
Journal of Computational Mathematics, Vol.15, No.1, 1997, 36–54.

QP-FREE, TRUNCATED HYBRID METHODS FOR

LARGE-SCALE NONLINEAR CONSTRAINED OPTIMIZATION∗1)

Q. Ni
(School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China)

Abstract

In this paper, a truncated hybrid method is proposed and developed for solv-
ing sparse large-scale nonlinear programming problems. In the hybrid method,
a symmetric system of linear equations, instead of the usual quadratic program-
ming subproblems, is solved at iterative process. In order to ensure the global
convergence, a method of multiplier is inserted in iterative process. A truncated
solution is determined for the system of linear equations and the unconstrained
subproblems are solved by the limited memory BFGS algorithm such that the hy-
brid algorithm is suitable to the large-scale problems. The local convergence of
the hybrid algorithm is proved and some numerical tests for medium-sized truss
problem are given.

1. Introduction

In this paper we consider the following nonlinear programming problem

minimize f(x)

subject to gj(x) ≥ 0, j ∈ J = {1, . . . ,m}. (1.1)

Extensions to problem including also equality constraints will be possible. The function

f : Rn → R1 and gj : Rn → R1, j ∈ J are twice continuously differentiable. In

particular, we apply QP-free (without quadratic programming subproblems), truncated

hybrid methods for solving the large-scale nonlinear programming problems, in which

the number of variables and the number of constraints in (1.1) are great. We discuss

the case, where second derivatives in (1.1) are sparse and easy to be obtained.

Many iteration methods for solving (1.1) needs to solve quadratic programming

(QP) subproblems at each iteration (see [?], [?], [?], [?], [?]). For large-scale case it is

relative expensive. In a class of hybrid methods, proposed and developed in [?], [?],

[?], [?] and [?], the subproblem is replaced with a symmetric system of not more than

∗ Received October 29, 1994.
1) The research was supported by the State Education Commission Grant for returned scholars

and was carried out while the author was at the State Key Laboratory of Scientific and Engineering

Computing, ICMSEC, Chinese Academy of Sciences, Beijing, China.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 37

n + m linear equations. In order to apply the class of hybrid methods to large-scale

constrained optimization, we consider the following modifications.

(1) Instead of an exact solution, a truncated solution is determined for a system of

linear equations, which is regarded as a subproblem of (1.1). This is because computing

an exact solution by using a direct method such as Gaussian elimination can be expen-

sive for large-scale problem. We research the termination criteria of the subproblem

and the tradeoff between the amount of work required to compute a update direction

and the accuracy with which the subproblem is solved.

(2) The conjugated gradient method is chosen as a iterative method for solving the

system of linear equations.

(3) We choose the method of multiplier as a globally convergent method in hybrid

method. Because the ill-conditioning can be avoided, the unconstrained subproblems

are easily solved by a limited memory quasi-Newton method.

(4) In order to guarantee the numerical stability, the index set is modified and

some approximated Lagrangian multipliers at each iteration are corrected such that we

avoided this case where the denominators in the numerical computation is too small.

In addition, the convergence rate is proved in detail.

For the following investigation we require some notations and assumptions. The

Lagrangian of problem (1.1) is defined by

L(x, u) = f(x) −
m
∑

j=1

ujgj(x),

and its first-order and second-order derivatives with respect to the first argument are

denoted by

▽xL(x, u) = ▽f(x) −
m
∑

j=1

uj ▽ gj(x),

▽2
xxL(x, u) = ▽2f(x) −

m
∑

j=1

uj ▽2 gj(x),

where u ∈ Rm is an approximation of Lagrangian multiplier vector of (1.1). With this

notation, a pair (x∗, u∗) is called a Kuhn-Tucker pair of (1.1) if the following Kuhn-

Tucker conditions hold:

▽xL(x∗, u∗) = 0, u∗jgj(x
∗) = 0, j ∈ J,

u∗j ≥ 0, gj(x
∗) ≥ 0, j ∈ J.

The Kuhn-Tucker conditions are equivalent to the system

0 = P (x, u, t) =















▽xL(x, u)

−−−−−−−−
tj − gj(x)

−−−−−−−−
ujtj















(1.2)

uj ≥ 0, tj ≥ 0, j ∈ J,

38 Q. NI

where P : Rn+2m → Rn+2m.

The following assumptions are satisfied at a Kuhn-Tucker pair (x∗, u∗).

Assumption 1 (A1)

The functions ▽2f and ▽2gj (j ∈ J) are Lipschitz-continuous in a neighbourhood

of x∗, i.e. there are positive number R and L such that

max{‖ ▽2 f(x) −▽2f(x̄)‖, ‖ ▽2 gj(x) −▽2gj(x̄)‖, j ∈ J} ≤ L‖x− x̄‖

for all x, x̄ ∈ B(x∗, R). The set B(x∗, R) = {x : ‖x − x∗‖ ≤ R} denotes the closed

ball with the center x∗ and the radius R. For vector the Euclidean norm is chosen, the

used matrix norm is assumed to be compatible.

Assumption 2 (A2)

The Kuhn-Tucker pair (x∗, u∗) satisfied the Jacobian uniqueness conditions, i.e.

(i) u∗j > 0, if gj(x
∗) = 0.

(ii) ▽gj(x
∗), j ∈ J(x∗, 0) are linearly independent.

(iii) xT ▽2
xx L(x∗, u∗)x > 0 for all x 6= 0 with ▽gj(x

∗)Tx = 0, j ∈ J(x∗, 0), where

J(x∗, 0) = {j : gj(x
∗) = 0}. (1.3)

This paper is organized as follows. In Section 2 we consider the construction of

a hybrid algorithm for solving the large-scale problem (1.1). We discuss the local

convergence rate in Section 3. Some numerical results are given in Section 4.

