i}, i=1, \cdots, N$. Clearly, since $I_{H} \bar{w}=0,\left.w\right|_{\Omega_{i}}=\left.\sum_{j k \in \beta_{i}} w_{j k}\right|_{\Omega_{i}}$. It follows from the triangle inequality that

$$
\begin{equation*}
a_{h}^{i}(w, w) \leq C \sum_{j k \in \beta_{i}} a_{h}^{i}\left(w_{j k}, w_{j k}\right) \tag{3.8}
\end{equation*}
$$

For each $w_{j k}$, let $\left.w^{j k}\right|_{\Omega_{i}} \in H^{2}\left(\Omega_{i}\right), i=1, \cdots, N$, be the biharmonic function such that

$$
\left\{\begin{array}{l}
a\left(w^{j k}, v\right)=0, \forall v \in H_{0}^{2}\left(\Omega_{i}\right) \tag{3.9}\\
w^{j k}=\bar{w}, \partial_{n} w^{j k}=\partial_{n} \bar{w} \text { on } \Gamma_{j k} \\
w^{j k}=\partial_{n} w^{j k}=0 \text { on } \partial \Omega_{i} \backslash \Gamma_{j k}
\end{array}\right.
$$

and $w^{j k}=\partial_{n} w^{j k}=0$ on all the other edges of $\partial \Omega_{i}, i=1, \cdots, N$. Since $w_{j k} \in S^{h}(\Omega)$ is a discrete a_{h}^{i}-biharmonic function and nodal parameters of $\Pi_{h}^{\prime} w^{j k}$ are equal to those of $w_{j k}$ on $\partial \Omega_{i}$, we obtain that

$$
\begin{equation*}
\sum_{j k \in \beta_{i}} a_{h}^{i}\left(w_{j k}, w_{j k}\right) \leq C \sum_{j k \in \beta_{i}} a_{h}^{i}\left(\Pi_{h}^{\prime} w^{j k}, \Pi_{h}^{\prime} w^{j k}\right) \tag{3.10}
\end{equation*}
$$

It follows from (3.8)-(3.10) and the stability estimate (3.3) that

$$
\begin{equation*}
a_{h}^{i}(w, w) \leq \sum_{j k \in \beta_{i}} a_{h}^{i}\left(\Pi_{h}^{\prime} w^{j k}, \Pi_{h}^{\prime} w^{j k}\right) \leq C \sum_{j k \in \beta_{i}} a_{h}^{i}\left(w^{j k}, w^{j k}\right) \tag{3.11}
\end{equation*}
$$

Note that $D^{\alpha} w^{j k}(|\alpha| \leq 1)$ vanish on $\partial \Omega_{i} \backslash \Gamma_{j k}$. Now using a well-known priori inequality $[4,7]$, an inverse property and Poincaré inequality, we see that

$$
\begin{align*}
\sum_{j k \in \beta_{i}} a_{h}^{i}\left(w^{j k}, w^{j k}\right) & \leq C \sum_{j k \in \beta_{i}}\left(\left\|w^{j k}\right\|_{H^{3 / 2}\left(\partial \Omega_{i}\right)}^{2}+\left\|\partial_{n} w^{j k}\right\|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2}\right) \\
& \leq C \sum_{j k \in \beta_{i}}\left(\left\|w^{j k}\right\|_{H_{00}^{3 / 2}\left(\Gamma_{j k}\right)}^{2}+\left\|\partial_{n} w^{j k}\right\|_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}^{2}\right) \\
& \leq C \sum_{j k \in \beta_{i}}\left\{\left\langle\partial_{s} \bar{w}, \partial_{s} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}+\left\langle\partial_{n} \bar{w}, \partial_{n} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}\right\} \tag{3.12}
\end{align*}
$$

(3.6) follows from (3.11)-(3.12). The proof is complete. \#

Lemma 2.

$$
\begin{align*}
a_{h}^{i}\left(w_{V}, w_{V}\right) \leq & C \sum_{j k \in \beta_{i}}\left\{\left(w_{V}\left(v_{j}\right)-w_{V}\left(v_{k}\right)-D \bar{w}_{V}\left(v_{j}\right)\left(v_{j}-v_{k}\right)\right)^{2} H^{-2}\right. \\
& +\left(D \bar{w}_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{k}\right)\right\}^{2} \tag{3.13}
\end{align*}
$$

