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Abstract

In this paper, a Fourier-Chebyshev pseudospectral scheme with mixed filtering
is proposed for three-dimensional vorticity equation. The generalized stability and
convergence are proved. The numerical results show the advantages of this method.

Key words: Pseudospectral method, vorticity equation, error estimates.
1. Introduction

In studying boundary layers, flows past suddenly heated vertical plates and other
related problems, we have to consider bilaterally periodic problems. There are sev-
eral ways to solve them numerically. For instance, Murdok[!l, Macaraeg/?! and Ben-
yu Guo, Yue-shan Xiongl® proposed spectral-difference schemes, while Canuto, Ma-
day, Quarteroni¥ and Guo Ben-yu, Cao Wei Mingl® developed spectral-finite element
schemes. But the accuracy of all these schemes is still limited due to finite difference
and finite element approximations, even if the genuine solution is very smooth. There-
fore some authors provided various mixed spectral approximations, such as Fourier-
Chebyshev approximation!®7.

In this paper, we consider three-dimensional unsteady vorticity equation which is
one of representations of incompressible flow. It possesses more unknown variables than
Navier-Stokes equation and leads to non-standard boundary conditions. But in com-
putation, this representation avoids the difficult job of constructing trial function space
whose elements satisfy the incompressible condition. Thus we still use it often. We
shall follow the idea of [8] to propose a mixed method by using Fourier pseudospectral
approximation in periodic directions and Chebyshev pseudospectral approximation in
remaining direction. This method can be implemented simply. In particular, it is easy
to deal with nonlinear terms. But the pseudospectral approximation is not as stable
as spectral one usually, due to the aliasing. Thus two kinds of filtering technique have
been developed. The first was based on Bochner summation by Kuo Pen-yul®1. The
second was given by Woodward, Collela and Vandeven!''12. Recently, Guo Ben-yu
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improved the first one and generalized it to Chebyshev approximation*l. The authors
also developed a new mixed filtering technique for mixed approximation®. In this
paper, we also adopt this technique and so the proposed scheme keeps the spectral
accuracy, i.e., the convergence rate of infinite order.

The outline of this paper is as follows. We construct the scheme in Section 2 and
present the numerical results in Section 3. The advantages of this method and the
efficiency of the new mixed filtering technique are shown numerically. In Section 4, we
give the main theoretical results. We list some lemmas in Section 5 and then prove the
theorems in Section 6.

2. The Scheme

Let * = (z1,20,73)7 and Q@ = I x Q where [ = {21/ -1 < 21 < -1}, Q =
{(z2,23)/ — ™ < w2, 23 < 7}. Let &(x,t) and ¥ (z,t) be the vorticity vector and stream
vector respectively with the components €@ (z,t) and ¥(@ (z,t), ¢ = 1,2,3.v > 0 is the
kinetic viscosity. fi, fo and & are given functions. We consider the following problem

O (e ) H(Ew) V= fi, O x (0.T),
~VH =€+ fo, in Q% (0,7], (2.1)
€($70) :’SO(x)v mQUaQ,

where
J(E ) =[(V xy)-VI§, H(& ) = (& V)V x).

Assume that all functions in (2.1) have the period 27 for the variables x9 and x3. For
simplicity of the analysis, we also suppose that £ and v satisfy the following boundary-
value conditions as in [14],

6(:‘:1,33‘2, I‘g,t) = ¢(ila$2,$3at) =0. (22)

The existence and uniqueness of local solution can be studied in the same way as in
[14].
The inner products and norms of vector function spaces L?(I) and L?(Q) are de-

1
noted by (+,")1, (,-)o, || - lr and || - ||o respectively. Let w(z1) = (1 —2%)"2 and define

1

1
(U, V)1 :/lwuvdml, Vlw,r = (v,v)il,

L2(I) = {v/v is measurable on I and ||v|,r < c0}.

Also define

1

1 1
(u,v), = ) /Qwuvdx, |v]lw = (v,v)2

L2(I) = {v/v is measurable on Q and ||v]|,, < oco}.
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Let M and N be positive integers. Suppose that there exist positive constants c;
and ¢ such that
aaN <M < c2N. (2.3)

Let Pys be the set of all algebraic polynomials of degree equal or less than M, and
define
Vi = {v(21) € Par/v(—1) = v(1) = 0}.

1
Let y = (w2,73)" and | = (la,13),l, being integers. Moreover ||| = (I3 +13)2, ly =
loxs + l3x3, and

V]SQ) = Span {e¥/|l,| < N,q = 2,3}, W](VQ) = Span {e'¥/|I| < N}.

Let V]S,Q) (or VV](V2 )) be the subset of ‘7]&72) (or I/T/](VQ ) ), containing all real-valued functions.
Set SM,N = (V]\(}) X WJ(\/?))?)
Let PJS) S LA(I) — [VJ\(/})]?’ be the orthogonal projection such that for any u € L2 (1),

(P]&)u —u,v),r =0, Yve [V]\(/})P,

while P](VQ) cL2(Q) — [W](\?)]?’ is the orthogonal projection such that for any u € L?(Q),
(PJ(\,Q)u —u,v)g =0, Yve [Wﬁ)]?’.