2. Algorithms

In order to solve the equivalent problem (??), a class of hybrid methods was pro-

posed in [?]. In the hybrid methods, a locally convergent method (method II) is

combined with a globally convergent one (method I). In every iteration level, either

a complete step of method II or a complete step of method I is carried out. Their

combination is based on the following general schema of coupling.

Schema of Coupling:

Step 1: Carry out method I and check test I. If test I is satisfied, then go to Step 2,

otherwise go to Step 1.

Step 2: Carry out method II and check test II. If test II is satisfied, then go to Step

2, otherwise go to Step 1.

According to the schema, we choose a truncated Newton-type method as method

II and a method of multiplier as method I in the hybrid method for solving large-scale

problem with sparse case. In the following the subproblem and its truncated solution

are discussed.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 39

2.1 Subproblem and its truncated solution

The Newton-type method generates a sequence of the systems of linear equations, that

approximate the local behavior of the problem (??) at the current iterate (x, u, t)

(

−H A

AT D

)







∆x

−−
qj







j∈Jk

=







▽xL(x, u)

−−−−−−−−
−(gj(x) + tj)







j∈Jk

, (2.1)

where

A = (▽gj(x))j∈Jk
, D = diag(tj/uj)j∈Jk

,

Jk is a index set in J. For Newton-type method, the matrix H in (??) is chosen as

▽2
xxL(x, u). mk = cardJk is the cardinal number of Jk. Thus (??) is a (n+mk, n+mk)-

system of linear equations. The detailed description of the subproblem (??) refers to

[?].

Since the advantages of the Newton direction are mainly local, there seems to be no

justification for requiring an exact solution to (??), when the current iteration point is

far away from a local minimizer. Hence, we determine a truncated solution of (??) by

using an iterative method.

A pair (∆x, qj, j ∈ Jk) is called an acceptable truncated solution of (??) at

(xk, uk, tk), if the following inequality holds:

‖γk‖ =

∥

∥

∥

∥

∥

∥

∥

∥

(

−Hk Ak

AT
k Dk

)







∆x

−−
qj







j∈Jk

−







▽1L(xk, uk)

−−−−−−−
−(gj(xk) + t

(k)
j)







j∈Jk

∥

∥

∥

∥

∥

∥

∥

∥

< ηk. (2.2)

Here ηk > 0, ηk → 0, if k → ∞ and could insure the local convergence rate of the

truncated Newton-type method, which is discussed below.

2.2 Truncated Newton-type method

In order to propose a locally convergent method, the truncating strategy is added to

a Newton-type method developed in [?]. In addition, we correct u
(k)
j if u

(k)
j < ǫ and

t
(k)
j < ǫ′ (see following remark (i)). In the following we give a truncated Newton-type

method.

Algorithm 1

Step 0: Choose ǫ, ǫ′ > 0, x0 ∈ Rn and u0, t0 ∈ Rm with u
(0)
j > 0, t

(0)
j > 0, j ∈ J.

Set k = 0.

Step 1: If the termination conditions are satisfied, then stop.

Step 2: Solve the subproblem:

40 Q. NI

2.1) Determine Jk and compute Hk, Ak and Dk.

Jk = {j ∈ J : u
(k)
j > ǫ or t

(k)
j < ǫ′},

Hk = ▽2
xxL(xk, uk), Ak = (▽gj(xk))j∈Jk

∈ Rn×mk

Dk = diag(t
(k)
j /u

(k)
j)j∈Jk

∈ Rmk×mk

2.2) Determine an acceptable truncated solution ∆xk and qk, such that

‖γk‖ < min{1/(k + 1)2, 2Ψ(xk, uk, tk)} (2.3)

where

Ψ(xk, uk, tk) =
1

2
(‖P (xk, uk, tk)‖2 −

m
∑

j=1

(u
(k)
j t

(k)
j)2 + 4uT

k tk), (2.4)

γk =

(

−Hk Ak

AT
k Dk

)







∆x

−−
qj







j∈Jk

−







▽xL(xk, uk)

−−−−−−−
−(gj(xk) + t

(k)
j)







j∈Jk

.

Set

q
(k)
j = ▽gj(xk)

T ∆xk + gj(xk) − t
(k)
j , j ∈ J/Jk . (2.5)

Step 3: Compute xk+1, uk+1 and tk+1.

xk+1 = xk + ∆xk

u
(k+1)
j =

{

u
(k)
j (1 + q

(k)
j /(2u

(k)
j))2 j ∈ Jk

u
(k)
j (q

(k)
j /(2t

(k)
j))2 j ∈ J/Jk

(2.6)

t
(k+1)
j =

{

t
(k)
j (q

(k)
j /(2u

(k)
j))2 j ∈ Jk

t
(k)
j (1 + q

(k)
j /(2t

(k)
j))2 j ∈ J/Jk

(2.7)

Step 4: Correct uk+1. If t
(k+1)
j < ǫ′ and u

(k+1)
j < ǫ, j ∈ J, then set u

(k+1)
j = ǫ. k =

k + 1, go to Step 1.

Remarks: (i) Because of the assumption A2, it is impossible that u
(k)
j and t

(k)
j

simultaneously approach to zero. Hence the correction in Step 4 is rational. With the

definition of Jk, this ensures that the denominators in (??) and (??) are at least more

than 2min{ǫ, ǫ′}. (ii) The condition (??) ensures the local convergence rate, which

is further explained in Section 3 (see Lemma 3.1). (iii) We determine the truncated

solution (∆xk, q
(k)
j , j ∈ Jk) by using the conjugate gradient method (see the following

remark (iii) of QPFTH algorithm). Because the method needs to compute rk in each

inner iteration, the test of the condition (??) does not increase extra computation costs.