Proof. Let $\tilde{w} \in S_{0}^{h}(\Omega)$ be the discrete biharmonic function such that

$$
\begin{equation*}
a_{h}^{i}(\tilde{w}, v)=0, \forall v \in S_{0}^{h}(\Omega) \tag{3.14}
\end{equation*}
$$

and the nodal parameters of $\left.\tilde{w}\right|_{\partial \Omega_{i}}=$ those of $w_{V}-\Pi_{h} I_{H} E_{h} w_{V}$. Since $w_{V}-\tilde{w} \in S^{h}(\Omega)$ is also a discrete biharmonic function and the nodal parameters of $w_{V}-\tilde{w}$ on $\partial \Omega_{i}$ are equal to those of $\Pi_{h} I_{H} E_{h} w_{V}$ on $\partial \Omega_{i}$, we have

$$
\begin{align*}
a_{h}^{i}\left(w_{V}, w_{V}\right) & \leq 2 a_{h}^{i}(\tilde{w}, \tilde{w})+2 a_{h}^{i}\left(w_{V}-\tilde{w}, w_{V}-\tilde{w}\right) \\
& \leq C\left(a_{h}^{i}(\tilde{w}, \tilde{w})+a_{h}^{i}\left(\Pi_{h} I_{H} E_{h} w_{V}, \Pi_{h} I_{H} E_{h} w_{V}\right)\right) \tag{3.15}
\end{align*}
$$

Set $g \in S^{h}(\Omega)$ such that the parameters of g on $\cup \Omega_{i}$ vanish, and those of g on $\cup \partial \Omega_{i}$ are equal to those of $w_{V}-\Pi_{h} I_{H} E_{h} w_{V}$ on $\cup \partial \Omega_{i}$. Then we have

$$
\begin{equation*}
a_{h}^{i}(\tilde{w}, \tilde{w}) \leq a_{h}^{i}(g, g) \leq C \sum_{\substack{\tau \in S \\ \tau \subset \Omega_{i}}}|g|_{2, \tau}^{2} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\left\{T \in J_{h} ; \text { there exists a vertex } p \text { of } J_{H} \text { such that } e_{p} \in \partial T\right\} \tag{3.17}
\end{equation*}
$$

To analyze the right-hand of (3.16), we first consider the case that for $\tau \in S, \partial \tau$ contains only one vertex p in (3.17). In this case, we have

$$
\begin{align*}
|g|_{2, \tau}^{2} & \leq C\left(\frac{\partial g}{\partial n}\left(e_{p}\right)-\frac{\partial g^{I}}{\partial n}\left(e_{p}\right)\right)^{2} \\
& \leq C\left[\left(\partial_{n} I_{H} E_{h} w_{V}(p)-\partial_{n} I_{H} E_{h} w_{V}\left(e_{p}\right)\right)^{2}+\left|\partial_{n} g^{I}\left(e_{p}\right)\right|^{2}\right] \\
& \leq C\left(\left|I_{H} \bar{w}_{V}\right|_{2, \tau}^{2}+\left|\frac{\partial g^{I}}{\partial n}\left(e_{p}\right)\right|^{2}\right) \tag{3.18}
\end{align*}
$$

With the definition of the operator E_{h} in (2.6) and (2.7), and that of the operator I_{H} in (2.10), we have

$$
\begin{aligned}
g\left(e_{p}^{\prime}\right) & =w_{V}\left(e_{p}^{\prime}\right)-I_{H} \bar{w}_{V}\left(e_{p}^{\prime}\right)=\left(\partial_{p e_{p}^{\prime}} I_{H} \bar{w}_{V}(p) \cdot p e_{p}^{\prime}+I_{H} \bar{w}_{V}(p)\right)-I_{H} \bar{w}_{V}\left(e_{p}^{\prime}\right) \\
g(p) & =g(w)=0(\text { cf. Figure } 2.1)
\end{aligned}
$$

then we can easily show that

$$
\left|g\left(e_{p}^{\prime}\right)-g(p)\right| \leq C h\left|I_{H} \bar{w}_{V}\right|_{2, \tau}
$$

and hence

$$
\left|\frac{\partial g^{I}}{\partial n}\left(e_{p}\right)\right| \leq C h\left|I_{H} \bar{w}_{V}\right|_{2, \tau}
$$