Let Py N = PJS) ® PJ(VQ). Obviously, for any u € L2 (),
(Py,Nu—u,v), =0, YveSyn.

We denote the nodes and weights of Gauss-Lobatto integration formula by xgj ) and

wj, namely

xgﬂ:cos%, 0<j<M; wosz:ﬁ; wj:%, for 1<j<M—1.
2
Let h = 2N7—T|— 7 be the mesh size for the variables x9 and z3. Set

Oy = {(@) qah, gsh)/1 < j < M —1,-N < g9,¢5 < N},
Qv = {(&7, gah, gsh) /0 < j < M, —N < go,¢3 < N}.

We also introduce the following discrete inner products and norms

M . .
(w0 pr = 3 wiu(@Pyo(z),
j=0

. N
> u(qeh, qsh)v(g2h, g3h),

<u7 U)N = (
q2,93=—N

IN +1)2
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1 M N ] '
N +1)2 > Y wu, ghgh)o(, gh,ash),
7=04g2,g3=—N

(’LL, /U)M,N,u) =

1
HUHM,N,W = (uv ’U)J%LN,LU‘

Let Pg) be the interpolation from C(I) to [Py]?, and Pg) be the interpolation from

C(Q) to [V]E,Q)]?’ such that
Pél)u(ng)) = u(xgj)), Pé?)u(QO, gsh) = u(qah,qsh), 0<j< M,—N < g9,q3 < N.

Furthermore, let Po = P](VQ) ® Pg) ® Pél).

In order to weaken the nonlinear instability in computation and raise the accuracy
of numerical solutions, we shall use the mixed filtering technique as in [8]. Let v1 (M) >
1,7%(N) >1and R = R(M, N,~1,72) be the filtering operator. It means that if

wu= Y apTi@)e™+ > auTi(z1)e™, Ry ={(,1)/0 <j < M,|l| < N},
(J,D)ERM, N GDERM, N

Tj(z1) being the Chebyshev polynomials of order j, then

Ru= Y (1 - ‘ﬁ 71) (1 — ‘N Wz)ajlej(xl)e”y + > ayTi(a)e™.
(D) ERM, N UDERM N

Let 7 be the step size of time ¢, and

S ={tit=kr1<k< 2]} s =8 o).

-
For simplicity, u(x,t) is denoted by u(t) or u usually. Let

ui(t) = o (ult +7) —u(t = 7)), () = S(ult +7) + ult — 7).

Now, let  and ¢ be the approximations to £ and 9 respectively. Let 0; = —

al‘j
(j =1,2,3) and define
3 . 3 .
Tre(n,¢) = Y O;RPc((V x ©)9n),  Hre(n,¢) =Y RPc(nWa;(V x ).
=1 i=1

The nonlinear terms J(&, ) and H (€, 1) are approximated by Jrc(n, ¢) and Hrco(n, ).
The Fourier-Chebyshev pseudospectral scheme for solving (2.1) is to find (n,¢) €
SM,N X SM,N for all t € S;, such that

m; + Jro(n, ¢) — Hre(n, ¢) —vV*) = Pofi, in Qun x S,
—V2p =n+ Pcfo, in Qun xSy,

n(t) = Pun (50 + T%é(o)), in Qu N,

n(0) = Py ,néo, in Qun

(2.4)
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where

2% 0) = ~ (6o, Yo) + H (&, ) + 960 + 11(0),

— Vo = & + f2(0).
3. The Numerical Results
We take the following test functions,

5(1) = 0,45’4’5(1‘% )(2:61 — 13) sin 2x9 cos 2x3,
€ — 0.4 (a2

)
1)(222 — 13) cos 2 sin 23,

€0 = 0.4 (22 —1)(222 — 13) cos 2ag cos 2x3 — 1.2 x 10 e (22 — 1).
E(&(t)) denotes the relative error of f(t)

We use scheme (2.4) to solve (2.1). For comparison, we also consider the Fourier
pseudospectral-finite element scheme (FPSFE), by using linear finite element approx-
imation in the direction x1, in which I is uniformly partitioned with the mesh size

2
h = ik We take A = 0.1, M = M* = N = 4 and 7 = 0.005. Scheme (2.4) costs

the same computational time as FPSFE scheme. But scheme (2.4) gives much better
results, see Table I and Table II. In Table III, we list the numerical results of scheme
(2.4) with different choices of v; and ~2. Obviously the new mixed filtering operator
R(M, N,~1,72) improves the stability and raises the accuracy.

Table I. v =0.01,v1 = v2 = 1. Table II. v = 0.001,v; = v2 = 1.
E(&(t)) | Scheme (2.4) FPSFE E(&(t)) | Scheme (2.4) FPSFE
t=0.5 0.6241E-4 0.1599E-1 t=0.5 0.4689E-4 0.1656E-2
t=1.0 0.1205E-3 0.3067E-1 t=1.0 0.8479E-4 0.3222E-2
t=1.5 0.1737E-3 0.4415E-1 t=1.5 0.1246E-3 0.4706E-2
t=2.0 0.2288E-3 0.5653E-1 t=2.0 0.1779E-3 0.6113E-2
t=2.5 0.2845E-3 0.6789E-1 t=2.5 0.2382E-3 0.7450E-2

Table III. The errors of scheme (2.4),v = 0.001.

