
Journal of Computational Mathematics, Vol.16, No.5, 1998, 403–416.

COMPUTATION OF HOPF BRANCHES BIFURCATING FROM
A HOPF/PITCHFORK POINT FOR PROBLEMS WITH

Z2−SYMMETRY∗1)

Bai-sheng Wu
(Department of Mathematics, Jilin University, Changchun 130023, China)

Tassilo Küpper
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Abstract

This paper is concerned with the computation of Hopf branches emanating
from a Hopf/Pitchfork point in a two-parameter nonlinear problem satisfying a Z2-
symmetry condition. Our aim is to present a new approach to the theoretical and
computational analysis of the bifurcating Hopf branches at this singular point by
using the system designed to calculate Hopf points and exploring its symmetry. It
is shown that a Hopf/Pitchfork point is a pitchfork bifurcation point in the system.
Hence standard continuation and branch-switching can be used to compute these
Hopf branches. In addition, an effect method based on the extended system of
the singular points is developed for the computation of branch of secondary (non-
symmetric) Hopf points. The implementation of Newton’s method for solving the
extended system is also discussed. A numerical example is given.

Key words: Hopf/pitchfork point, Z2-symmetry, Hopf point, bifurcation, Extended
system

1. Introduction

This paper is devoted to the calculation of branches of Hopf points which emanate
from a certain singular point of a two parameter nonlinear system

g(x, λ, α) = 0 g : X ×R×R → X (1.1)

where X is a real Hilbert space, λ a bifurcation parameter, α an additional control
parameter, and g is a smooth mapping. We assume

(H1) g is Z2-symmetric: there exists a linear operator s : X → X satisfying (I:
identical operator in X)

s 6= I, s2 = I, sg(x, λ, α) = g(sx, λ, α) for (x, λ, α) ∈ X ×R2. (1.2)

It is well known that (1.2) induces the splitting

X = Xs ⊕Xa, (1.3a)
∗ Received July 18, 1995.
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Xs := {x ∈ X, sx = x}, Xa := {x ∈ X, sx = −x}. (1.3b)

We say that x is symmetric if x ∈ Xs, and antisymmetric if x ∈ Xa.
Equation (1.1) is often studied as a first step towards the understanding of the

evolution equation
dx

dt
= g(x, λ, α). (1.4)

In particular, the transition from steady-state solutions to periodic solutions in (1.4)
typically occurs at a Hopf point. Such a point is usually recognized by the occurrence
of a pair of purely imaginary eigenvalues of gx, the linearization of g with respect to x

of the steady-state equation (1.1).
A Hopf/Pitchfork point (HP-point) (x0, λ0, α0) is defined as a solution with x0 ∈ Xs

of (1.1) where g0
x := gx(x0, λ0, α0) has a pair of simple pure imaginary eigenvalues, and

a simple zero eigenvalue with an antisymmetric eigenvector. In the case of X = Rn and
g(0, λ, α) = 0 for all λ and α, the coalescence of pitchfork and Hopf bifurcation points
for a two-parameter system with Z2-symmetry has been investigated by Langford and
Iooss[8], Guckenheimer and Holmes[5] using Birkhoff normal form, respectively. They
found interesting secondary Hopf bifurcation (Hopf bifurcation on the bifurcating non-
symmetric steady-state solution branch) and, in addition, aperiodic (chaotic) motion
from a periodic orbit in a neighborhood of the degenerate point.

In this paper, we will contribute to the analysis and the computation of Hopf points
near a HP-point, which forms a foundation for understanding the complex dynamics
of (1.4). The main analytical and numerical tool will be the following extended system
(1.5a, b) for Hopf points which was given by Jepson[6], Griewank and Reddien[3]; here
α will be used as a bifurcation parameter:

G(x, φ1, φ2, λ, β, α) :=





g(x, λ, α)
gx(x, λ, α)φ1 − βφ2

gx(x, λ, α)φ2 + βφ1

〈l, φ1〉 − 1
〈l, φ2〉





= 0, (1.5a)

