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Abstract

Nonlinear Galerkin methods are numerical schemes adapted well to the long
time integration of evolution partial differential equations. The aim of this paper
is to discuss such schemes for reaction diffusion equations. The convergence results
are proved.

1. Introduction

In order to solve the problem of long time integration of evolution partial differential

equations, nonlinear Galerkin methods are introduced in recent years. Such methods

stem from the theory of inertial manifolds and approximate inertial manifolds. We

recall an inertial manifold is a finite dimensional smooth manifold which contains the

global attractor and attracts every orbit at an exponential rate[1,2]. However, there are

still many dissipative partial differential equations for which the existence of inertial

manifolds is not known; there are even in some cases nonexistence results. These

problems have lead to introduce the weak concept of approximate inertial manifolds.

These manifolds are finite dimensional smooth manifolds such that all orbits enter their

a thin neighborhood after a certain time. The existence of such manifolds can be found

in Foias, Manley and Temam [3] ; Marion [4].

The algorithms which produce an approximate solution lying on an approximate

inertial manifold are introduced by Marion and Temam[5]. They have been called

nonlinear Galerkin methods, opposite to the usual Galerkin method which produces

an approximate solution in the linear space spanned by the first m’s functions of the

Galerkin basis.

The improvenments of the nonlinear Galerkin methods over the usual Galerkin

method are evidenced by theoretical results and numerical computations that show a

significant gain in computing time[5,6,7]. In this paper, we study such nonlinear Galerkin

methods for reaction diffusion equations, and prove the convergence rusults.

In section 1, we recall some known results for reaction diffusion equations, and

introduce an approximate inertial manifold Σ, where Σ is first given by Wang[8]. Section

2 contains the nonlinear Galerkin methods based on Σ and our main results. The

convergence results are obtained in this section.

∗ Received August 12, 1994.
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2. An Approximate Inertial Manifold

We consider the following problem with a real valued function u(x, t) defined on

R+ × Ω, where Ω denotes a regular bounded set of Rn(n ≤ 4):

∂u

∂t
− d∆u + g(u) = 0 , in R+ × Ω (2.1)

The equation is supplemented with the initial condition

u(x, 0) = u0(x) in Ω (2.2)

and one of the three following boundary conditions :



















Dirichlet u = 0 on Γ = ∂Ω,

Neumann ∂u
∂γ

= 0 on Γ,

Periodic Ω =
n
∏

i=1
(0, Li) and u is Ω periodic.

(2.3)

where d > 0 is a diffusion coefficient. We assume that g ∈ C1(R,R) satisfies

g′(s) ≥ −c1, ∀ s ∈ R (2.4)

c2|s|
k − c4 ≤ g(s) · s ≤ c3|s|

k + c4, ∀ s ∈ R, (2.5)

where k > 2 is a integer and ci > 0 is constant.

Let Au = −d∆u+u, then A is a unbounded self-adjoint positive operator on H = L2(Ω)

with domain

D(A) = {u ∈ H2(Ω) : u satisfies (2.3)}

Let | · | be the norm of H with scalar product (·, ·) ; and ‖ · ‖ = |A
1

2 · | be the norm

of V = D(A
1

2 ) with scalar product ((·)). Denote by | · |p the norm of Lp(Ω) for

1 ≤ p < ∞.(| · |2 = | · |).

Since A−1 is compact, there exists an orthonormal basis of H consisting of eigen-

vectors wj of A

Awj = λjwj , j = 1, 2, · · ·

0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞ as j → +∞.

Under assumptions (2.4) and (2.5), it follows from [4] that for u0 given in H, the

problem (2.1)-(2.3) possesses a unique solution u defined on R+ such that

u ∈ C(R+;H)
⋂

L2(0, T ;V ),∀T > 0.

Furthermore, if u0 ∈ V ∩ Lk(Ω), then

u ∈ C(R+;H)
⋂

L2(0, T ;D(A)), ∀T > 0.
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It is useful here to recall several time uniform estimates satisfied by the solution u of

(2.1)-(2.3) borrowed from [4]. Let u0 be given in a ball B(0, R) of H of center 0 and of

radius R. Then there exists a time t0 depending the data (Ω, d, g) and R such that

‖u(t)‖ ≤ M0, |u(t)|∞ ≤ M0, for t ≥ t0 (2.6)

where M0 is a constant depending on the data (Ω, d, g).