EE®) [m=r=00 |[m=512=3|n=r=1
t=0.5 0.6196E-4 0.6127E-4 0.4689E-4
t=1.0 0.1537E-3 0.1294E-3 0.8479E-4
t=1.5 0.4037E-3 0.2443E-3 0.1246E-3
t=2.0 0.1133E-2 0.5538E-3 0.1779E-3
t=2.5 0.2828E-2 0.1265E-2 0.2382E-3

4. The Theoretical Results

In order to estimate errors, we need some notations. Let L (1), L*>°(Q2), W%>°(0Q),
|| loo.s Il lloos and || - |lq,00 be the usual spaces and their norms, etc.. We also introduce
some Sobolev spaces of functions defined on I, with the weight w(z1). For any integer
r >0, set

N[ —

d"v "
Sl Mol = (X 0lRr) .
’ k=0
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H(I) = {v/[[vllrw.r < oo}

Clearly HO(I) = L2 () 1. For any real r > 0, H/,(I) is defined
by the complex interpolation between the spaces Hg}(I ) and HLTH}(I ). Furthermore,
Hg ,(I) denotes the closure of C§°(I) in HJ(I).

Let B be a Banach space with the norm || - ||, and A be a domain in R?. Define

L*(A, B) = {v(2) : A — B/v is strongly measurable,||v|| 2z, ) < o0},
C(A, B) = {v(z) : A — B/v is strongly measurable,|[v||c(,p) < o0}

where .
lollzzam = ([ I Bdz)% lollo.s) = max o)]a
Moreover, for all integer p > 0,
H"(A, B) = {v(2) € L*(A, B)/[[v|| sn(a,3) < o0}

equipped with the norm

1
0]l a1(a.) = (Z | MH )2

We can define H*(A, B) for real number x> 0 in the same way as before.
For simplifying the statements, we also introduce some non-isotropic spaces. Let

HE*(Q) = L*(Q, HL(I)) (VH*(Q, LE(1)), 7,5 >0

equipped with the norm

w\»—t

vl s ) = (||UHL2 @H5() T [l Q.12(1))) 2
Also define

MZ(Q) =H Q) (VHY(Q, HL (1)) (VH~HQ, Hy (1), 7,5 >1,
X5 Q) =H(@Q, H™ (D) (VHH(Q, H"(I), ,5>0,

+is

Yﬁjé(ﬂ) :M£+2’8+2 mLZ HT+3 )) ﬂHlJr&(Q H2 (I))

(@
%*% D) H2(Q, B (1 ))ﬂH2+25(Q HzJr 53 5(1))

MH?*2°(Q, H,
S l+§
NH2M(Q,HZ (1), 7,5>0,0>0,
rs ri2.s r + +6
Yz,’w’é(Q) — M2 +2 Q)HLQ Q,H" +3 mHHé Q, H2 (I))
3,35 7, r,9
mH§ 5 + +4 mHz Hr+1 ))HHH%(Q H2+8+6(I))

)
ﬂH§+§6(Q’H27%+Z mHS Hr 1 ))ﬂHS-i-Qé(Q 1'_[2Jr + 6([))
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NE Q.1 2+5 ) H2™"(Q, H 2+6 () (H*MQ, HA(1)),

r,s >0, 5 > 0,
and for non-negative integer k,
Xgo(Q) = HQ.Hy(D),  Xpi(Q) = XT3 0(@) (VHMQ HE (D).

The norms of the above spaces are defined in analogy with || - || 7s(q). Furthermore,
let CG5,(€2) be the set of all infinitely differential functions defined on Q, which vanish
at ;1 = +1 and have the period 27 for z9 and 3. Hy, () and My () denote the
closures of CG, in H7*(S2) and M*(9) respectively. If r = s, we denote || - || sy by
|| - |lrw for simplicity, etc..

We now consider the generalized stability of scheme (2.4). Suppose that the initial
values 7(0),7(7) and the right terms fi, f have the errors 7(0),7(7), fi and fy respec-
tively, which induce the errors of n(t) and ¢(t), denoted by 7(t) and @(¢). Then they
satisfy the following equation

(M + Jre(n, @) + Jre (7, + @) — Hre(n, P)
_HRC’(ﬁ,SO + 95) - szﬁa U)MJV,(U = (Pcth)M,N,w? Vove SM,Na te STa

~(V2@, V)M Nw = (7 + Pofo, v) MNws VveSun, te S(T- )
4.1

Let |[|y]]lg,00 = max lly(t)|lq,00- For describing the errors, we introduce
€S-

B(i,t) = a3 + len )|l

t'=1

p(t) = 2102 + 2772 + 47 3 G (t)

t'=7

where )
e c ~ cM=In N ~
Gi(t) = 8IIPc LIS + Il ol P fall + ————|Pcfall.
Hereafter c is a positive constant independent of M, N, v and any function, which could
be different in different cases. We have the following result.
Theorem 1. Let (2.3) hold. There exist positive constants di and dy depending
llelll2,00 and v such that if for some t1 € Sy,

do
t)edt < =
)™ < TN

then for allt € S;,t < t1, we have

E(#), 1) < pe™!