(iv) In the hybrid method developed in the following, Algorithm 1 is taken as method

II.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 41

2.3 A QP-free, truncated hybrid method

for solving large-scale problem

In the hybrid method, Algorithm 1 (method II) is combined with a globally convergent

method (method I), in which the multiplier penalty function (see [?]) is defined by

Φ(x, u, r) = f(x) −
∑

j∈J(x)

(ujgj(x) − 1/2rjg
2
j (x)) − 1/2

∑

j∈K(x)

u2
j/rj , (2.8)

where J(x) = {j : gj(x) ≤ uj/rj}, K(x) = {1, . . . ,m}/J(x). The following method is

called QP-free, truncated hybrid method (QPFTH).

QPFTH Algorithm

Step 0: Choose c1, c2, c3 > 0, ǫ, ǫ′ > 0, ρ ∈ (1/4, 1), x0 ∈ Rn, u0 ∈ Rm and u
(0)
j ≥

0, j ∈ J . Set r0 = {1, . . . , 1}T ∈ Rm.k = 0, l = −1.

M0 = (‖ ▽x Φ(x0, u0, r0)‖2 + ‖b(x0, u0, r0)‖2)
1
2 , (2.9)

where

bj(x0, u0, r0) = min(u
(0)
j /r

(0)
j , gj(x0)), j ∈ J. (2.10)

x̃0 = x0. Choose or determine a feasible point x+ ∈ Rn.

Step 1: Carry out multiplier method and check test I.

1.1) Minimize Φ(x, uk, rk) by starting with x̃k: use a unconstrained minimization

method for minimizing Φ(x, uk, rk) such that the function Φ(x, uk, rk) is reduced

at each inner iteration. If an inner iteration point x̃ satisfies

‖ ▽x Φ(x̃, uk, rk)‖ ≤ c2ηk (2.11)

Φ(x̃, uk, rk) ≤ f(x+) + 1
4(|f(x+)| + 0.1), (2.12)

where ηk = min(1/(k + 1)2, ρ‖ ▽x Φ(x̃, uk, rk)‖, ρ‖b(x̃, uk, rk)‖), then go to 1.2).

1.2) Compute

M̄ = M̄ (x̃, uk, rk) = (‖ ▽x Φ(x̃, uk, rk)‖2 + ‖b(x̃, uk, rk)‖2)
1
2 . (2.13)

If M̄ > ρMk, then go to 1.3). Otherwise set xk+1 = x̃, rk+1 = rk, Mk+1 = M̄,

u
(k+1)
j = u

(k)
j − min(u

(k)
j , r

(k+1)
j gj(xk+1)), j = 1, . . . ,m. (2.14)

If

min{gj(xk+1) : j ∈ J} ≥ −c1/(k + 1)3 (2.15)

is satisfied, then set

t
(k+1)
j =

{

gj(xk+1), if gj(xk+1) > u
(k)
j /r

(k+1)
j

0, otherwise
. (2.16)

42 Q. NI

k = k + 1, l = k, go to Step 2.

If (??) is not satisfied, then

r
(k+1)
j = 4r

(k)
j , for j : gj(x) < c1/(k + 1)3.

k = k + 1, go to 1.1).

1.3) Set r
(k)
j = 10r

(k)
j , for j : |min(u

(k)
j /r

(k)
j , gj(x̃))| > 1

4
√

m
‖b(xk, uk, rk)‖, x̃k =

x̃, go to 1.1).

Step 2: Carry out method II (Algorithm 1) and check test II.

2.1) If t
(k)
j < ǫ′ and u

(k)
j < ǫ, j ∈ J, then set u

(k)
j = ǫ. Jk = {j ∈ J : u

(k)
j >

ǫ or t
(k)
j < ǫ′}.

Compute ∆xk ∈ Rn and qk ∈ Rm by solving the inequality (??) and computing

(??). Determine xk+1, uk+1 and tk+1 according to (??) and (??) (see Step 2,

Step 3 in Algorithm 1). zk+1 = (xk+1, uk+1, tk+1).

2.2) Test II. If the following conditions are satisfied:

‖zk+1 − zk‖ ≤ c1(1/2)
k−l+1, (2.17)

max{|
q
(k)
j

√

2u
(k)
j

|, |1 +
q
(k)
j

2u
(k)
j

|
√

2t
(k)
j } ≤ c1(1/2)

k−l+1, j ∈ Jk, (2.18)

max{|
q
(k)
j

√

2t
(k)
j

|, |1 +
q
(k)
j

2t
(k)
j

|
√

2u
(k)
j } ≤ c1(1/2)

k−l+1, j ∈ J/Jk, (2.19)

then

(i) if k = l, correct uk and tk according to the following rule:

set u
(k)
j = c3(1/2)

k+1, j ∈ J. if u
(k)
j = 0;

set t
(k)
j = c3(1/2)

k+1, j ∈ J , if t
(k)
j = 0,

for j ∈ J .

(ii) Set k = k + 1 and go to 2.1).

Otherwise, go to 2.3).

2.3) Compute ūk+1. Set ūk+1 = uk+1. If gj(xk+1) > 2u
(k+1)
j > 0, then ū

(k+1)
j = 0;

if r
(l)
j gj(xk+1) < −u(k+1)

j , then ū
(k+1)
j = max{u(k+1)

j , c3(1/2)
k+1}. Set

r̂
(k+1)
j =















−ū(k+1)
j /gj(xk+1), if r

(l)
j gj(xk+1) < −ū(k+1)

j

ū
(k+1)
j /gj(xk+1), if r

(l)
j gj(xk+1) > ū

(k+1)
j > 0

r
(l)
j , otherwise

, (2.20)

û
(k+1)
j =

{

ū
(k+1)
j + r̂

(k+1)
j gj(xk+1) if r̂

(k+1)
j gj(xk+1) ≤ ū

(k+1)
j

0, otherwise
. (2.21)

uk+1 = ûk+1, rk+1 = r̂k+1, k = k + 1, go to Step 1.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 43

Remarks:

(i) In the Step 1.1), many unconstrained minimization technique can be used for

minimizing Φ(x, uk, rk). For the large-scale sparse problem, a limited memory BFGS

method will be chosen.