Let φ : R+ → R be a C∞ true cation function such that

φ(s) = 1, for 0 ≤ s ≤ 1; φ(s) = 0, for s ≥ 2.

Set f(s) = φ( s2

M2
0

)(g(s) − s) for all s ∈ R, then when t ≥ t0, u satisfies

∂u

∂t
− d∆u + u + f(u) = 0.

This equation is rewrited as the following abstract differential equation in H

du

dt
+ Au + f(u) = 0. (2.7)

Since we are only interested in the long time behaviours, we will consider from now on

(2.7) instead of (2.1).

For all m, denote by Pm : H → span{w1, · · · , wm} the projector and Qm = I −Pm.

In order to construct an approximate inertial manifold Σ, we introduce

Am = {y ∈ PmH : ‖y‖ ≤ 2M0}

A∗

m = {z ∈ QmH : ‖z‖ ≤ 2M0}

where M0 is the constant in (2.6).

For y ∈ Am from [8] we know that the following implicit system possesses a unique

solution y1 ∈ PmH, z1 ∈ QmH and z ∈ A∗

m :

y1 + Ay + Pmf(y + z) = 0 (2.8)

Az1 + Qmf ′(y + z)y1 = 0 (2.9)

z1 + Az + Qmf(y + z) = 0. (2.10)

Then we can define a mapping Φ : Am → A∗

m such that Φ(y) = z for all y ∈ Am. Wang[8]

proves that Σ = graph(Φ)is an approximate inertial manifold of (2.1)-(2.3) such that

every orbit enters its a thin neightborhood after a finite time, and the thickness of this

neightborhood is bounded by N( λ1

λm+1
)3. Here and after, N denote any constant which

depends on the data (Ω, d, g) and λ1.

3. Nonlinear Galerkin Methods

In this section, we consider the nonlinear Galerkin methods associated to the ap-

proximate inertial manifold Σ. FOr M > 0, denote by

Bm = {y ∈ PmH : ‖y‖ ≤ M}

B∗

m = {z ∈ (P2m − Pm)H : ‖z‖ ≤ M}.
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For y ∈ Bm, we introduce the following system which is the discretizations of (2.8)-

(2.10).

y1 + Ay + Pmf(y + z) = 0 (3.1)

Az1 + (P2m − Pm)f ′(y + z)y1 = 0 (3.2)

z1 + Az + (P2m − Pm)f(y + z) = 0 (3.3)

where the knows y1, z1 and z are such that

y1 ∈ PmH, z1 ∈ (P2m − Pm)H, z ∈ B∗

m.

Obviously, the system (3.1)-(3.3) can reduce to an implicit equation for z. We first

have

Lemma 3.1. FOr all M > 0, there exists a m0 depending on the data (Ω, d, g)

and M such that when m ≥ m0, for all y ∈ Bm, (3.1)-(3.3) have a unique solution

y1(y) ∈ PmH, z1(y) ∈ (P2m − Pm)H, and z(y) ∈ B∗

m.

Proof. We show this lemma by a fixed point argument. Let y ∈ Bm be fixed, we

define a mapping F : B∗

m → (P2m − Pm)H, as follows. For w ∈ B∗

m, z = F (w) is

determined by the resolution of the equations

y1 + Ay + Pmf(y + w) = 0 (3.4)

Az1 + (P2m − Pm)f ′(y + w)y1 = 0 (3.5)

z1 + Az + (P2m − Pm)f(y + w) = 0 (3.6)

which give successively y1 ∈ PmH, z1, z ∈ (P2m − Pm)H.

Clearly, any fixed point of F is a solution of (3.1)-(3.3).

(i) F maps B∗

m into B∗

m for m sufficiently large.