We next turn to consider the convergence. For analyzing the errors, let PM NG

H(%”;’W(Q) — Su,n be the projection operator such that for any u € Hé:;,w(Q)’

(V(u— Py yu), V(wv)) =0, Vv € Syn.
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Set

& =Pyné V=Pt E=n-&, d=p—v"
By (2.1) and (2.4), we get

(& + Jre(€5,%) + Jro(§, 0" + ) — Hre(€%,9) — Hre(§,9" + ) — VV2§,U)M,N,W
6
= ZA]', Vv € Syn,
—1
~] ~ 9
—(V2,0)mNw = (E V)M Nw + D Ay, Vv € Su,n,
=7
_ ¢ )
§(1) = Pun (fo + Ta(o)) — Py NE(T),
£(0) = Par.véo — Pl véo,
(4.2)
where A; = A;(t), and
0
Al - (§£7 /U)w - (€;§k7 U)M,N,LLM AQ = (J(f, w), U)w — (JRC(€*7 w*)’ /U)M,N,an
Az = —(H(&,9),0)w + (Hre(€5,9),0) MV w, As = —v(V2E* )y + (V2 0) M N,
As = —v(V2,0)y + v(VZE, )y, As = —(f1,v)w + (Pc f1,0) M N ws
A7 = _(VQw*ﬂ})w + (v2¢*7 U)M,N,wy AS = _(f, U)w + (5*7U)M,N,w7

Ag = —(f2,0)w + (Pc f2,0) M,N w-

1
Theorem 2. Let 7 = O((M?InN)~1) and (2.3) hold. v1(M) and ~2(N) are
suitably big. Also assume that forr >5/4,s > 1,a>1/2,>1 and § >0,

£ € 00,75 Y52 (@) XS (@) W) (0, T; M™*(0))
(VH?(0,T; ML) (>0, T; L2 (€2)),
y € CO.T Y@ (X2, f; € O, T B @) V(@ HE (1), j=1,2
Then for some t; € Sy, t < ti,
l6(t) = ()| < di (" + M~ + N7%),

where d] and d% are positive constants depending only on v and the norms of &, fi

1
and fy in the spaces mentioned in the above. If T = o((M?In N)™1), then t; = T.
5. Some Lemmas

In order to prove the theorems, we need some lemmas.
Lemma 1. Ifu € C(Q) and v € Py x V]SQ), then

olle < llollarvw < V20l

|(w, ) N = (s 0)o| < ellfu = Prr—1vullo + [lu = Poullo)[[0]o-
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Furthermore, if u € Py X V]S?), then
|(u, V) M N = (U 0)w| < M7 ul| gro g 0]

By using some results in [15-17], we can prove Lemma 1 in the same way as in proof
of Lemma 1 of [8].
Lemma 2. (Lemma 6 of [7]). If v € Sy N, then

1 1
[0]oo < eMZ(InN)2([Jvllw + |920]lw + [|83v]|)-
Lemma 3. Ifv e Hy, () and r,s >0, then
v = Py nollo < (M7 + N7°)[[v]l gz (0)-

If in addition v € H?(Q, H(I)) N H*(Q, HX(I)) N H* (Q, H", (I)), 0 < a < min(r, 1),
0 < B <min(s,s), r,r' >1/2 and s,s,> 1, then

lv = Pevll o mgry) <eM** " |lvll s (q,uy ) + N Ilvll s (@, r)
+eq(B)M** T NP o)l g .1 (1)

where q(8) =0 for B> 1 and q(B) =1 for 3 < 1.
Proof. The first conclusion comes from Lemma 2 of [7]. We only prove the second
one. Let 7 be the identity operator. Then

lv = Povllgs(q,ua(n) < D1+ Do,
1 2
Dy = [[v = PPl gs(o.acry + 10 = P20l moco.ms (s
2 1
Dy = ||(PY = T)(T — P)oll yo(qpa (1y)-

By (9.7.7) and (9.7.26) in [16],

Dy < eM** "l gs(q.mr(ryy + NP0 0l (@, 110 (1) -
If 8 > 1, then by (9.7.26) of [16],

1 a—r
Dy < ¢||(T — P ))UHHﬁ(Q,Hg(I)) < Mol o (1))

If 3 <1, then

-5 1 a—r’ —s'

Dy < eNP='||(T - Pé ))UHHSI(Q’Hg(I)) < cM** NP 1ol s @, 1 (1)-

Lemma 4. (Lemma 3 of [7]). Let (2.3) hold. Ifv € Hé;w(Q)ﬂMLS(Q) and
r,s > 1, then

[ = Py vlle < e(M™" + N7%)|v|prs -

lv = Pay pvlliew < (M7 + N9 ol q).
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Lemma 5. Let (2.3) hold and v € Hy),, (Q) N H**9(Q, H™ 241 (I)) with r >
1/2,s > 1. Then there exists a positive constant ¢ independent of M, N and v such that

A\ pl
”8(111332 83 PM,NUHOO < CHU||HS+‘12(Q,H;+2‘“(I))’ 0<A< q2.
Proof. Let
0 . .
v=> (1), P]%/[,N'U =) vf (z1)e™
|t]=0 [II<N
and

ay(w,u) = (Orw, O (wu)) 2y + 1P (w,w)w,1, || < N.
Then v} € V]\(/[l) and a;(v; — v, u) =0 for all u € V]\(}). Therefore,
aj(vp —vf,m — ) = ai(vp — v, —u), Vue V]\(}).