G : X ×X ×X ×R×R×R → X ×X ×X ×R×R := Y. (1.5b)

where 〈·, ·〉 denotes the inner product in X and l ∈ X is a normalizing vector. The
system has already been used to study bifurcation phenomena near a Takens-Bogdanov
point in the cases where symmetry is not broken (Spence, Cliffe and Jepson [10]) and
where symmetry is broken (Wu, Spence and Cliffe[15]), respectively. Following the
preliminaries of Section 2, we devote ourself to a straightforward analysis of the fact
that, under some non-degenerate condition, a HP-point is a pitchfork bifurcation point
in the system G = 0 with respect to α, see Section 3. The analysis relies on the result
on symmetry breaking pitchfork bifurcation in Werner and Spence[12] by defining a
symmetry of (1.5) similar to (1.2). One theoretical by-product of the analysis is that it
gives a self-contained proof for the existence of the branch of secondary (non-symmetric)
Hopf points emanating from a HP-point. This is also useful for numerical computations
-for Hopf points on the symmetric and on the non-symmetric steady-state branches as
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well. Our treatment is different from those of the papers[5,8] and allows x0 6= 0 in a
HP-point.

We will give in Section 4 an extended system determining HP-points, show how
to implement Newton’s method to solve it efficiently and point out how to jump onto
the branch of secondary Hopf points by the system. In Section 5 we will illustrate
our method with an example where we compute symmetric and non-symmetric Hopf
branches intersecting at a HP-point.

2. Preliminaries

Throughout the paper, we assume, in addition to hypothesis (H1), that the following
hypotheses hold.

(H2) There exists a solution (x0, λ0, α0) with symmetric x0 of (1.1) such that the op-
erator g0

x(:= gx(x0, λ0, α0)) has algebraically simple eigenvalues 0 and ±iβ0 (i =
√−1,

β0 > 0), and no other eigenvalue on the imaginary axis. In addition, the eigenvector
φ0 corresponding to the eigenvalue 0 is antisymmetric, i.e. φ0 ∈ Xa.

It follows from H1-H2 that there exist δ0 > 0 and a continuously differentiable
function x̂ from Dδ0 = {(λ, µ) : (λ, µ) ∈ R2, |λ− λ0| < δ0, |α− α0| < δ0} into Xs such
that for fixed α ∈ (α0 − δ0, α0 + δ0), the curve

cs(α) := {(x̂(λ, α), λ) : λ0 − δ0 < λ < λ0 + δ0} (2.1)

is a unique branch of symmetric solutions of equation (1.1) near the HP-point. Let
A(λ, α) = gx(x̂(λ, α), λ, α). Then A(λ, α) has continuously differentiable eigenvalues
γ(λ, α)± iβ(λ, α) and σ(λ, α) satisfying γ(λ0, α0) = 0 = σ(λ0, α0) and β(λ0, α0) = β0.
These eigenvalues are unique for (λ, α) in some neighborhood of (λ0, α0). We also
assume that the steady-state solution x̂(λ, α0) loses stability with respect to steady-
state and Hopf bifurcation simultaneously when λ goes beyond λ0:

(H3) σλ :=
∂σ(λ, α)

∂λ
|
(λ0,α0)

> 0, γλ :=
∂γ(λ, α)

∂λ
|
(λ0,α0)

> 0,

and employ natural generalization of the Hopf condition[8]:

(H4)
∣∣∣∂(γ, σ)
∂(λ, α)

∣∣∣
(λ0,α0)

6= 0.

For the bifurcation analysis of system (1.5a,b) near a HP-point, we give the rep-
resentations of γλ, σλ, γα, σα, βλ and βα (γα, σα, βλ and βα are defined similar to γλ

and σλ) in terms of eigenvectors and conjugate eigenvectors of g0
x with respect to the

eigenvalues 0 and ±iβ0.
Let φ0, ϕ0 span the null spaces of g0

x, [g0
x]∗ ([g0

x]∗ denote the dual of operator g0
x,

etc.), respectively. Under hypothesis (H2), the two vectors may be chosen such that
< ϕ0, φ0 >= 1. Then we obtain

σλ = 〈ϕ0, (g0
xxe0 + g0

xλ)φ0〉, σα = 〈ϕ0, (g0
xxf0 + g0

xα)φ0〉, (2.2)

where e0(f0) ∈ Xs is the unique solution of the following equation

g0
xz + g0

λ(g0
α) = 0. (2.3)
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Furthermore, we have[1,12]:
Proposition 2.1. Let hypotheses (H1)-(H3) be satisfied at a point x0 ∈ Xs, and

λ0, α0 in R. Then there exist δ1 > 0 such that for fixed α ∈ (α0 − δ1, α0 + δ1) a unique
branch ca(α) of non-symmetric solutions of (1.1) bifurcates from the branch cs(α) of
symmetric solutions of (1.1) near the HP-point.