By (3.4) we find that

|y1| ≤ |Ay| + |f(y + w)|

≤ λ
1

2
m‖y‖ + N (by |Ay| ≥ λ

1

2
m‖y‖ and |f(s)| ≤ N for s ∈ R)

≤ Mλ
1

2

m+1 + N (by y ∈ Bm and λm+1 ≥ λm). (3.7)

And thus it comes from (3.5) that

|Az1| ≤ |f ′(y + w)y1|

≤ N |y1| (by |f ′(s)| ≤ N for s ∈ R)

≤ NMλ
1

2

m+1 + N (by(3.7)).

Due to |Az1| ≥ λm+1|z1| we infer that

|z1| ≤ NMλ
−

1

2

m+1 + Nλ−1
m+1. (3.8)

It follows from (3.6) that

|Az| ≤ |z1| + |f(y + w)|

≤ NMλ
−

1

2

m+1 + Nλ−1
m+1 + N (by (3.8) and |f(s)| ≤ N).
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By |Az| ≥ λ
1

2

m+1‖z, the above implies

‖z‖ ≤ (NMλ
−

1

2

m+1 + N)λ
−

1

2

m+1.

Taking into account λm+1 → +∞ as m → +∞, we deduce that there exists m1

depending on the data and M such that when m ≥ m1

‖z ≤ M

this shows when m ≥ m1, F maps B∗

m into itself.

(ii) F is a contraction.

Let w1, w2 ∈ B∗

m. In view of (3.4) we find that

|y1(w1) − y1(w2)| ≤ |f(y + w1) − f(y + w2)|

≤ N |w1 − w2| (by|f ′(s)| ≤ N for s ∈ R). (3.9)

Due to (3.5)

|Az1(w1) − Az1(w2)| ≤ |f ′(y + w1)y1(w1) − f ′(y + w2)y1(w2)|

≤|(f ′(y + w1) − f ′(y + w2))y1(w1)| + |f ′(y + w2)(y1(w1) − y1(w2))|

≤N |(w1 − w2)y1(w1)| + N |y1(w1) − y1(w2)|

by |f”(s)| ≤ N and |f ′(s)| ≤ N forall s ∈ R)

≤N |(w1 − w2)|L4 · |y1(w1)|L4 + N |y1(w1) − y1(w2)| (by Holder inequality)

≤N |(w1 − w2)|H1 · |y1(w1)|H1 + N |y1(w1) − y1(w2)| (by H1(Ω) ⊂ L4(Ω))

≤N‖(w1 − w2)‖‖y1(w1)‖ + N |y1(w1) − y1(w2)|

(by H1 − norm is equivalent to the norm‖ · ‖)

≤Nλ
1

2

m+1‖(w1 − w2)‖ · |y1(w1)| + N |y1(w1) − y1(w2)|

(by ‖y1(w1)‖ ≤ λ
1

2
m|y1(w1)| ≤ λ

1

2

m+1|y1(w1)|)

≤N(N + Mλ
1

2

m+1)λ
1

2

m+1‖(w1 − w2)‖ + |w1 − w2| (by (3.7) and (3.9)).

Because of

|Az1(w1) − Az1(w2)| ≥ λm+1|z1(w1) − z1(w2)|

we find that the above implies

|z1(w1) − z1(w2)| ≤ N(Nλ
−

1

2

m+1 + M)‖(w1 − w2)‖ + Nλ−1
m+1|w1 − w2|. (3.10)

Taking into account (3.6)

|Az1(w1) − Az1(w2)| ≤ |z1(w1) − z1(w2)| + |f(y + w1) − f(y + w2)|

≤N(Nλ
−

1

2

m+1 + M)‖w1 − w2‖ + Nλ−1
m+1|w1 − w2| + N |w1 − w2|

(by (3.10) and |f ′(s)| ≤ N)

≤(N + NM)‖w1 − w2‖ (by |w1 − w2| ≤ λ
−

1

2

1 ‖w1 − w2‖ and λm+1 ≥ λ1).
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Due to

|Az1(w1) − Az1(w2)| ≥ λ
1

2

m+1‖z(w1) − z(w2)‖

then we see that

‖z(w1) − z(w2)‖ ≤ (N + NM)λ
−

1

2

m+1‖w1 − w2‖.