Therefore,

$$
\begin{align*}
|g|_{2, \tau}^{2} & \leq C\left|\frac{\partial g}{\partial n}\left(e_{p}\right)-\frac{\partial g^{I}}{\partial n}\left(e_{p}\right)\right|^{2} \leq C\left|I_{H} \bar{w}_{V}\right|_{2, \tau}^{2}+C\left|\frac{\partial g^{I}}{\partial n}\left(e_{p}\right)\right|^{2} \\
& \leq C\left|I_{H} \bar{w}_{V}\right|_{2, \tau}^{2} . \tag{3.19}
\end{align*}
$$

For other cases of $\tau \in S$, we can prove similarly that (3.19) holds.
Since the number of τ in (3.16) is not larger than 3 , we obtain that

$$
\begin{equation*}
a_{h}^{i}(\tilde{w}, \tilde{w}) \leq C a_{h}^{i}\left(I_{H} \bar{w}_{V}, I_{H} \bar{w}_{V}\right) \tag{3.20}
\end{equation*}
$$

(3.13) follows from $(3.15),(3.16),(3.19)$ and (2.11). This completes the proof of the lemma 2. \#

Lemma 3. Let $w \in S_{0}^{h}(\Omega)$. Then
(i) if there exists $p_{\alpha} \in \bar{\Omega}_{i}$ such that $D^{\alpha} \bar{w}\left(p_{\alpha}\right)=0, \forall|\alpha| \leq 1$, then we have

$$
\begin{equation*}
\max _{\substack{e \in J_{h} \\ e \subset \Omega_{i}}}\|\nabla w\|_{L^{\infty}(e)}^{2} \leq C \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi}(1+\log (H / h))|w|_{2, h, \Omega_{j}}^{2} \tag{3.21}
\end{equation*}
$$

(ii)

$$
\begin{gather*}
\sum_{j k \in \beta_{i}}\left\{\left(w\left(v_{j}\right)-w\left(v_{k}\right)-D \bar{w}\left(v_{j}\right)\left(v_{j}-v_{k}\right)\right)^{2} H^{-2}+\left(D \bar{w}\left(v_{j}\right)-D \bar{w}\left(v_{k}\right)\right)^{2}\right\} \\
\leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq 9 \phi} a_{h}^{j}(w, w) \tag{3.22}
\end{gather*}
$$

The proof can be given by the arguments similar to those of lemma 3.5 in [1].
Lemma 4. Let $w \in S^{h}(\Omega)$ satisfy $I_{H} \bar{w}=0$ and let $w_{L} \in S^{h}(\Omega)$ be a discrete a_{h}^{i}-biharmonic function mentioned in Lemma 1 and the nodal parameters of \bar{w}_{L} on $\cup \partial \Omega_{i} \backslash V$ are equal to those of $\Pi_{h} I_{H} \bar{w}_{L}$ on $\cup \partial \Omega_{i} \backslash V$. Then we have

$$
\begin{align*}
& \sum_{j k \in \beta_{i}}\left\{\left\langle\partial_{s} \bar{w}, \partial_{s} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}, \partial_{n} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}\right\} \\
\leq & C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.23}
\end{align*}
$$

Proof. We shall first prove (3.23) in the case that $w_{L}=0$. Let $\Gamma_{j k}$ be any edge of Ω_{i}. We have

$$
\begin{align*}
&\left\langle\partial_{s} \bar{w}, \partial_{s} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}, \partial_{n} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)} \leq C\left(\left|\partial_{x} \bar{w}\right|_{1 / 2, \partial \Omega_{i}}^{2}+\left|\partial_{y} \bar{w}\right|_{1 / 2, \partial \Omega_{i}}^{2}\right) \\
&+\left\{\int_{\Gamma_{j k}}\left(\frac{\left|\partial_{x} \bar{w}\right|^{2}}{\left|x-v_{k}\right|}+\frac{\left|\partial_{x} \bar{w}\right|^{2}}{\left|x-v_{j}\right|}+\frac{\left|\partial_{y} \bar{w}\right|^{2}}{\left|x-v_{k}\right|}+\frac{\left|\partial_{y} \bar{w}\right|^{2}}{\left|x-v_{j}\right|}\right) d s\right\} \\
& \equiv I+I(\bar{w}) . \tag{3.24}
\end{align*}
$$