Let φ0 = φ1
0 + iφ2

0 be an eigenvector corresponding to the simple imaginary eigen-
value −β0i of g0

x. Note that both φ1
0 and φ2

0 lie either in Xs or in Xa simultaneously.
We might assume

φ1
0 and φ2

0 ∈ Xs; (2.4)

the other case may be discussed in a similar way.
Let

Null ([g0
x + iβ0I]∗) = span {ϕ0 = ϕ1

0 + iϕ2
0}. (2.5)

The eigenvector ϕ0 can be chosen such that[2,9]

〈ϕ1
0 + iϕ2

0, φ0〉 = 2, 〈ϕ1
0 − iϕ2

0, φ0〉 = 0 (2.6)

From (2.6) we obtain

〈ϕ1
0, φ

1
0〉 = 1, 〈ϕ2

0, φ
2
0〉 = 1, 〈ϕ2

0, φ
1
0〉 = 0, 〈ϕ1

0, φ
2
0〉 = 0. (2.7)

Consequently, by using a method similar to that of the Appendix of Roose and Hlavaček[9],
we obtain

γλ =
1
2
(〈ϕ1

0, (g
0
xxe0 + g0

xλ)φ1
0〉+ 〈ϕ2

0, (g
0
xxe0 + g0

xλ)φ2
0〉), (2.8a)

γα =
1
2
(〈ϕ1

0, (g
0
xxf0 + g0

xα)φ1
0〉+ 〈ϕ2

0, (g
0
xxf0 + g0

xα)φ2
0〉), (2.8b)

βλ =
1
2
(〈ϕ2

0, (g
0
xxe0 + g0

xλ)φ1
0〉 − 〈ϕ1

0, (g
0
xxe0 + g0

xλ)φ2
0〉), (2.8c)

βα =
1
2
(〈ϕ2

0, (g
0
xxf0 + g0

xα)φ1
0〉 − 〈ϕ1

0, (g
0
xxf0 + g0

xα)φ2
0〉). (2.8d)

In addition, since −iβ is an algebraically simple eigenvalue of g0
x, we have

〈ϕ0, (x1 + ix2)〉 = 0, ∀ xj ∈ Xa(j = 1, 2). (2.9)

3. Bifurcation Analysis

In this section, we will define a symmetry on Y = X×X×X×R×R to ensure that
G in (1.5a,b) satisfies a symmetry relation of the same type as (1.2) and recapitulate
some standard theory[12]. Let us make precise the requirements on l, the normalizing
function in (1.5a). We require that, for φj

0(j = 1, 2) where (2.4) holds, l satisfy:

〈l, s·〉 = 〈l, ·〉, 〈l, φ1
0〉 − 1 = 0, 〈l, φ2

0〉 = 0. (3.1)
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This condition is not restrictive. In fact for any l̃ satisfying 〈l̃, φ1
0〉−1 = 0, 〈l̃, φ2

0〉 = 0 , we
can choose l according to the following formula (see papers[14−16] for similar discussions)

〈l, ·〉 =
〈l̃, (I + s)·〉
〈2l̃, φ1

0〉

which clearly satisfies (3.1).
Our first result is that G inherits the symmetry of g.
Proposition 3.1. For y = (x, φ1, φ2, λ, β) ∈ Y , define a linear operator S : Y → Y

by
Sy = (sx, sφ1, sφ2, λ, β). (3.2a)

Assume (H1) and (3.1). Then

S 6= I1, S2 = I1, SG(y, α) = G(Sy, α) for all (y, α) ∈ Y ×R (3.2b)

where I1 is the identity on Y .
Accordingly, we may split Y into

Y = YS ⊕ YA (3.3)

where YS = Xs × Xs × Xs × R × R and YA = Xa × Xa × Xa × {0} × {0}. Let
y0 := (x0, φ

1
0, φ

2
0, λ0, β0) and let l be chosen such that (3.1) holds. Then G(y0, α0) = 0

with y0 ∈ YS and we have the following:
Proposition 3.2. Let (x0, λ0, α0) be a HP-point satisfying hypotheses (H1)-(H3)

and assume that (3.1) holds. Then (with G0
y := Gy(y0, α0))

Null (G0
y) = span {Φ0}, Φ0 = (φ0, u0, v0, 0, 0) ∈ YA

and
Null ([G0

y]
∗) = span {Ψ0}, Ψ0 = (ϕ0, 0, 0, 0, 0)

where u0 + iv0 ∈ Xa + iXa is the unique solution of equation (3.9).
Proof. Let y = (x, u, v, s, t) ∈ Y . Then y ∈ Null (G0

y) iff

g0
xx + sg0

λ = 0, (3.4a)