For λm+1 → +∞, there exists a m2 depending on the data and M such that: when

m ≥ m2, F is a contraction.

Let m0 = max{m1,m2}, then we deduce that when m ≥ m0, F has a unique fixed

point in B∗

m, thus we complete the proof of Lemma 3.1.

The nonlinear Galerkin methods based on Σ consists in looking for

um = ym + zm, ym ∈ PmH, zm ∈ (P2m − Pm)H

such that
dym

dt
+ Aym + Pmf(ym + zm) = 0, (3.11)

where zm is given by

y1,m + Aym + Pmf(ym + zm) = 0 (3.12)

Az1,m + (P2m − Pm)f ′(ym + zm)y1,m = 0 (3.13)

z1,m + Azm + (P2m − Pm)f(ym + zm) = 0 (3.14)

ym(0) = Pmu0. (3.15)

By Lemma 3.1 and the general theorems on ordinary differential equations, for any

M > ‖u0‖ and m ≥ m0, (3.11)-(3.15) possess a unique maximal solution ym(t) defined

on some interval (0, Tm). Our aim in the sequel is to show that, for a convenient value

of M , Tm = +∞, i.e. (3.11) has a solution ym(t) on R+. Furthermore, we prove that

um converges to the solution u of (2.1)-(2.3) as m → +∞. This is stated in

Theorem 3.1. Let g ∈ C2(R,R) such that (2.4) and (2.5) hold. Ω ⊂ Rn and

n ≤ 4. If u0 ∈ V ∩ Lk(Ω), u(t) is the solution of (2.7), (1,2) and (1,3), then there

exists a constant M1and m1 depending on the data and u0 such that when m ≥ m1

(3.11)-(3.15) have a unique solution ym defined on R+ with

‖ym‖ ≤ M1, ‖zm‖ ≤ M1; (3.16)

When m → +∞, um → u in L∞(R+;V ) weak star, in L2(0, T ;D(A)) and

Lp(0, T ;V ) strongly for all T > 0 and 1 ≤ p < ∞; (3.17)

ym → u in L∞(R+;V ) weak star, in L2(0, t;D(A)) and Lp(0, t;V ) strongly for all

T > 0 and 1 ≤ p < ∞; (3.18)

zm → 0 in L∞(R+;V ) strongly and L2(0, t;D(A)) for all T > 0. (3.19)

Proof. The proof relies on a priori estimates on the solutions of (3.11)-(3.15). The

precise choice of M1 will be done later. For the moment, let M be any constant with

M > ‖u0‖a and m ≥ m0 so that (3.11) has a unique solution ym(t) on a maximal

interval (0, Tm).
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Multiply (3.11) by Aym in H to obtain

1

2

d

dt
‖ym‖2 + |Aym|2 = −(f(ym + zm), Aym).

Due to

|(f(ym + zm), Aym)| ≤ N |Aym| (by |f(s)| ≤ N) ≤
1

2
|Aym|2 + N

then
d

dt
‖ym‖2 + |Aym|2 ≤ N. (3.20)

And thus
d

dt
‖ym‖2 + λ1‖ym‖2 ≤ N (by |Aym|2 ≥ λ1‖ym‖2).

It comes from Gronwall Lemma that

‖ym(t)‖2 ≤ ‖ym(0)‖2 exp(−λ1t) + N

≤ ‖ym(0)‖2 + N ≤ ‖u0‖
2 + N, t ∈ (0, Tm).

This shows that there exists a constant M1 depending on the data and u0 such that

‖ym(t)‖ ≤ M1, ∀ t ∈ (0, Tm). (3.21)

Then for M = 2M1, we can easily deduce that the corresponding solution ym(t) of

(3.11) is defined for all t ≥ 0. And thus (3.16) is proved. (3.21) along with Tm = +∞

shows that

ym is bounded in L∞(R+;V ). (3.22)

Next, coming back to (3.20) that we integrate between 0 and T , we see that

ym is bounded in L2(0, T ;D(A)) for all T > 0. (3.23)

By (3.11) we find that

|
dym

dt
| ≤ |Aym| + |f(ym + zm)|

≤ |Aym| + N, (by |f(s)| ≤ N, ∀ s ∈ R).