(ii) In order to guarantee the numerical stability, we determine the truncated solu-

tion (∆xk, q
(k)
j , j ∈ Jk) by solving the problem

(QT
kQk + ωI)







∆x

−−
qj







j∈Jk

= QT
k







▽xL(xk, uk)

−−−−−−−−
−(gj(xk) + t

(k)
j)







j∈Jk

, (2.22)

in stead of the problem

Qk







∆x

−−
qj







j∈Jk

=







▽xL(xk, uk)

−−−−−−−−
−(gj(xk) + t

(k)
j)







j∈Jk

, (2.23)

where ω is a variable damping factor and

Qk =

(

−Hk Ak

AT
k Dk

)

.

If Qk is nonsingular and ω = 0, then the problem (??) is equivalent to the problem

(??). If the condition

‖Qk







∆xk,i

−−−
qj,i







j∈Jk

‖2 > 10−10‖







∆xk,i

−−−
qj,i







j∈Jk

‖2 (2.24)

is satisfied, then set ωk,i = 0. Otherwise, set ωk,i1 = ‖Qk‖F , where i1 is the first index

such that (??) is not satisfied, and

ωk,i =

{

1.5ωk,i−1 if ψi < ψi−1

0.5ωk,i−1 otherwise

for i > i1. Here

ψi = ‖Qk







∆xk,i

−−−
qj,i







j∈Jk

−







▽xL(xk, uk)

−−−−−−−−
−(gj(xk) + t

(k)
j)







j∈Jk

‖,

∆xk,i, qj,i, j ∈ Jk and ωk,i are the i-th inner iterates in solving the subproblem (??)

by the conjugate gradient method. In addition, we choose a diagonal matrix Sk =

diag{s(k)
11 , . . . , s

(k)
ñ,ñ} as the scaling matrix of the variables (∆x, qj, j ∈ Jk), where

s
(k)
ii =

{

1
ti

if ti > κ

1 otherwise

44 Q. NI

for i = 1, . . . , ñ, ñ = n + cardJk, ti is the Euclidean norm of the i-th column of Mk,

while κ is a small positive constant number. The detailed description of diagonal scaling

refers to (Section 2.4.2, [?]).

(iii) In Step 2, if method II is carried out again, u
(l+1)
j = 0 or t

(l+1)
j = 0 should

be avoided, since in this situation we have u
(k)
j = 0 or t

(k)
j = 0 for all successive

iterations, respectively. Hence, in Step 2.2), we insert some perturbation for u
(l+1)
j = 0

or t
(l+1)
j = 0.

(iv) If the starting point x0 is a feasible point, then set x+ = x0. Otherwise the

feasible point x+ can be computed by apply a barrier method to the auxiliary Rn+1

problem

min y

subject to gj(x) + y ≥ 0, j ∈ J,

where for given x̄ ∈ Rn a start with x̄ and ȳ = −2min{0,min{gj(x), j ∈ J}} is possible.

(v) Method I and Method II are used for descreasing Mk and Ψ(xk, uk, tk), respec-

tively. mk = 0 or Ψ(xk, uk, tk) = 0 mean that a Kuhn-Tucker pair of (1.1) is obtained.

The correction of tk in Step 1.2 and the correction of uk, rk in Step 2.3 ensure that Mk

and Ψ(xk, uk, tk) are reduced in Steps 1 and 2, respectively. The detailed discussion

refers to the proof of global convergence of this algorithm.

In the following section we investigate the local convergence rate.

3. Local Convergence Rate

The convergence rate of QPFTH is determined by that of Algorithm 1. In order to

investigate the convergence rate, we consider another problem, which is followed from

the problem (??). We replace u, t in (??) by v and y according to the relation

uj = v2
j /2, tj = y2

j/2, j ∈ J (3.1)

and obtain

0 = F (x, v, y) =

















▽f(x) − 1/2
∑m

j=1 v
2
j ▽ gj(x)

−−−−−−−−−−−−−−−
−gj(x) + y2

j/2

−−−−−−−−−−−−−−−
vjyj

















j∈J

. (3.2)

Because (??) is a standard system of nonlinear equations, the convergence analysis

developed for the class of problems in the past is directly applied to the system. Hence,

first we discuss the problem (??), then extended the results to the problem (??) and

Algorithm 1. For the theoretical analysis, the following algorithm is given for solving

the problem (??).

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 45

Algorithm 1a

Step 0: Choose ǫ, ǫ′ > 0, x0 ∈ Rn and v0, y0 ∈ Rm with v
(0)
j 6= 0, y

(0)
j 6= 0, j ∈ J.

Set k = 0.

Step 1: If the termination conditions are satisfied, then stop.

Step 2: Solve the subproblem.

2.1) Determine Jk and compute H(xk, vk), Ak, Dk and lk.

Jk = {j ∈ J : (v
(k)
j)2/2 > ǫ or (y

(k)
j)2/2 < ǫ′},

H(xk, vk) = ▽2f(xk) − 1/2
m
∑

j=1

v
(k)2
j ▽2 gj(xk), (3.3)

Ak = (▽gj(xk))j∈Jk
∈ Rn×mk ,

lk = ▽f(xk) − 1/2
m
∑

j=1

v
(k)2
j ▽ gj(xk), (3.4)

Dk = diag[(y
(k)
j /v

(k)
j)2]j∈Jk

.

2.2) Determine an acceptable truncated solution ∆xk, qk by solving the inequality

‖γk‖ < min{1/(k + 1)2, ‖F (xk, vk, tk)‖2}, (3.5)

where

γk =

(

−H(xk, vk) Ak

AT
k Dk

)







∆x

−−−
qj







j∈Jk

−







lk
−−−−−−−−−−
−(gj(xk) + (y

(k)
j)2/2)







j∈Jk

.(3.6)

Set

q
(k)
j = ▽gj(xk)

T ∆xk + gj(xk) − 1/2(y
(k)
j)2, j ∈ J/Jk.