(g0
x + iβ0I)(u + iv) = −(g0

xxx + sg0
xλ + itI)(φ1

0 + iφ2
0), (3.4b)

〈l, u〉 = 0, (3.4c)

〈l, v〉 = 0. (3.4d)

Under hypotheses (H1)-(H2), we obtain from (2.3) and (3.4a)

x = kφ0 + se0 (3.5)

with some k ∈ R. Substituting (3.5) into (3.4b) leads to

(g0
x + iβ0I)(u + iv) = −[kg0

xxφ0 + s(g0
xxe0 + g0

xλ) + itI](φ1
0 + iφ2

0). (3.6)
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Let us consider first the set of following homogeneous equations in unknown ũ, ṽ, s̃, t̃:

(g0
x + iβ0I)(ũ + iṽ) = −[s̃(g0

xxe0 + g0
xλ) + it̃I](φ1

0 + iφ2
0), (3.7a)

〈l, ũ〉 = 0, (3.7b)

〈l, ṽ〉 = 0. (3.7c)

Taking inner product with ϕ0 in (3.7a) and using (2.8), one obtains 2γλs̃ = 0, 2t̃ −
2βλs̃ = 0. Under hypothesis (H3), one obtains s̃ = t̃ = 0. Substituting these s̃ and t̃

into (3.7a) and combining with (3.7b,c), by the choice of l, we have ũ = ṽ = 0. Hence
the set of homogeneous equations (3.7a-c) has only the trivial solution.

Let (u0, v0, s0, t0) be the solution of the nonhomogenous equations (3.6) with k = 1
and (3.4c,d). By the previous discussion, we see that (u0, v0, s0, t0) is uniquely deter-
mined. Under hypotheses (H1) and (H2), from (2.4) one deduces

g0
xxφ0φj

0 ∈ Xa, j = 1, 2. (3.8)

Therefore, we have s0 = t0 = 0 by using (2.9), and equation (3.6) (k = 1) becomes

(g0
x + iβ0I)(u0 + iv0) = −(g0

xxφ0φ1
0 + ig0

xxφ0φ2
0). (3.9)

Since the restriction g0
x + iβ0I|Xa+iXa is nonsingular, from (3.9) we can uniquely obtain

the special solution u01 + iv01 ∈ Xa + iXa to (3.9) and the general solutions of (3.9)
may be written as u0 + iv0 = (a+ ib)(φ1

0 + iφ2
0)+u01 + iv01 where a, b ∈ R. Substituting

the expression into (3.4c) and (3.4d) and using (3.1) lead to a = b = 0. Therefore
u0 + iv0 = u01 + iv01. Finally, the only nontrivial solution to equations (3.4a-d) for
k = 1 is essentially given by Φ0 = (φ0, u0, v0, 0, 0) ∈ YA.

The proof of Null ([G0
y]
∗) = span {(ϕ0, 0, 0, 0, 0)} is similar. ¦

A immediate consequence of this proposition is:
Theorem 3.3. Under the same assumptions as for Proposition 3.2, there exists

locally one solution branch CS
H(α) in YS × R of (1.5a, b) passing through (y0, α0) =

(x0, φ
1
0, φ

2
0, λ0, β0, α0). It can be parameterized by (ỹ(α), α) = (x̃(α), φ̃1(α), φ̃2(α),

λ̃(α), β̃(α), α) with tangent vector (T0, 1) at (y0, α0) where T0 ∈ YS is defined by

G0
yT0 + G0

α = 0. (3.10)

Proof. Note that y0 ∈ YS and that YS is an invariant subspace in the sense that
G0

yu ∈ YS ,∀u ∈ YS . With Proposition 3.2, the restriction G0
y|YS

is nonsingular, and
so the implicit function theorem implies the existence and uniqueness of ỹ(α) ∈ YS for
each α near α0. The last statement of the theorem follows from evaluating the following
equation at α = α0

d

dα
G(ỹ(α), α) = G0

y
˙̃y + Gα = 0, ˙̃y ∈ YS . (3.11)

This ends the proof. ¦
From the branch CS

H(α) of solutions in YS × R of (1.5a,b), one can get the branch
cs
h(α) = (x̃(α), λ̃(α), α) of symmetric Hopf points of (1.1).
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The question whether -by variation of α-there also arise Hopf points on the bifur-
cating branch ca(α) of non-symmetric solutions of (1.1), can be attacked by means of
the following theorem based on Proposition 3.2.