By Lemma 2 and Lemma 3 of [17], we know that if u € H.(I) and u(—1) = u(1) = 0,
then
1
a(uu) = Zllull e+ P[],
|ar(w, u)| < e(lfwllrw,r + [lwlle,r) (Tulliw.r + [Hlullo.r)-
Denote by vy . the H(I) projection of v; onto V]\(/[l). Then the combination of the above
statements with (2.3) and (9.5.17)in [16], leads to
1 * *
llor =07 s + Pl = o7 15,1 < ar(or = o v = vf)

2t + 1Plo = ul2)

. 1
<c¢ inf (val—u]
ueVA(/[l) 4

<c(llvr = vl o + 1Pl — w2 ) < M2 w7, -
Moreover by means of the duality as in [6],
o — v || pw,r < M vg|lpw,r,  p=0,1. (5.1)

Obviously
107058 Plywvlloe < 3 U (0tlgy e + 00 = PE vty + [P 00 = 0l )
1 ¢Y2 3L M NV|oo > Vllg1,00,1 Ul C " Vllqi,c0,1 C U~V q1,00,1)"
ll|<N
(5.2)
We now estimate the terms in the right side of (5.2). First of all, by embedding theory,

[Vlg1,00, < ellOillrrarr < clloillvgr o, 7> 1/2.

Next, we estimate the term |v; — Pél)vl|q1’oo’1. Let 21 = cosf, Iy = (0,27) and

v(z) = Zvl(j)Tj(xl), lI| < N.
j=0
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Then -
vi(z1) = 0(0) = Zvl(j) cosjf, 6 € Ily.
§=0

—

Let Pc be the trigonometric interpolation on Iy. Then Pél)vl = F/’Eﬁl Let le(j) be the
coefficient of the Fourier expansion of Pct;. By (2.1.29) of [16],

. . o0 . .
{)l(j) _ ,UZ(J) + Z(UZ(J+2UM) + ,L)l(—j—i-?aM)), 0<j <M.
o=1

Hence

101 — Potilloos, < ¢ S o]
i>M

< c( Z (1 +j2>r‘vl(j)‘2)1/2( Z (1 _~_j2)fr)1/2 < CM1/27THUIH7~,L9; r>1/2,

J>M i>M
Since the mapping v; — ¢; is continuous from H];(I) to H" (Iy),
lvr — PP lloos < eMYV2 T yllpaor, 7> 1/2. (5.3)
Furthermore,
o1 = P& 0lgy oot < 108 00 — P (0F 0) | oo,t + | PG (0 01) — 08 (PP 0) .

By (5.3), 1
107 v, — PS8 0)[loory < M Y201l gy ot

According to (9.5.3) and (9.5.20) in [16],

1P (0% 0) — 07 (P o) oot < eM 2P (08 0) — 07 0pl|uss + 1o — P 01l gy o)
< CMI/Z_T HUZ ||r+2q1,w,1'

Consequently
1 _
o = PG vty e.r < MM 0t o

Finally we estimate the term |Pé1)vl — U} |q1,00,1- From (9.5.3) and (9.5.4) in [16],
1 1 1
POy — Loy cor < MY2PLwy — vl s < M2 POy — |l .
Moreover
PWy, — o7 < PWy; — — < M0
1P v = v llo,r < PG o = villo,r + lor = vl < [vrllr+241.0.1-

The previous statements and (5.2) lead to that

) s 1/2 _s\1/2
16708203 Pig wvlloe < o D2 (14 1A 2 urlZ 2g, 0r) (D0 (1412 7)
<N <N
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< llvllgssan @ uz2n (1))

Remark 1. Clearly, if the conditions of Lemma 5 hold, then for all non-negative
integer k,
1Pss 0l 0 < cllvllxpe @)y k=1

Remark 2. The bound of || Py, yvll1 00 can be improved as’]

1Py nvll1co < ellvllxmsq)-

Lemma 6. Ifv e HP(Q,H(I)) N H*(Q,L:(I)), 0 <r <7 (M) and 0 < s — <
15(N), then

[Rv = vl ms@q,r2m)) < M ollgsq,ar ) + NP2 0l s,z (1)) -

This Lemma can be proved in the same way as in [8].

Lemma 7. For any v € Su,N,

2
lw:*

1
(V20,0 2 {0

Proof. Let ‘
v = Z Ul(l‘l)edy.