Above formula together with (3.23) implies that

dym

dt
is bounded in L2(0, T ;D(A)) for all T > 0. (3.24)

Similar to the proof of Lemma 3.1 (i), from (3.12)-(3.14) we can easily verify that there

exists a N depending on the data, λ1 and u0 such taht

|Azm| ≤ N

and

‖zm‖ ≤ Nλ
−

1

2

m+1.
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In view of λm+1 → ∞ as m → ∞, we infer from the above that

zm → 0 in L∞(R+;V ) and L∞(R+;H) strongly, (3.25)

zm is bounded in L2(0, T ;D(A)) for all T > 0. (3.26)

Using (3.22)-(3.26) we know that there exists u∗ and a subsequence, still denoted by

ym, such that

u∗ ∈ L∞(R+;V )
⋂

L2(0, T ;D(A)),∀T > 0.

and

ym → u∗ in L∞(R+;V ) weak star, in L2(0, T ;D(A)) weakly,∀T > 0,

(3.27)

dym

dt
→

du∗

dt
in L2(0, T ;D(A)) weakly,∀T > 0, (3.28)

zm → 0 in L2(0, T ;D(A)) weakly,∀T > 0. (3.29)

Due to a classical compactness theorem[9], it follows from (3.27) and (3.28) that

ym → u∗ in L2(0, T ;V ) strongly. (3.30)

In the following, we prove u∗ = u is the solution of (2.7), (2.2) and (2.3). By (3.11) we

infer that ∀wj with j ≤ m

d

dt
(ym, wj) + ((ym, wj)) + (f(ym + zm), wj) = 0. (3.31)

Let φ be a continuously differentiable function on [0, T ] with φ(T ) = 0. We multiply

(3.31) by φ, and then integrate by parts. This leads to

−

∫ T

0
(ym, φ

′

(t)wj)dt +

∫ T

0
((ym, φ(t)wj))dt

= (ym(0), wj)φ(0) −

∫ T

0
(f(ym + zm), φ(t)wj)dt. (3.32)

By (3.27) we obtain

∫ T

0
(ym, φ

′

(t)wj)dt →

∫ T

0
(u∗, wj)φ

′(t)dt (3.33)

∫ T

0
((ym, φ(t)wj))dt →

∫ T

0
((u∗, wj))φ(t)dt (3.34)

|

∫ T

0
(f(ym + zm), wj)φ(t)dt −

∫ T

0
(f(u∗), wj)φ(t)dt|

≤

∫ T

0
|f(ym + zm) − f(u∗)||φ(t)wj |dt

≤N

∫ T

0
|ym + zm − u∗||φ(t)wj |dt (by|f ′(s)| ≤ N,∀s ∈ R)

≤N |ym + zm − u∗|L2(0,T ;H) × |φ(t)wj |L2(0,T ;H) (by Holder inequality)
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(3.30) and ( 3.25) imply that ym → u∗ and zm → 0 in L2(0, T ;H) strongly. And then

we have
∫ T

0
(f(ym + zm), wj)φ(t)dt →

∫ T

0
(f(u∗), wj)φ(t)dt (3.35)

Thanks to (3.33)-(3.35) and ym(0) = Pmu0 → u(0), pass to the limit in (3.32)

−

∫ T

0
(u∗, wj)φ

′(t)dt +

∫ T

0
((u∗, wj))φ(t)dt

=(u(0), wj)φ(0) −

∫ T

0
(f(u∗), wj)φ(t)dt.

Clearly, by linearity, this equality holds for any finite linear combination of wj. Since

each term of this equality is continuous in V , this equality is still valid, by continuity,

for all v ∈ V , i.e.