Theorem 3.4. Let (x0, λ0, α0) be a HP-point satisfying hypotheses (H1)-(H4) and
let l in (1.5a, b) be chosen such that (3.1) holds. Then (y0, α0) is a S-breaking pitchfork
bifurcation point in system (1.5a, b).

Proof. By Proposition 3.2, we see firstly that (y0, α0) is a simple S-breaking singular
point in G(y, α) = 0. The pitchfork non-degeneracy[10−12] is given by

d

dα
¿ Ψ0, Gy(x̃(α), φ̃1(α), φ̃2(α), λ̃(α), β̃(α), α)Φ0 À |α=α0 6= 0. (3.12)

where ¿ ·, · À denotes the corresponding inner product in Y . Since

¿ Ψ0, Gy(.)Φ0 À= 〈ϕ0, gx(.)φ0〉

inequality (3.12) becomes

∆ := 〈ϕ0, (g0
xx

˙̃x(α0) + g0
xλ

˙̃
λ(α0) + g0

xα)φ0〉 6= 0. (3.13)

By the above definition of T0 (see (3.10) and (3.11)), T0 = ( ˙̃x(α0),
˙̃
φ1(α0),

˙̃
φ2(α0),

˙̃
λ(α0),

˙̃
β(α0)) := (x1, u1, v1, λ1, ω1) ∈ YS satisfies the following equations

g0
xx1 + λ1g

0
λ = −g0

α, (3.14a)

(g0
x + iβ0I)(u1 + iv1) + (g0

xxx1 + λ1g
0
xλ + iω1I)(φ1

0 + iφ2
0) = −g0

xα(φ1
0 + iφ2

0),
(3.14b)

〈l, u1〉 = 0 (3.14c)

〈l, v1〉 = 0. (3.14d)

From (3.14a) and (2.3) we obtain

x1 = λ1e
0 + f0. (3.15)

Substituting (3.15) into (3.14b) one obtains

(g0
x + iβ0I)(u1 + iv1) = −[λ1(g0

xxe0 + g0
xλ) + (g0

xxf0 + g0
xα) + iω1I](φ1

0 + iφ2
0). (3.16)

Taking inner product with ϕ0 in (3.16) and using (2.8a,b) one obtains

λ1 = −γα

γλ
. (3.17)

Substituting (3.15) and (3.17) into (3.13) and using (2.2) and (2.8) we have

∆ = 〈ϕ0, (g0
xxf0 + g0

xα)φ0 + λ1(g0
xxe0 + g0

xλ)φ0〉 =
γλσα − γασλ

γλ
. (3.18)

Under hypotheses H3 and H4, from (3.18) one deduces that inequility (3.13) holds.
This completes the proof. ¦
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Remark 3.5. Consider the eigenvalue problem along the branch cs
h(α) of symmet-

ric Hopf points of (1.1) with η(0) = 0 and φ(0) = φ0: gx(x̃(α), λ̃(α), α)φ(α) = η(α)φ(α).
By differentiating with respect to α, evaluating at α = α0, and taking inner product

with ϕ0, one can show that
d

dα
η(α)|α=α0 =

γλσα − γασλ

γλ
. Therefore the nondegener-

ate condition of S−breaking bifurcation in G = 0 is equivalent to
d

dα
η(α)|α=α0 6= 0.

Consequently, det gx(x̃(α), λ̃(α), α) changes sign at α = α0 (HP-point).
Remark 3.6. For fixed α, each zero of G(y, α) = 0 leads to a Hopf point of

g(x, λ, α) = 0 with respect to λ. The branch CA
H(α) not in YS × R of G = 0 leads

to “secondary” (non-symmetric) Hopf points of g(x, λ, α) = 0 for fixed α near α0. By
using Proposition 2.1, we know that the“secondary” Hopf point lies on the branch ca(α)
of non-symmetric solutions of (1.1) bifurcating from a s-breaking pitchfork bifurcation
point on the branch cs(α) of symmetric solutions of (1.1) for α near α0.

We give a schematic illustration of the solution surface of g(x, λ, α) = 0 near a
HP-point in Fig. 1.

Fig. 1. Schematic diagram of the solution surface of g(x, λ, α) = 0 near a HP-point.