By the argument similar to that of lemma 3.3 in [1] and (2.8) we can prove that

$$
\begin{equation*}
I \leq C(1+\log H / h) a_{h}^{i}(\bar{w}, \bar{w}) \leq C \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi}(1+\log H / h) a_{h}^{j}(w, w) . \tag{3.25}
\end{equation*}
$$

Since $I_{H} \bar{w}=0$, by the argument similar to (3.25) in [1], lemma 3 and (2.8) we have

$$
\begin{align*}
I(\bar{w}) & \leq \int_{\Gamma_{j k}}\left(\frac{\left|\partial_{x} \bar{w}\right|^{2}}{\left|x-v_{k}\right|}+\frac{\left|\partial_{x} \bar{w}\right|^{2}}{\left|x-v_{j}\right|}+\frac{\left|\partial_{y} \bar{w}\right|^{2}}{\left|x-v_{k}\right|}+\frac{\left|\partial_{y} \bar{w}\right|^{2}}{\left|x-v_{j}\right|}\right) d s \\
& \leq C(1+\log H / h)\left(\left|\partial_{x} \bar{w}\right|_{L^{\infty}\left(\Gamma_{j k}\right)}^{2}+\left|\partial_{y} \bar{w}\right|_{L^{\infty}\left(\Gamma_{j k}\right)}^{2}\right) \leq C\left(1+\log ^{2} H / h\right) a_{h}^{i}(\bar{w}, \bar{w}) \\
& \leq C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}(w, w) \tag{3.26}
\end{align*}
$$

Hence (3.23) in the case that $w_{L}=0$ follows from (3.24)-(3.26).
To prove (3.23) in the general case, let $w_{\perp} \in S^{h}\left(\Omega_{i}\right)$ be the function in $S^{h}\left(\Omega_{i}\right)$ which satisfies $I_{H}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)=0$ and $a_{h}^{i}\left(w_{\perp}, \phi\right)=0$ for all $\phi \in S_{0}^{h}(\Omega)$ with $I_{H} \bar{\phi}=0$. Note that $I_{H}\left(\bar{w}+\bar{w}_{L}-\bar{w}_{\perp}\right)=0$, apply the special case of (3.23) proved above we can obtain that

$$
\begin{align*}
\left\langle\partial_{s} \bar{w}, \partial_{s} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+ & \left\langle\partial_{n} \bar{w}, \partial_{n} \bar{w}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)} \\
\leq & 2\left\langle\partial_{s}\left(\bar{w}+\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{s}\left(\bar{w}+\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)} \\
& +2\left\langle\partial_{n}\left(\bar{w}+\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{n}\left(\bar{w}+\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)} \\
& +2\left\langle\partial_{s}\left(\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{s}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)} \\
& +2\left\langle\partial_{n}\left(\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{n}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)} \\
\leq & C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i \neq \phi}} a_{h}^{j}\left(w+w_{L}-w_{\perp}, w+w_{L}-w_{\perp}\right)+\Lambda \\
\leq & C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i \neq \phi}} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right)+\Lambda, \tag{3.27}
\end{align*}
$$

where

$$
\Lambda \equiv 2\left\langle\partial_{s}\left(\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{s}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)}+2\left\langle\partial_{n}\left(\bar{w}_{L}-\bar{w}_{\perp}\right), \partial_{n}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{j k}\right)} .
$$

It remains to prove that

$$
\begin{equation*}
\Lambda \leq C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.28}
\end{equation*}
$$

Since $I_{H}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)=0$, applying the inequality (3.24) and the subsequent arguments gives

$$
\Lambda \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{L}-w_{\perp}, w_{L}-w_{\perp}\right)+I\left(\bar{w}_{L}-\bar{w}_{\perp}\right),
$$

where $I(\cdot)$ is defined in (3.24). Since w_{\perp} is orthogonal to $w_{L}-w_{\perp}$ with respect to the $a_{h}^{i}(\cdot, \cdot)$-inner products, we have

$$
a_{h}^{j}\left(w_{L}-w_{\perp}, w_{L}-w_{\perp}\right) \leq a_{h}^{i}\left(w_{L}, w_{L}\right)
$$

and hence we obtain that

$$
\begin{equation*}
\Lambda \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{L}, w_{L}\right)+I\left(\bar{w}_{L}-\bar{w}_{\perp}\right) . \tag{3.29}
\end{equation*}
$$