−

∫ T

0
(u∗, v)φ′(t)dt +

∫ T

0
((u∗, v))φ(t)dt

=(u(0), v)φ(0) −

∫ T

0
(f(u∗), v)φ(t)dt, ∀ v ∈ V. (3.36)

Now writing in particular (3.36) with φ ∈ C∞

0 (0, T ), we find that the following equality

which is valid in the distribution sense on (0, T )

d

dt
(u∗, v) + ((u∗, v)) + (f(u∗), v) = 0 ∀ v ∈ V. (3.37)

Due to (3.37) and reference [9], we know that u∗(t) is a continuous function in t. And

therefore u∗(0) makes sense. Finally we check u∗(0) = u(0).

Let φ be a continuously differentiable function with φ(T ) = 0. Multiply (3.37) by

φ and integrate by parts to get

−

∫ T

0
(u∗, v)φ′(t)dt +

∫ T

0
((u∗, v))φ(t)dt

=(u∗(0), v)φ(0) −

∫ T

0
(f(u∗), v)φ(t)dt. ∀v ∈ V

By comparison with (3.36), we see that

(u∗(0), v)φ(0) = (u(0), v)φ(0). ∀v ∈ V

In particular, we choose φ such that φ(0) 6= 0, then

(u∗(0) − u(0), v) = 0. ∀v ∈ V

This equality implies that

u∗(0) = u(0) (3.38)

(3.37) and (3.38) show that u∗ = u is the solution of (2.7), (2.2) and (2.3).
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To complete the proof of Theorem 3.1, it remains to check the strong convergence

results in (3.18) and (3.19). Let us introduce the expression

Xm =

∫ T

0
|Azm|2ds (3.39)

Ym =
1

2
‖ym(T ) − u(T )‖2 +

∫ T

0
|Aym − Au|2ds. (3.40)

Take the scalar product of (3.14) with Azm and integrate between 0 and T to get

∫ T

0
(z1,m, Azm)ds +

∫ T

0
|Azm|2ds +

∫ T

0
(f(ym + zm), Azm)ds = 0. (3.41)

Multiplying (3.13) by zm, we find that

∫ T

0
(z1,m, Azm)ds +

∫ T

0
(f ′(ym + zm)y1,m, zm)ds = 0. (3.42)

It comes from (3.12) that

|y1,m| ≤ |Aym| + |f(ym + zm)|

≤|Aym| + N (by |f(s)| ≤ N for s ∈ R). (3.43)

Then

|

∫ T

0
(f ′(ym + zm)y1,m, zm)ds|

≤

∫ T

0
|f ′(ym + zm)y1,m| · |zm|ds

≤N

∫ T

0
|y1,m| · |zm|ds (by|f ′(s)| ≤ N)

≤N

∫ T

0
|Aym| · |zm|ds + N

∫ T

0
|zm|ds (by (3.43))

≤N |ym|L2(0,T ;D(A)) × |zm|L2(0,T ;H) + N

∫ T

0
|zm|ds.

Due to (3.23) and (3.25), we infer that the right-hand side of the above formula con-

verges to 0 as m → +∞. And therefore it follows from (3.42) that

∫ T

0
(z1,m, Azm)ds → 0 as m → +∞ (3.44)

|

∫ T

0
(f(ym + zm) − f(u), Azm)ds|

≤

∫ T

0
|f(ym + zm) − f(u)| · |Azm|ds

≤N

∫ T

0
|ym + zm − u| · |Azm|ds (by|f ′(s) ≤ N)

≤N |ym + zm − u|L2(0,T ;H) × |zm|L2(0,T ;D(A)).
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By (3.25), (3.26) and (3.30) we derive that the above converges to 0 as m → +∞.

Hence
∫ T

0
(f(ym + zm) − f(u), Azm)ds → 0 as m → +∞. (3.45)

In view of (3.29) we see that
∫ T

0
(f(u), Azm)ds → 0 as m → +∞ (3.46)

(3.45) and (3.46) imply that
∫ T

0
(f(ym + zm), Azm)ds → 0 as m → +∞. (3.47)

And thus, (3.41) together with (3.44) and (3.47) yields

Xm =

∫ T

0
|Azm|2ds → 0. (3.48)