Q: surface of symmetric solutions cs(α1): branch of symmetric solutions for α = α1

ca(α1): branch of non-symmetric solutions for α = α1

4. A Regular System Determining HP-Points and Computation of
Branches of Hopf Points

Theorem 3.4 does not yet provide a regular system which permits to find system-
atically a HP-point on some branch of symmetric solutions of (1.1). But the the-
orem indicates that a HP-point corresponds to a non-degenerate S-breaking pitch-
fork bifurcation point in system (1.5a,b). Hence it is easy to see that, under the
hypotheses of Theorem 3.4, a regular system for determining HP-points is (y = (x, φ1,
φ2, λ, β) ∈ YS , θ = (φ, u1, v1, 0, 0) ∈ YA, the normalizing vector L in Y is chosen such
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as ¿ L,Φ0 À= 〈l1, φ0〉 = 1, l1 ∈ X)

Ê(y, θ, α) =Ê(x, φ1, φ2, λ, β, φ, u1, v1, α) :=





G(y, α)
Gy(y, α)θ

¿ L, θ À −1 = 0





=





g(x, λ, α)
gx(x, λ, α)φ1 − βφ2

gx(x, λ, α)φ2 + βφ1

〈l, φ1〉 − 1
〈l, φ2〉

gx(x, λ, α)φ
gx(x, λ, α)u1 − βv1 + gxx(x, λ, α)φ1φ

gx(x, λ, α)v1 + βu1 + gxx(x, λ, α)φ2φ

〈l1, φ〉 − 1





= 0, (4.1a)

Ê : Ỹ → Ỹ with Ỹ := Ys × Ya ×R = Xs ×Xs ×Xs ×R×R×Xa ×Xa ×Xa ×R

(4.1b)

where l ∈ X is suitable normalizing vector satisfying (3.1).
Using Theorem 3.1 of paper[12], we have
Theorem 4.1. Let (x0, λ0, α0) be a HP -point of g(x, λ, α) satisfying hypotheses

H1-H4, and let l and l1 be chosen such that (3.1) holds. Then the system (4.1) has
a solution x0, φ

1
0, φ

2
0, λ0, β0, φ0, u0, v0 and α0, and its linearization at this solution is

non-singular.
The regularity immediately suggests that HP-points can be computed by solving

(4.1a-b), at least for the case X = Rn. The numerical details are discussed in the latter
part.

We now move on to the computation of branches of Hopf points bifurcating from a
HP-point. Based on Proposition 3.3, the calculation of branch cs

h(α) of symmetric Hopf
points of (1.1) can easily be carried out by considering the restriction G : YS ×R → YS

and continuing α. Concerning the computation of branch of secondary (non-symmetric)
Hopf points of (1.1), we may use the pseudo-arc length branch switching method[7] to
(1.5a,b) due to Theorem 3.4. The tangent vector (ż0, α̇0) = (Φ0, 0) = (φ0, u0, v0, 0, 0, 0)
needed in the approach in our pitchfork case is immediately found after the location
of a HP-point (see (4.1a-b)). The usual “predictor-corrector” procedure may now be
applied to jump on to the path of secondary (non-symmetric) Hopf points. But we
should note a well known fact that Keller’s approach[7] converges only in a cone with
vertex at the HP-point. In order to overcome this drawback, we give another method
based on Theorem 4.1 as in Wu[13].

we will firstly deduce an important conclusion from Theorem 4.1. The conclusion
is based on the implicit function theorem applied to the system (ε < ε0)

Ẽ(y, θ, α, ε) :=





G1(y, θ, α, ε)
G2(y, θ, α, ε)
〈l1, φ〉 − 1



 = 0, (4.2a)

Ẽ : Ys × Ya ×R×R → Ys × Ya ×R. (4.2b)
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where

G1(y, θ, α, ε) :=
1
2
(G(y + εθ, α) + G(y − εθ, α)), (4.2c)

G2(y, θ, α, ε) :=

{
Gy(y, α)θ, ε = 0,

1
2ε

(G(y + εθ, α)−G(y − εθ, α)), ε 6= 0.
(4.2d)

Corollary 4.2. Let the hypotheses of Theorem 4.1 hold. Then there exists a
smooth branch (y(ε), θ(ε), α(ε)) ∈ YS × YA × R (i.e. (x(ε), φ1(ε), φ2(ε), λ(ε), β(ε),
φ(ε), u1(ε), v1(ε), α(ε)) ∈ Xs × Xs × Xs × R × R × Xa × Xa × Xa × R) of solu-
tions of Ẽ = 0 such that x(0) = x0, φ1(0) = φ1

0, φ2(0) = φ2
0, λ(0) = λ0, β(0) = β0,

φ(0) = φ0, u1(0) = u0, v1(0) = v0 and α(0) = α0, and for each ε 6= 0, (x(ε) ± εφ(ε),
λ(ε)) is secondary (non-symmetric) Hopf point of (1.1) with respect to λ for α = α(ε).