Since $w_{L} \in S^{h}(\Omega)$ is a discrete a^{i}-biharmonic function and $I_{H} \bar{w}=0$, by the arguments similar to those in Lemma 2, and Lemma 3 we have

$$
\begin{aligned}
\sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{L}, w_{L}\right) \leq & C \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(\Pi_{h} I_{H} \bar{w}_{L}, \Pi_{h} I_{H} \bar{w}_{L}\right) \leq C \sum_{\bar{\Omega}_{l} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{l}\left(I_{H} \bar{w}_{L}, I_{H} \bar{w}_{L}\right) \\
\leq & C \sum_{\bar{\Omega}_{l} \cap \bar{\Omega}_{i} \neq \phi} \sum_{j k \in \beta_{l}}\left\{\left(w_{L}\left(v_{j}\right)-w_{L}\left(v_{k}\right)-D \bar{w}_{L}\left(v_{j}\right)\left(v_{j}-v_{k}\right)\right)^{2} H^{-2}\right. \\
& \left.+\left(D \bar{w}_{L}\left(v_{j}\right)-D \bar{w}_{L}\left(v_{k}\right)\right)^{2}\right\} \\
\leq & C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{j}\left(w+w_{L}, w+w_{L}\right) .
\end{aligned}
$$

Combining this inequality with (3.29) yields

$$
\begin{equation*}
\Lambda \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right)+I\left(\bar{w}_{L}-\bar{w}_{\perp}\right) . \tag{3.30}
\end{equation*}
$$

Therefore, in order to complete the proof of (3.28), it suffices to show that

$$
\begin{equation*}
I\left(\bar{w}_{L}-\bar{w}_{\perp}\right) \leq C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.31}
\end{equation*}
$$

We write $I\left(\bar{w}_{L}-\bar{w}_{\perp}\right)$ as follows

$$
\begin{equation*}
I\left(\bar{w}_{L}-\bar{w}_{\perp}\right)=I_{11}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)+I_{12}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)+I_{21}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)+I_{22}\left(\bar{w}_{L}-\bar{w}_{\perp}\right) \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{11}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)=\int_{\Gamma_{j k}} \frac{\left|\partial_{x}\left(\bar{w}_{L}-\bar{w}_{\perp}\right)\right|^{2}}{\left|x-v_{j}\right|} d s \tag{3.33}
\end{equation*}
$$

and the rest terms of the right-hand side of (3.32) are similar to that of (3.33).
By the argument similar to that of (3.26) and the fact that

$$
a_{h}^{i}\left(w_{\perp}, w_{\perp}\right) \leq a_{h}^{i}\left(w+w_{L}, w+w_{L}\right)
$$

we have

$$
\begin{align*}
I_{11}\left(\bar{w}_{L}-\bar{w}_{\perp}\right) \leq & \leq C \int_{\Gamma_{j k}} \frac{\left|\partial_{x} \bar{w}_{\perp}-\partial_{x} \bar{w}_{\perp}\left(v_{j}\right)\right|^{2}}{\left|x-v_{j}\right|} d s+C \int_{\Gamma_{j k}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} \bar{w}_{L}\left(v_{j}\right)\right|^{2}}{\left|x-v_{j}\right|} d s \\
& \leq C \int_{\Gamma_{j k}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} \bar{w}_{L}\left(v_{j}\right)\right|^{2}}{\left|x-v_{j}\right|} d s+C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{\perp}, w_{\perp}\right) \\
& \leq C \int_{\Gamma_{j k}} \frac{\left.\mid \partial_{x} \bar{w}_{L}-\partial_{x} \bar{w}_{L}\left(v_{j}\right)\right)\left.\right|^{2}}{\left|x-v_{j}\right|} d s \\
& +C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.34}
\end{align*}
$$

By the triangle inequality we obtain that

$$
\begin{align*}
\int_{\Gamma_{j k}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} \bar{w}_{L}\left(v_{j}\right)\right|^{2}}{\left|x-v_{j}\right|} d s & \leq 2 \int_{\Gamma_{j k}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} I_{H} \bar{w}_{L}\right|^{2}}{\left|x-v_{j}\right|} d s \\
& +2 \int_{\Gamma_{j k}} \frac{\left|\partial_{x} I_{H} \bar{w}_{L}-\partial_{x} I_{H} \bar{w}_{L}\left(v_{k}\right)\right|^{2}}{\left|x-v_{j}\right|} d s=I_{1}+I_{2} . \tag{3.35}
\end{align*}
$$