Step 3: Compute xk+1, vk+1 and yk+1.

xk+1 = xk + ∆xk

v
(k+1)
j =

{

v
(k)
j (1 + q

(k)
j /(v

(k)
j)2) j ∈ Jk

−v(k)
j q

(k)
j /(y

(k)
j)2 j ∈ J/Jk

, (3.7)

y
(k+1)
j =

{

−y(k)
j q

(k)
j /(v

(k)
j)2 j ∈ Jk

y
(k)
j (1 + q

(k)
j /(y

(k)
j)2)) j ∈ J/Jk

. (3.8)

Step 4: Correct vk+1. If (y
(k+1)
j)2 < 2ǫ′ and (v

(k+1)
j)2 < 2ǫ, j ∈ J , then set v

(k+1)
j =

sign(v
(k+1)
j)

√
2ǫ, k = k + 1, go to Step 1.

46 Q. NI

Remark: Algorithm 1a can be as a perturbed version of Newton’s method for

solving F (x, v, y) = 0:

[F ′(wk) −K(wk)](wk+1 − wk) = −F (wk) (3.9)

with wk = (xk, vk, yk) and the (n+ 2m,n+ 2m) perturbation matrix

K(wk) =







0 −Ã(xk)diag(ṽ
(k)
i) 0

0 0 0

0 0 0






(3.10)

where Ã(xk) = (▽gj(xk))j∈J and

ṽ
(k)
j =

{

0 for j ∈ Jk

v
(k)
j for j ∈ J/Jk

.

The relationship between Algorithm 1 and Algorithm 1a is described in the following

lemma and the detailed description refers to [?].

Lemma 3.1. Let the sequence {(xk, uk, tk)} generated by Algorithm 1 and the

sequence {(xk, vk, yk)} generated by Algorithm 1a. If it holds

u
(0)
j = (v

(0)
j)2/2, t

(0)
j = (y

(0)
j)2/2, j ∈ J (3.11)

then

u
(k)
j = (v

(k)
j)2/2, t

(k)
j = (y

(k)
j)2/2, j ∈ J, k = 0, 1, 2, . . . (3.12)

Proof: Assume that (??) holds for a nonnegative integer k, we prove that it is true

for k+1. It is clear that Jk, Ak, Dk generated by both Algorithms 1 and 1a are same.

Hk and H(xk, vk) are also same. From (??), (??) and (??), it follows

‖F (xk, vk, yk)‖2 = 2Ψ(xk, uk, tk).

Hence, ∆xk, qk generated in Step 2.2 are same. From Step 3 of both algorithms, we

have, for j ∈ Jk,

u
(k+1)
j = u

(k)
j (1 + q

(k)
j /(2u

(k)
j))2

= 1/2(v
(k)
j)2(1 + q

(k)
j /(v

(k)
j)2)2

= 1/2(v
(k)
j + q

(k)
j /v

(k)
j)2 = (v

(k+1)
j)2/2.

For j ∈ J/Jk,

u
(k+1)
j = u

(k)
j (q

(k)
j /(2t

(k)
j))2

= 1/2(v
(k)
j q

(k)
j /(y

(k)
j)2)2 = (v

(k+1)
j)2/2.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 47

According to the same computation, we obtain

t
(k+1)
j = (y

(k+1)
j)2/2 for j ∈ J.

Hence, (??) holds for k + 1. This lemma is proved.

If the coefficient matrix in (??) is nonsingular, then an acceptable truncated solu-

tion is certainly obtained.

Lemma 3.2. If
(

−H(xk, vk) Ak

AT
k Dk

)

is nonsingular, then either (xk, (v
(k)
j)2, j ∈ J) is a Kuhn-Tucker pair of (1.1) or an

acceptable truncated solution is determined. Moreover, this conclusion is suitable to

Algorithm 1, i.e. if
(

−Hk Ak

AT
k Dk

)

in (??) is nonsingular, then either (xk, uk) is a Kuhn-Tucker pair of (1.1) or an ac-

ceptable truncated solution in Algorithm 1 is determined.

Proof: According to the assumption in this lemma, there exists a unique exact

solution ∆xk,∗ and q
(k)
j,∗ , j ∈ Jk such that

(

−H(xk, vk) Ak

AT
k Dk

)







∆xk,∗
−−−
q
(k)
j,∗







j∈Jk

=







lk
−−−−−−−−−−−
−(gj(xk) + (y

(k)
j)2/2)







j∈Jk

,(3.13)

where H(xk, vk) and lk are same as those in (??) and (??). We consider two cases.

(1) F (xk, vk, yk) = 0. Hence, (xk, 1/2(v
(k)
j)2)j∈J is a Kuhn-Tucker pair of (1.1). This

means that Algorithm 1a terminates at (xk, vk, yk).

(2) F (xk, vk, yk) 6= 0. Then, in finite number of iteration, we can obtain an accept-

able truncated solution (∆xk, q
(k)
j , j ∈ Jk) such that

‖γk‖ ≤ min{1/(k + 1)2, ‖F (xk, vk, yk)‖2}, (3.14)

where

γk =

(

−H(xk, vk) Ak

AT
k Dk

)







∆xk

−−−
q
(k)
j







j∈Jk

−







lk
−−−−−−−−−−−
−(gj(xk) + (y

(k)
j)2/2)







j∈Jk

.

From Lemma 3.1, we obtain that this conclusion in (1) and (2) is also suitable to Al-

gorithm 1.

48 Q. NI

The following lemma denotes the connection of the convergence properties between

two sequences, {(xk, uk, tk)} and {(xk, vk, yk)}.