We suggest a computational procedure for branch cs
h(α) of symmetric Hopf points,

a HP-point and branch ca
h(α) of secondary (non-symmetric) Hopf points of (1.1):

(i) fix α, calculate a Hopf point on the branch cs(α) of symmetric solutions of (1.1);
(ii) vary α and follow the path cs

h(α) of symmetric Hopf points of (1.1) by using
the restriction G|YS

and monitor the determinant of gx along the branch;
(iii) detect the existence of a HP-point by a sign change of the determinant of gx(see

Remark 3.5).
(iv) Once an approximation to the HP-point is known it may be determined pre-

cisely by solving the regular system Ê = 0.
(v) The extended system (4.2) (i.e. Ẽ = 0) can then be used to compute the

branch ca
h of secondary (non-symmetric) Hopf points of (1.1) by starting for ε = 0 with

(x, φ1, φ2, λ, β, φ, u1, v1, α) = (x0, φ
1
0, φ

2
0, λ0, β0, φ

0, u0, v0, α0) and continuing ε from ε =
0.

Remark 4.3. In step(i), for given α = α1, a starting point on the branch CH
S (α)

of solution of G = 0 can be found by the continuation of branch cs(α1) of symmet-
ric solutions of (1.1) with respect to λ and monitoring the eigenvalue of the Jacobian
matrix. Then an approximation φ11(α1) + iφ12(α1) to φ̃1(α1) + iφ̃2(α1) can be cal-
culated by an inverse iteration procedure, and we can choose the normalizing vector
l = c1φ11(α1) + c2φ12(α1) where c1 and c2 satisfy c1〈φ11(α1), φ11(α1)〉 + c2〈φ11(α1),
φ12(α1)〉 = 1, c1〈φ12(α1), φ11(α1)〉 + c2〈φ12(α1), φ12(α1)〉 = 0. Then l can be chosen
according to (3.1). For steps (iii) and (iv), the normalizing vector l1 can be chosen as
in paper[12].

Remark 4.4. The regularity of the HP-point as the solution in Theorem 4.1 implies
our method computing the branch CA

H(α) of solutions not in YS×R of G = 0 converges
in a full neighborhood of the HP-point. We can directly calculate the branch ca

h(α)
of non-symmetric Hopf points of (1.1) without tracing the bifurcating branch ca(α) of
non-symmetric solutions of (1.1) for each α near α0.

We now discuss Newton’s method applied to (4.1) to calculate HP-points for the
finite dimensional case X = Rn. Noting that the 7th and 8th equations in (4.1) are
uncoupled from the others, we need solve only the system consisting of the 1st-6th and
9th equations in (4.1). Since Rn = Rn

s ⊕Rn
a (Rn

s := Xs, R
n
a := Xa) we have n = ns +na

where ns = dim Rn
s , na = dimRn

a . In general it will be easy to identify Rn
s (Rn

a) with
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Rns(Rna) using the isomorphism Is : Rn
s → Rns , Is(x) = xs(Ia : Rn

a → Rna , Ia(x) =
xa, etc.). Then HP-points are determined by

Ē(xs, φs
1, φ

s
2, φ

a, λ, β, α) :=





gs(xs, λ, α)
gs
x(xs, λ, α)φs

1 − βφs
2

gs
x(xs, λ, α)φs

2 + βφs
1

ga
x(xs, λ, α)φ
(ls)tφs

1 − 1
(ls)tφs

2

(la1)
tφa − 1





, (4.3a)

Ē : W → W := Rns ×Rns ×Rns ×Rna ×R×R×R (4.3b)

where

xs = Isx, φs
1 = Isφ1, φ

s
2 = Isφ2,

φa = Iaφ,

gs(xs, λ, α) = Isg(x, λ, α),

ga
x(xs, λ, α) = Iagx(x, λ, α)φ,

gs
x(xs, λ, α)φs

j + (−1)jβφs
3−j = Is(gx(x, λ, α)φj + (−1)jβφ3−j), j = 1, 2,

(ls)tφs
j = ltφj , j = 1, 2,

(la1)
tφa = l1

tφ.