Without loss of generality, we assume that v_{j} is the origin and that $\Gamma_{j k}$ is the line segment with $x_{1}=0$ and $x_{2} \in[0, Y]$. Let the vertices of $\Gamma_{j k}$ be y_{0}, \cdots, y_{l+1} such that $0=y_{0}<y_{1}<\cdots<y_{l+1}=Y$. Then

$$
\begin{align*}
I_{1}= & \sum_{m=0}^{l} \int_{y_{m}}^{y_{m+1}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} I_{H} \bar{w}_{L}\right|^{2}}{y} d s \leq C(1+\log H / h) a_{h}^{i}\left(\bar{w}_{L}-I_{H} \bar{w}_{L}, \bar{w}_{L}-I_{H} \bar{w}_{L}\right) \\
& +\sum_{m=1}^{l-1} \int_{y_{m}}^{y_{m+1}} \frac{\left|\partial_{x} \bar{w}_{L}-\partial_{x} I_{H} \bar{w}_{L}\right|^{2}}{y} d s \equiv J_{1}+J_{2} . \tag{3.36}
\end{align*}
$$

By the argument similar to (3.30), the fact that $I_{H} \bar{w}=0$, and (3.22) in Lemma 3, we have

$$
\begin{align*}
J_{1} \leq & C(1+\log H / h) \\
& \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{L}, w_{L}\right) \\
& +C(1+\log H / h) a_{h}^{i}\left(I_{H}\left(\bar{w}_{L}+\bar{w}\right), I_{H}\left(\bar{w}_{L}+\bar{w}\right)\right) \tag{3.37}\\
\leq & C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{L}, w_{L}\right) .
\end{align*}
$$

From the definition of w_{L}, we have

$$
\begin{equation*}
J_{2}=\sum_{m=1}^{l-1} \int_{y_{m}}^{y_{m+1}} \frac{\left|\partial_{x} E_{h} \Pi_{h} I_{H} \bar{w}_{L}-\partial_{x} I_{H} \bar{w}_{L}\right|^{2}}{y} d s \tag{3.38}
\end{equation*}
$$

where Π_{h} is the restriction of the nodal interpolation operator for Morley element on Ω_{i}. We can easily show that

$$
\begin{equation*}
J_{2} \leq C a_{h}^{i}\left(I_{H} \bar{w}_{L}, I_{H} \bar{w}_{L}\right) \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) \tag{3.39}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
I_{1} \leq J_{1}+J_{2} \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.40}
\end{equation*}
$$

With the mean theorem and the inverse estimate we can prove that

$$
\begin{equation*}
I_{2} \leq C\left|I_{H} \bar{w}_{L}\right|_{2, \Omega_{i}}^{2} \leq C(1+\log H / h) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.41}
\end{equation*}
$$

From (3.34),(3.35), (3.40) and (3.41) we have

$$
\begin{equation*}
I_{11}\left(\bar{w}_{L}-\bar{w}_{\perp}\right) \leq C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w+w_{L}, w+w_{L}\right) . \tag{3.42}
\end{equation*}
$$

We have the similar estimates for the rest terms of $I\left(\bar{w}_{L}-\bar{w}_{\perp}\right)$ on the right side of (3.32). Hence (3.31) holds. This completes the proof. \#

Proof of Theorem 1. As in section 2, we decompose $w \in S_{0}^{h}(\Omega)$ into $w=w_{P}+$ $w_{H}+w_{V}$. With $w_{H}=w_{E}+w_{V}$, we have (as noted in section 2)

$$
a_{h}(w, w)=a_{h}\left(w_{P}, w_{P}\right)+a_{h}\left(w_{H}, w_{H}\right)
$$

and

$$
B(w, w)=a_{h}\left(w_{P}, w_{P}\right)+B\left(w_{H}, w_{H}\right) .
$$

Hence, it suffices to compare $a_{h}\left(w_{H}, w_{H}\right)$ and $B\left(w_{H}, w_{H}\right)$. More specifically, the proof will be completed when we have shown that

$$
\begin{equation*}
a_{h}\left(w_{H}, w_{H}\right) \leq C B\left(w_{H}, w_{H}\right) \tag{3.43}
\end{equation*}
$$

and

$$
\begin{equation*}
B\left(w_{H}, w_{H}\right) \leq C\left(1+\log ^{2} H / h\right) a_{h}\left(w_{H}, w_{H}\right) . \tag{3.44}
\end{equation*}
$$