Lemma 3.3. Let {wk} = {(xk, vk, yk)} and {zk} = {(xk, uk, tk)} be sequences

satisfing (??) for all k. Let w∗ = (x∗, v∗, y∗) and z∗ = (x∗, u∗, t∗) . w∗ and z∗ satisfy

the relation

u∗j = (v∗j)
2/2, t∗j = (y∗j)

2/2, j ∈ J (3.15)

Then it holds:

(a) There are numbers δ > 0, c > 0 such that for wk ∈ B(w∗, δ)

‖wk − w∗‖2 ≤ ‖zk − z∗‖(δ + 2
√

2m), (3.16)

‖zk − z∗‖ ≤ c‖wk − w∗‖. (3.17)

(b) limk→∞wk = w∗ implies limk→∞ zk = z∗.
(c) If wk is Q-quadratically convergent to w∗ then {zk} converges two-step Q-

quadratically and R-quadratically.

The proof of this lemma refers to [?], while the definitions of Q-quadratic and R-

quadratic refer to (Chapter 8, [?]). In order to discuss the convergence of Algorithm

1a, we require following two lemmas.

Lemma 3.4. Under the condition of assumption A2, the Jacobian of F

F ′(x, v, y) =







H(x, v), −Ã(x)diag(vj), 0

−Ã(x)T 0 diag(yj)

0 diag(yj) diag(vj)






(3.18)

is nonsingular at the point (x∗, v∗, y∗), where Ã(x) = (▽gj(x))j∈J and H(x, v) is the

same as in (??). Moreover,

M∗ =

(

−H(x∗, v∗) A∗

(A∗)T 0

)

is also nonsingular, where

A∗ = (▽gj(x
∗))j∈J(x∗,0),

and J(x∗, 0) refers to (??).

Proof: The first conclusion in this lemma refers to [?]. Let m∗ = cardJ(x∗, 0), x1 ∈
Rn, x2 ∈ Rm∗

. It will be shown that

M∗
(

x1

x2

)

= 0 implies

(

x1

x2

)

= 0.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 49

From M∗
(

x1

x2

)

= 0, we obtain

{

(A∗)Tx1 = 0

−H(x∗, v∗)x1 +A∗x2 = 0
.

The condition (iii) in A2 shows that x1 = 0, while condition (ii) in A2 insures that

x2 = 0. Hence M∗ is nonsingular.

Lemma 3.5.Let (x∗, u∗) be a Kuhn-Tucker pair of (1.1) and let z∗ = (x∗, u∗, t∗) and

w∗ = (x∗, v∗, y∗) be related solutions of (??) and (??) respectively, where the relation

between z∗ and w∗ satisfies (??). Let the assumption A2 be satisfied and assume that

the constants ǫ and ǫ′ are chosen such that

0 < ǫ < 1/8min{(v∗j)2 : j ∈ J(x∗, 0)} = 1/4min{u∗j : j ∈ J(x∗, 0)} (3.19)

0 < ǫ′ < 1/8min{(y∗j)2 : j ∈ J/J(x∗, 0)} = 1/4min{t∗j : j ∈ J/J(x∗, 0)}(3.20)

Then there exists a number 0 < ρ ≤ min{
√

2ǫ,
√

2ǫ′} such that

Jk = J(x∗, 0) for all wk ∈ B(w∗, ρ).

Although Jk is a little different from Ik in [?], the proof of this lemma is similar to

that in [?]. Now we prove the perturbed property of Algorithm 1a.

Theorem 3.6.Let the system (??) at wk be solved, wk+1 be generated by Algorithm

1a and ∆xk, qk be its acceptable truncated solution. Define θk ∈ Rn+2m by

[F ′(wk) −K(wk)](wk+1 − wk) = −F (wk) − θk. (3.21)

Then θk satisfies

θ
(k)
j = γ

(k)
j j = 1, . . . , n,

θ
(k)
n+j =

{

γ
(k)
n+j j ∈ Jk

0 j ∈ J/Jk or j > m
,

i.e. ‖θk‖ = ‖γk‖, where γk is defined in Step 2.2 of Algorithm 1a. F (wk),K(wk) and

F ′(wk) refer to (??), (??) and (??).

Proof: From (??) we obtain

q
(k)
j = v

(k)
j (v

(k+1)
j − v

(k)
j) j ∈ Jk.

From (??), (??) and (??) it follows

(γ
(k)
j)j∈{1,...,n}

= −H(xk, vk)∆xk +Ak(q
(k)
j)j∈Jk

− lk

= −H(xk, vk)∆xk + Ã(xk)diag(v
(k)
j)∆vk − Ã(xk)diag(ṽ

(k)
j)∆vk − lk

= −[(H(xk, vk),−Ã(xk)diag(v
(k)
j), 0) − EK(wk)](∆xk,∆vk,∆yk)

T − lk

= (θ
(k)
j)j∈{1,...,n}. (3.22)

50 Q. NI

Here E ∈ Rn×(n+2m) is the matrix whose i-th row is the i-th row of the identity matrix

in R(n+2m)×(n+2m), ∆vk = vk+1 − vk, ∆yk = yk+1 − yk. For j ∈ Jk, it implies from

(??) and (??)

γ
(k)
n+j = [AT

k ∆xk +Dk(q
(k)
j)j∈Jk

− (gj + 1/2y
(k)
j)j∈Jk

]j

= ▽gj(xk)
T ∆xk − y

(k+1)
j y

(k)
j + gj(xk) + 1/2(y

(k)
j)2

= ▽gj(xk)
T ∆xk − y

(k)
j (∆yk)j + gj(xk) − 1/2(y

(k)
j)2

= θ
(k)
n+j. (3.23)

For j ∈ J/Jk, we have from Step 2.2),

θ
(k)
n+j = −▽ gj(xk)

T ∆xk + y
(k)
j ∆y

(k)
j − gj(xk) + 1/2(y

(k)
j)2

= −▽ gj(xk)
T ∆xk − gj(xk) + 1/2(y

(k)
j)2 + q

(k)
j = 0 (3.24)

It follows from (??) and (??)