System (4.3a,b) can be solved efficiently by combing the methods described in Werner
and Spence[12] and Griewank and Reddien[3]. The details are omitted.

Once a HP-point has been computed, we can use the following equations (cf. (3.9))
to solve (u0, v0) in Φ0 ( see Proposition 3.2):

Ia(g0
x + iβ0I)Ia

−1(u01 + iv01) = −Ia(g0
xxφ0φ1

0 + ig0
xxφ0φ2

0), (4.4a)

u0 = Ia
−1u01, v0 = Ia

−1v01. (4.4b)

In the implementation, we can also use the difference approximation for second
order derivatives of g[7].

In a similar way one can use the implementation of Newton’s method to trace the
initial bifurcating branch CH

A (α) of G = 0 by using the extended system (4.2a-d).

5. A Numerical Example

For numerical demonstrations, we consider a specific reaction-diffusion model, often
called the Brusselator[2,4]

∂u

∂t
= D1

∂2u

∂ξ2
+ u2v − (B + 1)u + A, (5.1a)

∂v

∂t
= D2

∂2v

∂ξ2
− u2v + Bu. (5.1b)
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with boundary conditions

u(0, t) = u(π, t) = A, (5.2a)

v(0, t) = v(π, t) = B/A. (5.2b)

In (5.1,2) u, v, A and B represent chemical concentrations; u and v are unknown, while
A and B are independent of ξ and t. As customary, we shall treat λ := A as the
bifurcation parameter and α := B as the auxiliary or control parameter, D1 and D2

are diffusion constants. The bifurcation behavior of this system with respect to A and
B has been extensively studied[2,4]. In the computations we used the values D1 =
0.04, D2 = 0.2.

The steady-state equation of (5.1,2) has the Z2-symmetry given by

s1

[
u

v

]
(ξ) =

[
u(π − ξ)
v(π − ξ)

]
, 0 ≤ ξ ≤ π. (5.3)

We applied the usual O(h2)- discretization on an equidistant grid with mesh size h

and discretization points xi = ih(i = 1, · · · , 2m; m = (π/h− 1)/2). The approximating
system can be written as

dui

dt
= D1

ui−1 − 2ui + ui+1

h2
− (B + 1)ui + ui

2vi + A, (5.4a)

dvi

dt
= D2

vi−1 − 2vi + vi+1

h2
− ui

2vi + Bui, i = 1, 2, · · ·, 2m. (5.4b)

Defining x = (x1, x2, · · · , xn)t = (u1, v1, u2, v2, · · · , u2m, v2m)t with n = 4m, and taking
into account the boundary conditions, one can rewrite (5.4) into the form of (1.4).

Let

Ep =
[
1 0
0 1

]
∈ R2×2, Fp =




Ep

Ep

·
·

·
Ep



∈ R2m×2m (5.5a)

and

s =
[

0 Fp

Fp 0

]
∈ R4m×4m. (5.5b)

Then (1.2) holds for s in (5.5) and for g in the right-hand side of (5.4).
We are mainly interested in the computations of branches cs

h(α) and ca
h(α) of Hopf

points bifurcating from an HP-point. Using the computational procedure of Section 4,
we have calculated cs

h(α), located the HP-point, and computed ca
h(α) of (5.4) for n = 80.

In Fig.2 we have drawn the projections of branches of Hopf points bifurcating from the
HP-point with x0 = (0.421, 3.366, 0.421, 3.366, · · ·)t, λ0 = 0.421, and α0 = 1.417 on the
parameter spaces.
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Fig. 2(a). Branches of Hopf points for Eqs.(5.1)
and (5.2) with (D1, D2)=(0.04,0.2).
Projections on the (B, A)-plane.

—: branch of symmetric Hopf points;
· · ·2 · · ·: branch of non-symmetric
Hopf points

Fig. 2 (b). Branches of Hopf points for Eqs.(5.1)
and (5.2) with (D1, D2)=(0.04,0.2).
Projections on the (B, β)-plane.

—: branch of symmetric Hopf points;
· · ·2 · · ·: branch of non-symmetric
Hopf points

After a secondary Hopf point far from the HP-point is obtained by the continua-
tion, one may use other techniques[3] for solving equations (1.5) to trace the branch of
secondary Hopf points.
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