<N

Notice that if u,z € Pys x V]S,Q) and uz € Popr_1 X Vz(]%,), then

(U, 2) M Nw = (U, 2)w. (5.4)

Therefore by Lemma 1 and Lemma 2 in [17],

—(V20,0) M Nw = Y (O1v, 01 (wv) r2(r) + 102013 o + 1050113 N
[I|<N

1 1
>3 2 lollier + 1020115 + 1050lIE > vl

<N
Lemma 8. Ifu € L2(Q) and v € Hé,’gjw(Q), then
[(u, 01 (wv)) 20| < 2l[ull[[O10]].-

Proof. We know from Lemma 1 of [17] that if z € HL(I) and 2(—1) = 2(1) = 0,
then
lw?zllw,r < [2]10,1- (5.5)

Thus

|(, 01(wv)) p2(0)| < [(w, 010)w] + [(u, 210700 |
< ullo(I010]lw + llwv]lw) < 2fullw]|orv]o.
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Lemma 9. If (2.3) holds and u,v,z € Sy,n, then

|(Jro (U, 2), v) MmN w| < cllulloo|2]1w|v]1w,

|(Jre (u, 2), V)N ol < clluflolz

l,ooyv‘l,w'
Proof. By (5.4),
(Jre(u, 2),v) M Nw = D1 + D2 + Ds,
Dy = —(RPc((V x 2)Mu),01(wv)) r2(q), D2 = —(RPc((V x 2)Pu), 820) N 0
D3 = —(RPc((V x 2)Pu), 930) 4, n -

By Lemma 1, Lemma 6 and Lemma 8§,

|D1] < 2| RPe((V % 2)Vu)ulldrolle < e Pe((V % 2) D) [[arvv]10

= ell(V x 2)Wullyvololiw < cllullsolzliwlvlie:

Next, by Lemma 1 and Lemma 6,

|1 Ds| < [|RPe((V % 2) D) || w0020 11, 3,0
< ¢||RP((V % 2) D) ||u|v)10 < eflullsolz]1w]v

lw-

We can estimate |Ds| similarly and get the first conclusion. The second one follows
similarly.
Lemma 10. Let (2.3) hold and v € Sy, g € (Pu X W](Vz))3 satisfy

~(V20,u) M Nw = (g, WM Nw, Y u€Syn. (5.6)
Then

lollf o + 1020113 + 1050l < cllgllZ,
2,112 2
1070]5 < eM|glle-

Proof. Let w = v in (5.6). We have from Lemma 1 and Lemma 7 that

1
Al < ol xollglln e < ellvllollgll

and so [lul|f,, < cllgl|Z. Now, let

v = Z Ul(xl)eily, g= Z gl(ﬂfl)eily~
[tI<N

<N
By putting u = v;e™¥ in (5.6), we obtain from (5.4) that
(Ovvr, 01 (wur)) 2y + 11 (o, vi) areo = (g0 v1) M-

By Lemma 6 of [17], the above equality reads

1
ZHUZH%,w,I Pz < N vdarw! < 2llallwrllvnllor
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3 4
< |2 2 — 2
= 4| | ||Ul||w,l + 3‘”2Hgl”w7l
Thus

102011% o, + 11050]13 0 = D WP (lwellF o r + 2 [loellZ 1)
<N

16 16
<2 Y Nl = ol
<N

which completes the proof of the first conclusion.
We next turn to prove the second conclusion. By (5.4) and (5.6),

—(0%v,u)p = (g + v+ Bv,u) Ny, Yu€ Syn. (5.7)

For simplicity, we consider the following auxiliary problem. Let 0, g € V]\(}) and

(020, ). = (7, W) are, Vi e VD (5.8)
Assume that
M—2 M
010 = > arTi(x1), §=Y bpTe(x1).
k=0 k=0
Also, let )
Ti(x1) = Ti(z1) — Ta(k)(azl), 0<k<M (5.9)
with
M, if K+ M iseven,
a(k) = . .
M—-1, if E+M isodd.

It can be verified that {T}(x1)} are the basis in VJ\(;). We put @(x;) = T (x1) in (5.8).
The calculation tells us that

™

(010, Ti)w, s = o Chak; e

s

™
2Ckbk - §ba(k)

where ¢g = 2 and ¢ = 1 for k£ > 1. Moreover by (5.4) and Lemma 1,

. - T
189 Ted s = (9 T 1| = bt
Thus (5.8) leads to

lekak| < |ekbr| + |ba(k)| +|byml, 0<k<M-2.

Hence
M-2 M—2
> af < oMb, + MBY,_, + Y bE)
k=0 k=0

and so ||8%€L||Z)I < cM||§||Z)J. Then the second conclusion follows.
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Lemma 11. (Lemma 4.16 of [18]). Suppose that the following conditions are
fulfilled

(i) p,b1, by are non-negative constants and q > 1;

(i9) E(t) is a non-negative function defined on Sr;

(7i1) E(0) < p and fort € Sy, t > 1,

t—1

E(t) <p+bi7 Y _(E({')+bE(t));
t'=0

(iv) for some ty € S, pe2titt < bl/1 7,
Then for allt € S;,t <11,
E(t) < pe®t,

6. The Proof of Theorems

We first prove Theorem 1. Let v = 27} in the first formula of (4.1). By using Lemma
7 and the fact that

2075, MarNw = (17l1325.0)

we obtain

7| |M,N,w + 4||PCf1H%\/[,N,w (6.1)

hu\»—‘

(703 v ) + ||7]||1w+ZF

where F; = Fj(t) and

Fi=2(Jre(n, @) MmN Fo = 2(Jre (71, 9), 1) M 0,
Fy=2(Jre(0, @), MmNw,  Fa==2(Hrc(1,9),1)MNw,
Fy = =2(Hpo(1, ), MmNw:  Fo = —2(Hrc (7, 8), 1) M,Nw-