Now we prove Ym → 0 asm → ∞. Taking scalar product of (3.11) with Aym in H,

and integrating between 0 and T , we find that

1

2
‖ym(T )‖2 =

1

2
‖ym(0)‖2 −

∫ T

0
|Azm|2ds −

∫ T

0
(f(ym + zm), Aym)ds

and then it follows from (3.40) that

Ym =
1

2
‖ym(T )‖2 − ((ym(T ), u(T ))) +

1

2
‖u(T )‖2 +

∫ T

0
|Aym|2

− 2

∫ T

0
(Aym, Au) +

∫ T

0
|Au|2

=
1

2
‖ym(0)‖2 − ((ym(T ), u(T ))) +

1

2
‖u(T )‖2

− 2

∫ T

0
(Aym, Au) +

∫ T

0
|Au|2 −

∫ T

0
(f(ym + zm), Aym). (3.49)

Each term of the above is majorized as follows :

1

2
‖ym(0)‖2 =

1

2
‖Pmu0‖

2 →
1

2
‖u(T )‖2. (3.50)

It follows from (3.28) that

((ym(T ), u(T ))) = ((ym(0), u(T )) +

∫ T

0
((

d

dt
ym, u(T )))dt

= ((ym(0), u(T ))) +

∫ T

0
(

d

dt
ym, Au(T ))dt

→ ((u(0), u(T ))) +

∫ T

0
(

d

dt
u(t), Au(T ))dt

= ((u(0), u(T ))) +

∫ T

0
((

d

dt
u(t), u(T )))dt

= ‖u(T )‖2. (3.51)
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(3.27) gives that
∫ T

0
(Aym, Au) →

∫ T

0
|Au|2. (3.52)

In addition

|

∫ T

0
(f(ym + zm) − f(u), Aym)|

≤

∫ T

0
|f(ym + zm) − f(u)| · |Aym|

≤N

∫ T

0
|ym + zm − u| · |Aym| (by|f ′(s)| ≤ N)

≤N |ym + zm − u|L2(0,T ;H) × |ym|L2(0,T ;D(A))

→0 (by (3.23), (3.25)and(3.30) ).

Hence
∫ T

0
(f(ym + zm) − f(u), Aym) → 0.

In view of (3.27) we see that

∫ T

0
(f(u), Aym) →

∫ T

0
(f(u), Au).

And thus we obtain

∫ T

0
(f(ym + zm), Aym) →

∫ T

0
(f(u), Au). (3.53)

(3.49)-(3.53) yield when m → ∞

Ym →
1

2
‖u(0)‖2 −

1

2
‖u(T )‖2 −

∫ T

0
|Au|2 −

∫ T

0
(f(u), Au). (3.54)

Since u is the solution of (2.7) and (2.2). Multiplying (2.7) by Au and integrating

between 0 and T , we find that

limm→∞Ym = 0 (3.55)

(3.40) and (3.55) show that

∫ T

0
|Aym − Au|2ds → 0 (3.56)

ym(T ) → u(T ) in V strongly, ∀T > 0. (3.57)

(3.22), (3.57) and the Lebesgue dominated convergence theorem yield

ym → u in Lp(0, T ;V ) strongly, ∀T > 0, 1 ≤ p < ∞. (3.58)

Obviously (3.27), (3.56) and (3.58) prove (3.18) ; (3.25) and (3.48) prove (3.19) ; more-

over, (3.18) and (3.19) imply (3.17). And then Theorem 3.1 isproved.
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Similar to Theorem 3.1, if u0 ∈ H, then we can show

Theorem 3.2. Let g ∈ C2(R,R) such that (2.4) and (2.5) hold, Ω ⊆ Rn and n ≤ 4.

If u0 ∈ H, u(t) is the solution of (2.7), (2.2) and (2.3), then when m → +∞,

1. um → u in L∞(R+;H) weak star, in L2(0, T ;V ) and Lp(0, T ;H) strongly for all

T > 0 and 1 ≤ p < ∞.

2. ym → u in L∞(R+;H) weak star, in L2(0, T ;V ) and Lp(0, T ;H) strongly for all

T > 0 and 1 ≤ p < ∞.

3. zm → 0 in L∞(R+;H) and L2(0, T ;V ) strongly for all T > 0.

The proof of this theorem is analogous to that of Theorem 3.1. So we omit it.
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