Consider a subdomain Ω_{i}. Using (3.6) and (3.13) yields that

$$
\begin{align*}
a_{h}^{i}\left(w_{H}, w_{H}\right) \leq & 2\left\{a_{h}^{i}\left(w_{E}, w_{E}\right)+a_{h}^{i}\left(w_{V}, w_{V}\right)\right\} \\
\leq & C \sum_{j k \in \beta_{i}}\left\{\left\langle\partial_{s} \bar{w}_{E}, \partial_{s} \bar{w}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right.}+\left\langle\partial_{n} \bar{w}_{E}, \partial_{n} \bar{w}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}\right\} \\
& +C \sum_{j k \in \beta_{i}}\left\{\left(w_{V}\left(v_{j}\right)-w_{V}\left(v_{k}\right)-D \bar{w}_{V}\left(v_{j}\right)\left(v_{j}-v_{k}\right)\right)^{2} H^{-2}\right. \\
& \left.+\left(D \bar{w}_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{k}\right)\right)^{2}\right\}+C \sum_{m}\left(\partial_{n}\left(w_{V}-\left(w_{V}\right)_{I}\right)(m)\right)^{2} . \tag{3.45}
\end{align*}
$$

Summing with respect to i gives (3.43). In view of (3.22) applied to w_{V} (replacing w by w_{V} in (3.22)) and (3.23) applied to w_{E} (replacing w and w_{L} in (3.23) by w_{E} and w_{V}, respectively) and using the fact that $I_{H} \bar{w}_{E}=0$ we have on each Ω_{i},

$$
\sum_{j k \in \beta_{i}}\left\{\left\langle\partial_{s} \bar{w}_{E}, \partial_{s} \bar{w}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}+\left\langle\partial_{n} \bar{w}_{E}, \partial_{n} \bar{w}_{E}\right\rangle_{H_{00}^{1 / 2}\left(\Gamma_{i j}\right)}\right\}
$$

$$
\begin{align*}
& \quad+\sum_{j k \in \beta_{i}}\left\{\left(w_{V}\left(v_{i}\right)-w_{V}\left(v_{j}\right)-D \bar{w}_{V}\left(v_{i}\right)\left(v_{i}-v_{j}\right)\right)^{2} H^{-2}\right. \\
& \left.\left.\quad+\left(D \bar{w}_{V}\left(v_{i}\right)-D \bar{w}_{V}\left(v_{j}\right)\right)^{2}\right\}+\sum_{j} \partial_{n}\left(w_{V}-\left(w_{V}\right)_{I}\right)\left(m_{j}\right)\right)^{2} \\
& \leq \tag{3.46}\\
& \leq C\left(1+\log ^{2} H / h\right) \sum_{\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi} a_{h}^{j}\left(w_{H}, w_{H}\right),
\end{align*}
$$

and summing with respect to i and noting that the number of $\bar{\Omega}_{j} \cap \bar{\Omega}_{i} \neq \phi \leq C$ gives (3.44) which completes the proof of the theorem in the case where interior vertices are present.

In the case without internal cross points, i.e.where all the vertices and edge midpoints of Ω_{i} belong to $\partial \Omega$,the result is trivial. This completes the proof of Theorem 1.

Proof of Proposition 3. To prove Proposition 3 we set $\tilde{\Pi}_{h}$ be an interpolation operator such that

$$
\left\{\begin{array}{l}
\tilde{\Pi}_{h} v(p)=v(p), \quad \forall p \text { vertex of } T, T \in J_{h}, T \subset \Omega_{i} ; \\
\partial_{n} \tilde{\Pi}_{h} v(m)=\frac{1}{|e|} \int_{e} v(s) d s, \text { midpoint } m \text { of } J_{h} .
\end{array}\right.
$$

We can easily show that

$$
\begin{equation*}
\left|\tilde{\Pi}_{h}\right|_{2, T} \leq C|v|_{2, T} \tag{3.47}
\end{equation*}
$$