We apply Lemma 10 to the second formula of (4.1), and get

< c(lall? + I1Pe f212), (6.2)
2). (6.3)

18113 . + 11922117
16113, < eM([I7]

We now estimate |Fj|(j =1,---,6). By Lemma 9 and (6.2),

14 g C
|| < w < 76l V||77||2 (17112 + 1P fall2),
- 2 v 2 C
2] < ellelleollllwllllie < g5ln U||<PH1 ool l71113-

By Lemma 2, Lemma 9 and (6.2),

5] < cll@lloollllell]]1.0

< M2 (W N)2(|@llw + 1021w + 105@l 1) |77l 7] 1.0

cMIn N

< Ll + S + I PeAulL).
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By (2.2.27) of [16], we know that (Ru,v)ymnw = (u, Rv)p N for all u,v € Sy .

On the other hand, we know from (5.4) that (012, uv)m Nw = (012, Po(uv))mNw =
(012, Po(uw)),, for all u,v,z € Sprn. Thus

|Fy| —Q\Z Wa;(V x @), Ri)am.nvw| < D1 + Do,

\( VoV x @), Rij — ) m,nw| + 2[(01(V x @), Vi), |
+2[(01(V x @), (Po —T)(nVi))ul,

3
Dy =23 [nW0;(V x @)

Jj=2

Furthermore, by Lemma 3, (6.2) and (6.3),

Dy <clln™Moy(V x @)l a.nwl Rl — 77||MNw + el @l1.wn ™Ml w
+ | Pl2w || (Po —I)( Wil < (M + N0V ool Gla.w 1711,
+ | @1 wlIn™ 11w + cl@l2w(M V5] 120 1 (1)
+ N0 Wil gz ) + M N0 W g2 1 1y)
<elBlrwln™M 1,00l w + (M~ + N7H|
<elnllveollillw (1Al + 1 Pof2ll2),

3
D, SCHnHooHﬁHw Z Ha p
Jj=2

1w < ellnlloolllw (1712 + 1P flI2)-

Hence

c _ ~
[Fyl < EHnle Al oo (1S + 1Po f2112)-

Obviously by Lemma 1 and Lemma 6,

<
|F5| < ellella.collillwllll < 16
By Lemma 1, Lemma 2, Lemma 6 and (6.3),

|Fol < cll@llzellilloollfill < (M In NYY2 (|3l 171,007
cM?In N

< 16H77le ————(llls + | Pe flI2)-

By substituting the above estimations into (6.1), we get

—_

14

1713 < =1all2 + dsllall2 + dalllls + Ga (6.4)

2

(703 v ) +

oo |

where G1(t) is given in Section 4, and

cM?In N
” .

200)7 d4 =

c 2
dz = — (Il
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By summing (6.4) for ¢ € S, we have

t—1
~ - vT ~
17313 + 17 = T30 + e >l
t'=1
t—1 R
<O 13150 + 1O e +7 D (9E)E
t'=1

+ 2d3| ()12 + 2dal|(E)]| 4 + 2G4 (1)).

Let 7 < 1. By Lemma 1 and the fact that

N 1 1
In@IE < Sliac+ )2 + 5l = 7).
2 2

we obtain
t—1

E(7,t) < p(t) + 47 Y [(d3 + 1) E(7], ') + da E* (i), )]

t'=1

where E(7,t) and p(t) are as shown in Section 4. Finally we use Lemma 11 to complete
the proof of Theorem 1.

Next, we prove Theorem 2. The key point is to estimate |4;|(j = 1,---,9). By
Lemma 1 and Lemma 4, we have that for any r,s > 1,

X 0
] < 1€ = & 0)m vl + (& ) nw — (€ 0)ol + | (& - 567’0%)
< cllvllw(l1§ — Pr—1,5€ille + 11§ — Poillo + 167 — &llw + 7 21€l g3 —rp4m22 2)))

Y )2 2 -2 2 314112
S @”UHLW_‘_C(M 7"+N S)”&HCl(O’T;M;,S(Q)) +cT ||£||H3(t—T7t+T;L3}(Q))‘

It is complicated to estimate |As|. Let Ay = By + By where

By = (Jre(§"07),v)w — (JrRo(§5,¢"), V) MNws, B2 = (J(&,¢) — Jre(§5,¢%),v)w-

By Lemma 1 and Lemma 6, we have
3 . .
|Bil = D [(Pe((V x ") D€%), Rojv) — (Pe((V x ")V, ROjo)mn |
j=2

3
<ol DI = Pru—in)Pe((V x )D€
j=2
3

<clvllw Y T = Pau—1n)(Po = IV x 1) D¢,
j=2

+ (T = Py w)(V x )D€ ).
Moreover, Lemma 3, Lemma 4, and Lemma 5 imply that for » > 5/4 and s > 1,