θ
(k)
n+m+j = y

(k)
j (∆vk)j + v

(k)
j (∆yk)j + v

(k)
j y

(k)
j

= y
(k)
j q

(k)
j /v

(k)
j − v

(k)
j y

(k)
j (1 + q

(k)
j /(v

(k)
j)2) + v

(k)
j y

(k)
j

= 0, j ∈ Jk, (3.25)

θ
(k)
n+m+j = y

(k)
j (∆vk)j + v

(k)
j (∆yk)j + v

(k)
j y

(k)
j

= −y(k)
j v

(k)
j (1 + q

(k)
j /(y

(k)
j)2 + v

(k)
j q

(k)
j /y

(k)
j + v

(k)
j y

(k)
j

= 0, j ∈ J/Jk. (3.26)

(??), (??), (??), (??), (??) mean that this theorem is proved.

In the following theorem, at first we prove the convergence rate of Algorithm 1a,

then apply the convergence results to Algorithm 1.

Theorem 3.7. Let (x∗, u∗) be a Kuhn-Tucker pair of (1.1) and let (x∗, u∗, t∗) be a

solution of (1.2). Futhermore, let the assumptions A1 and A2 be satisfied, and assume

that ǫ and ǫ′ be chosen according to (??) and (??). Then there is a number δ∗ > 0 such

that for every z0 = (x0, u0, t0) ∈ B(z∗, δ∗) with u
(0)
j > 0, t

(0)
j > 0 (j ∈ J). Algorithm 1

terminates after a finite number of iterations with zk = z∗ or {zk} converges two-step

Q-quadratically and R-quadratically to z∗.

Proof: (1) At first we deal with Algorithm 1a. Let w∗ = (x∗, v∗, y∗) a solution of

(??) related z∗ via (??). Let wk ∈ B(w∗, ρ) where 0 < ρ1 ≤ ρ and ρ is given by Lemma

3.5, such that F ′(wk) and

(

−H(xk, vk) Ak

AT
k Dk

)

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 51

are nonsingular (see Lemma 3.4). With Ã(x) as in (??), we define

µ = max{‖Ã(x)‖ : x ∈ B(x∗, ρ1)}.

Since v∗j = 0 for j ∈ J/J(x∗, 0) and Jk = J(x∗, 0) (see Lemma 3.5), we obtain from

(??)

‖[F ′(wk) −K(wk)] − F ′(wk)‖ = ‖K(wk)‖ ≤ µ‖diag(ṽ
(k)
j)‖

≤ µ‖(. . . , v(k)
j − v∗j , . . .)

T
j∈J/J(x∗,0)‖ ≤ µ‖wk − w∗‖. (3.27)

Since ‖K(wk)‖ → 0, as wk → w∗, the matrix F ′(wk)−K(wk) of the system (??) can be

regarded as a so-called consistent approximation of F ′(wk). Let ρ2 > 0 be sufficiently

small such that ρ2 ≤ ρ1, F
′(w) is nonsingular,

‖F (w)‖ ≤ α‖w − w∗‖ (3.28)

‖F ′(w) − F ′(w∗)‖ ≤ L‖w − w∗‖ (3.29)

‖F (w) − F ′(w∗)(w − w∗)‖ ≤ β‖w − w∗‖2 (3.30)

for w ∈ B(w∗, ρ2) and α, L, β > 0. We obtain (??) from Lemma 3.4, (??) and (??)

from the assumption A1 and ([?], 3.2.12).

From (??) and Theorem 3.6, it follows

(F ′(wk) −K(wk))(wk+1 − w∗) = −θk + [(F ′(wk) − F ′(w∗))(wk − w∗)]

−[F (wk) − F ′(w∗)(wk − w∗)] +K(wk)(w
∗ − wk).

With ‖θk‖ = ‖γk‖ ≤ ‖F (wk)‖2 , (??), (??), (??) and (??), we obtain

‖wk+1 − w∗‖ ≤ η1‖wk − w∗‖2.

Therefore, with Lemma 3.2, it follows that there is a positive number ρ3 ≤ ρ2 such that

for every w0 ∈ B(w∗, ρ1) Algorithm 1a generates well-defined iterates wk = (xk, vk, yk).

Moreover either Algorithm 1a terminates after a finite number of iterations with wk =

w∗ or {wk} converges to w∗ at least with the Q-order 2.

(2) According to the same proof as that of Theorem 1 in [?], we obtain that there

exists a δ∗ > 0 such that for every z0 = (x0, u0, t0) ∈ B(z∗, δ∗) with u
(0)
j > 0, t

(0)
j >

0, j ∈ J , a w0 could be chosen and the following holds: w0 and z0 satisfy the relation

(??), and ‖w0 −w∗‖ ≤ min{ρ3, δ}, where δ is obtained from Lemma 3.3. Therefore, it

follows that Algorithm 1a with the initial choice w0 possesses the properties stated in

(1) of this proof.

(3) From the statement of both Lemmas 3.1 and 3.3, we obtain the asserted prop-

erties of Algorithm 1. q.e.d.

We will prove the global convergence of QPFTH algorithm in another paper. More-

over, the global convergence analysis shows that the convergence rate of QPFTH algo-

rithm is the same as Algorithm 1.