First, we show that

$$
\begin{equation*}
\left|v(m)-\frac{1}{|e|} \int_{e} v(s) d s\right| \leq C|v|_{H^{1}(\tau)} \tag{3.48}
\end{equation*}
$$

for $v \in H^{1}(\tau),\left.v\right|_{e}$ is a polynomial. Here C depends on degree of the polynomial.
Set $\tilde{v}=v(x)-\frac{1}{|\tau|} \int_{\tau} v d x$. The key point is

$$
\begin{align*}
\int_{e} \int_{e}\left(\frac{v(x)-v(y)}{x-y}\right)^{2} d s(x) d s(y) & =0 \\
& \Longrightarrow v(x)=\frac{1}{|e|} \int_{e} v(x) d s \tag{3.4}\\
& \max _{x \in e}\left|v(x)-\frac{1}{|e|} \int_{e} v(x) d s\right|=0 .
\end{align*}
$$

It follows from (3.49) and a homogeneity argument using reference triangles that

$$
\begin{align*}
\left|v(x)-\frac{1}{|e|} \int_{e} v(x)\right| & =\left|\tilde{v}(x)-\frac{1}{|e|} \int_{e} \tilde{v}(x) d s\right| \leq \max _{x \in e}\left|\tilde{v}(x)-\frac{1}{|e|} \int_{e} \tilde{v}(x) d x\right| \\
& \leq \int_{e} \int_{e}\left(\frac{\tilde{v}(x)-\tilde{v}(y)}{x-y}\right)^{2} d s(x) d s(y) \leq C|\tilde{v}|_{1 / 2, \partial \tau}^{2} . \tag{3.50}
\end{align*}
$$

Therefore, by the trace theorem and Poincaré inequality we obtain

$$
\begin{equation*}
\left|v(x)-\frac{1}{|e|} \int_{e} v(x)\right| \leq C\|\tilde{v}\|_{1, \tau} \leq C|v|_{1, \tau} . \tag{3.51}
\end{equation*}
$$

Second, it follows (3.51) that

$$
\begin{equation*}
\left|\partial_{m} v(m)-\frac{1}{|e|} \int_{e} \frac{\partial v}{\partial n} d s\right| \leq C|v|_{H^{2}(\tau)} \tag{3.52}
\end{equation*}
$$

Finally, from (3.52) we have

$$
\begin{equation*}
\left|\Pi_{h}^{\prime} v-\tilde{\Pi}_{h} v\right|_{H^{2}(\tau)} \leq C\left|\frac{\partial v}{\partial n}(m)-\frac{1}{|e|} \int_{e} \frac{\partial v}{\partial n} v d s\right| \leq C|v|_{H^{2}(\tau)} \tag{3.53}
\end{equation*}
$$

(3.3) follows from (3.53) and (3.47). \#

Remark. We can easily get similar results for many other nonconforming plate elements [6] as well as for various conforming elements.

References

[1] J.H. Bramble, J.E. Pasciak, A.H. Scharz, The construction of preconditioners for elliptic problems by substructuring I, Math. Comp., 47 :175 (1986), 103-134.
[2] S.C. Brenner, A Two-Level Additive Schwarz Preconditioner For Nonconforming Plate Elements, preprint, 1993.
[3] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, Elsevier Science Publishers, (NorthHolland), 1991
[4] P. Grisvard, Elliptic problems in nonsmooth domain, Pitman, 1985.
[5] J. Gu, X. Hu, On an essiential estimate in the analysis of domain decomposition methods, Journal of Comput. Math., 12:2 (1994), 132-137.
[6] P. Lascaux, P. Lesaint, Some nonconforming finite elements for the plate bending problem, RAIRO Anal. Numer., 9 (1975), 9-53.
[7] J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Berlin, Springer, 1972.
[8] Z.C. Shi, On the error estimate for Morley element, Sinica Mathematica, 12 (1990), 113118.
[9] O.B. Widlund, Iterative substructuring methods: Algorithms and Theory for elliptic problem in the plane, In the first International Symposium on Domain Decomposition Methods for Partial Differential Equations, G.R. Glowinski et al.(eds.), SIAM, Philadedpha, 1088, 113-128.
[10] Zhenghui Xie, Domain Decomposition and Multigrid Methods for Nonconforming Plate Elements, Ph.D dissertation, The Institute of Computation Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1996.
[11] X. Zhang, Studies in Domain Decomposition: Multilevel Schwarz methods for the biharmonic discrete problem, Ph D thesis, Courant Institute, Now York University, September, 1991.

[^0]: * Received October 21, 1996.
 ${ }^{1)}$ This work was supported by Chinese National Key Project of Fundamental Research: Methods and Theories in Large-scale Scientific and Engineering Computing.