I(Z = Pr—1.n)(Po = I)(V x ") D, < e (Po — T)(V x ™) Der,
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<cll(Pe = I)(V x ") (" = Ol + cll(Pe = T)(V x (¢ = 9)V¢]l,
+ el (Po = T)(V x )Pl < eM (Y x ") (€ = )l
+ N2V x )9 — ) 2.2 (1)
+ e MTENT2(V x )D€ = )l 2@y + M THIEY x (" =)D 1
+eNT2EY x (0 =)Dl 20,12 (1)) + eM TNV x (0 = )9 g2, (1)
+ (M7 + N7 X D) VEN s o) s g ar-3/4-3/49
<e(M™" 4+ N[0 l2,00ll€llnaze ) + N9 2,00 1€¥ = €l 20,2210
+ e MY 2,00 167 — §||H2<Q,Hm> + M€l ool — Pll2w
+cN™ (" = V) 2.2
+ M TIN50V X (0 = )| r2(q 1)
+ (M + N X D) DE s ) o v gup-9/1-5/5 1y

By embedding theorem, we have

vl ) Sellull e o) s (@,mt/2+1/2+ (1) (/200,124 (1)

X Jll (6.5)

H*(Q) (HY#(Q,HY > T2 (1)) N HY/2+1+5(Q,HL* T (1),

||u/UHH5(Q,H:)( <C||U”HS Q Hr ﬂH1/2+1+6(Q HT+1/2+5 I ﬂHs+1+§(Q H1/2+1/2+5([))

X ”UHHS Q Hr([))mH1/2+1+6(Q HT+1/2+5 )an+1+6(Q H1/2+1/2+5 IB
6)

By Lemma 3 and Lemma 4,

1€ = &l m () < I€° — Peéllaz,my () + 1Pc€ — Ellm2@,m1 (1)
< N2 = Elliw + 1€ = Peéllre.mry) + I1Pc€ — Ellgg,m )

1—r 1-s
< oM+ NN ey 2@z () N 2@ HE (1)

Similarly,
9" — 2w < U — w |1 Pcy — 2w
<c(M? + N)(|[¢* = Yll1w + [|Pot — Yll1w) + | Poty — ¥]|2.0
1—7r 1—s
<M A N vz o2 )nn2 (0,053 ()N B2(QuHL T ()N B (QuH2 (D)

IV x (" = D)l 2021 < 1U° = Yllas,2y) + 10" — Yl a2@,H1 (1)

2—r 2—s
Se(MTT+N )Hw”M’"“s“(ﬂ)ﬂLQ(QHT“(I))FWHQ(Q,HE(I))0H3(Q,HL’2(I))’

IV < (" = ) m20,m1)) < 1V° = VllEs,mymy) + 1V — Ylla2@,m52(0)
3—r 3—s
SAMTTAN )H1/’”M£+2’S+2(Q)0L2(Q,HL”’(I))HHQ(Q,HL+1(I))0H3(Q,HL’1(I))ﬂHs‘l(QHo%(I))’
We can estimate the term ||(V x w>(j)§HHI;5(Q) () H1+5(Q.HL ¥/ 473/% (1) by (6.5) and (6.6).
Finally, for r > 5/4, s > 1, > 1/2 and § > 1,

2r 2s 2
|Bl HUle—i-C(M + N~ )Hg‘|yrs5 )mWsoo(Q)HwHYZT,j5(Q)nng(9)

’_128
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By Lemma 8,
3
| Ba| <210 D 1€V x 1)) — RPc(€(V x %) D),
j=1
3
<210 D LIEV x )P — €5(V x ) D, + [|(Z — Po)e*(V x "),
j=1

+I(Z = R)(Po — T)E(V x ")Vl + (T = R)(E(V x ") D)L}
We have from Lemma 4 and Lemma 6 that
I(Z = R)E(V x )Py < (T = R)(E = (VY x )P,
+[I(Z = RV x (" =)Dl + (T = R)EV x 1))l
<t 100 llE" = Ellw + cllélloo |9 — Bll1w + (M + N=*)IE(V x )| grs (g
<c(M™" + N7 [W 1 00ll€llnzs (@) + (M7 + N72)[Elloo |91l 1041
+ (M + N)EV x )| gro (-

By an argument similar to those in the estimation for |Bj|, we get

—2r —2s 2
Bol < Jagllolf .+ e + N7

Similarly, we know that for r > 5/4,s > 1, > 1/2 and § > 1,

2
o w1Vl 25 @nxs o)

[As] < —Jlol, + (M2 + N72)|¢|?

- ].28 YTS g Q)QW3 oo(Q)H’l/]HYTS 5 Q)OXOL ﬁ(Q)

It is easy to verify that for r > 1,s > 1 and € > 0,
] < ve(M "+ N ol €l oo ra e o)

+ (M7 + N~%)||¢|2

= COTME ()

1%
TQSHUH%“’

45| < —[lvll3,, + €2

128 H2(t—rt+7m;HYH Q)

46| < —[l0lo + (M2 + N72)||fy Ve

128 Q)NHs(Q;HY > (1))’

|A7] < elloli,, + g(M T NI e g

c —_ —
|As| < ellvllf,, + (M 74 N72) €N e

2 C o ar—2r —2s 2
9] < ellolf s+ SO+ N7Vl ) ot/

Moreover

IEO)IIZ < (M7 + N72)|6oll3 70
()
IETZ < (M2 + N72) () 30y + 7 1€ 20,722 2

* * 1
€ o0 < el xgo@y 10 Naoo < clbllygoy > 56> 1

By an argument as in the proof of Theorem 1, we complete the proof of Theorem 2.
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