52 Q. NI

TRP nv mc n m v L U

TR1 105 148 30 74 10 0.1 10

TR2 142 210 36 105 10 0.1 10

TR3 172 262 40 131 10 0.001 10

TR4 237 376 48 188 10 0.001 10

TR5 251 400 50 200 10 0.01 10

TR6 350 578 60 289 10 0.001 10

Tabel I. Truss Test Problems

TRP CPU IT IP IE EP1 EP2

TR1 50 34 23 15 2.47E-5 5.65E-5

TR2 64 38 25 20 8.34E-6 7.58E-5

TR3 76 40 27 19 2.95E-5 4.38E-5

TR4 98 52 32 24 3.08E-5 6.04E-5

TR5 114 47 31 19 4.66E-6 8.75E-5

TR6 136 61 43 23 1.79E-5 2.56E-5

Tabel II. Numerical Results for Truss Test Problems

4. Numerical Results for Medium-Sized Truss Problems

The implementation and performance of the QPFTH algorithm is discussed in this

section. All of the problems have been performed on an SGI INDIGO R4000XS work-

station in LESC (Laboratory of Scientific and Engineering Computing, ICMSEC) in

Beijing. All calculation within the driving programs, test problems and optimization

codes are carried out in double precision.

From searching optimal topology of trusses arise some special sparse large-scale

problems. In order to ensure that Assumption 2 in Section 1 is satisfied for the truss

problem, we consider some perturbation of the objective function and obtain

min
x∈Rn,λ∈R,z∈Rm

λv − fTx+
∑m

i=1 zi+ α(xTx+ λ2 +
m
∑

i=1

z2
i)

s.t. zi ≥ (1
2x

TAix− λ)Li (4.1)

zi ≥ (1
2x

TAix− λ)Ui, i = 1, . . . ,m.

where Ai ∈ Rn×n, i = 1, . . . ,m are sparse positive semi-definite matrices, f ∈ Rn

and α ∈ (0, 1). The detailed description of the problem refers to [?]. The termination

conditions are chosen

max1≤j≤m |min(0, gj(x))| ≤ ǫ1,

‖ ▽1 L(x, u)‖∞ ≤ ǫ2. (4.2)

In our numerical tests, we let

ǫ1 = 0.0001, ǫ2 = 0.0001.

QP-free, Truncated Hybrid Methods for Large-Scale Nonlinear... 53

Now QPFTH algorithm is used for solving the problem (??). We choose the suitable

values of the constants c1, c2, c3, ρ, ǫ, ǫ
′ and κ in QPFTH algorithm (see Step 0 and

Remark (iii)) by

c1 = 0.1, c2 = 1, c3 = 10−3, ρ = 0.9, ǫ = ǫ′ = 10−7, κ = 0.5.

Some medium-sized truss test problems are given in Tabel I. In this table, nv denotes

the number of the variables, and mc the number of the constraints. n, m, v are the

same as in (??). Li and Ui in (??), i = 1, . . . ,m, are chosen as the same value L and

U , respectively.

Numerical results are given in Tabel II, where

TRP: Truss test problem,

CPU: Execution time in seconds,

IT: Number of the outer iterations,

IP: Number of minimizing the multiplier penalty function (??),

IE: Number of solving the system of linear equations (??).

EP1 and EP2 refer to (??).

According to numerical experience, l in the limited memory BFGS inverse l-update

is chosen as 4.

All these test problems are successfully terminated. Although these test problems

are medium-sized, they represent some characteristic of a certain kind of large sparse

problems. Numerical results showed that QPFTH algorithm can handle large sparse

problems.

The detailed implementation and global convergence of the QPFTH algorithm will

be discussed in another paper.

Acknowledgment: I would like to thank referee for his helpful comments and

suggestions on a previous version of this paper.

References

[1] R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell, The watchdog tech-
nique for forcing convergence in algorithms for constrained optimization, Math. Prog. study,
16(1982), 1-17.

[2] T.F. Coleman, Large-scale numerical optimization: introduction and overview,
CTC91TR85, Cornell Theory Center, Cornell University, Ithaca, New York, 1991.

[3] R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton Methods, SIAM J. Numer.
Anal., 19(1982), 400-408.

[4] R. Fletcher, Pratical Methods of Optimization, Vol.2, Constrained Optimization, John
Wiley & Sons, New York, Toronto, 1981.

[5] S.P. Han, A globally convergent method for nonlinear programming, JOTA, 22(1977),
297-309.

54 Q. NI

[6] J. Heinz, and P. Spellucci, A successful implementation of the Pantoja-Mayne SQP method,
Optimization Methods and Software, 4(1994), 1-28.

[7] H. Kleinmichel, C. Richter, and K. Schönefeld, On a class of hybrid methods for smooth
constrained optimization, JOTA, 73(1992), 465-500.

[8] H. Kleinmichel, and K. Schönefeld, Newton-type methods for nonlinearly constrained pro-
gramming problems – algorithm and theory, Optimization, 19(1988), 397-412.

[9] H. Kleinmichel, and K. Schönefeld, Superlinearly convergent optimization methods without
solving QP, Preprint 07-11-89, Mathematisches Institut, TU Dresdner, 1989.

[10] Q. Ni, General large-scale nonlinear programming using sequential quadratic programming
methods, Bayreuther Mathematischen Schriften, 45(1993), 133-236.

[11] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
variables, Academic Press, New York, 1970.

[12] M.J.D. Powell and Y. Yuan, A recursive quadratic programming algorithm that use dif-
ferential exact penalty function, Mathmatical Programmming, 35(1986), 265-278.

[13] K. Schönefeld, A superlinearly and globally convergent optimization method based on
exact penalties and Newton-type methods, Preprint 07-24-87, 07-25-87, Mathematisches
Institut, TU Dresdner, 1987.

[14] K. Schönefeld, A superlinearly and globally convergent optimization method independent
of strict complementary slackness, Preprint 07-16-90, Mathematisches Institut, Tu Dresd-
nen, 1990.

[15] R.B. Wilson, A simplical algorithm for concave programming, Ph.D.Dissertation, Graduate
School of Business Admistration, Harward University, Boston, 1963.

