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Abstract

A Legendre pseudospectral scheme is proposed for solving initial-boundary
value problem of nonlinear Klein-Gordon equation. The numerical solution keeps
the discrete conservation. Its stability and convergence are investigated. Numerical
results are also presented, which show the high accuracy. The technique in the the-
oretical analysis provides a framework for Legendre pseudospectral approximation
of nonlinear multi-dimensional problems.

1. Introduction

As we know, the Klein-Gordon equation is an important mathematical model in
quantum mechanics. It is of the form

832712](“"5)_AU(“7’5)+bU(x7t)+9(U($7t)) = f(z,t), 2€Q, 0<t<T,
Uz,t) =0, z€eIN, 0<t<T,
oU (1.1)
BN —(2,0) = Ui (=), z e,
U(x,0) = Uo(=), z €,
where Q = (-1, 1)", z = (1,29, -, 282’ — 2% p=a+2and b

is a real number. Assume that Uy(z) = Uy(z) = 0 on 89 and

a >0, for n < 2,

2 1.2
0<a<——, forn>3. (12)
n—2

As in [1], it can be shown that if Uy € HE(Q) N LP(Q), Uy € L*(Q) and f €
L%(0,T; L?(£2)), then (1.1) has unique solution U € C(0,T; H}(2) N LP(Q)). If Uy, Uy
and f are smoother, then U is smoother also. On the other hand, some finite difference
schemes were proposed with strict proof of generalized stability and convergence. Their
numerical solutions keep the discrete conservations. One of special cases (o = 2) was
considered also in [4]. But for all these finite difference approximations, the conver-
gence rate is of order 2 in the space. To overcome it, some Fourier spectral and Fourier
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pseudospectral schemes were studied for periodic problems (see [5,6]). Their numerical
solutions possess the convergence rate of “infinite order”. Recently, Legendre spectral
scheme was also studied for the initial-boundary value problem(see[7]). Its numeri-
cal results also show that it is more accurate than the corresponding finite difference
scheme. However, because of the nonlinear term ¢(U), it is very difficult to implement
the spectral method strictly, unless « is a small integer. In this paper, we discuss the
pseudospectral method for solving (1.1). In the next section, we construct a Legen-
dre pseudospectral scheme which simulates the energy conservation law reasonably. In
particular, it can be easily implemented for all &«. We present the numerical results in
section 3, which show the advantages of such approximation. Then we list some lem-
mas and prove the generalized stability and convergence in the last three sections. The
technique in the theoretical analysis provides a framework for Legendre pseudospectral
approximation of nonlinear multi-dimensional problems arising in quantum mechanics

and other fields.

2. The Scheme

Let LI(Q) = {v|v is Lebesgue measureable on  and ||v||z« < oo}, where

/ |v|qd:E if 1 <¢q< oo,
lollzecey |
-sup [v(z )!, if g = oo
€S
For ¢ = 2, we denote the inner product and the norm of L%(Q) by (-,-) and || - ||

respectively. Let Z be the set of all non-negative integers, and v, € Z. Set v =

ol
(2o m) =747+ +mand DY = Or1 " Oxy? - - - Oy,

non-negative integer m, define H™(Q) = {v|D7v € L?(Q), 0 < |y| < m}, with the

For any

semi-norm | - |,, and the norm || - ||, as follows
B Dyl 1/2 _ 2 2\1/2
ol = (D 1D70I?) 7 ollm = (folh—y + [0l7) 2.
[y|=m

For non-negative real number s, we define H*(Q2) by the interpolation between the

spaces H*/(Q) and HF*t1(Q). Its norm and semi-norm are denoted by || - ||s and | - |
respectively.
Let j; € Z, 5 = (j1,72, ", Jjn) and |j] = max |ji]. Set Lj( HLJZ x1), Lj (x)

being the Legendre polynomial of degree j Wlth respect to x;. For Legendre spectral
approximation in spatial directions, we define that for any positive integer NV,

Sy = span{L;(z) | |j| < N}, Vi =Sy nHLSQ).

Let Py : L?(Q) —— Vy be the L?-orthogonal projection operator, i.e., for any v €
L%(9), we have (Pyv —v,¢) =0, Vi € Vy.

In this paper, we consider the n-dimensional interpolation. Let k; € Z, k =
(k1 ko, - kn), |k = ax ]kl\ Set z(*) = (w&kl),xgkz),u-,m%k”)) and w®) = wgkl)
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w§k2) e wgk"), xl(k’) and wl(kl) being the nodes and weights of the Gauss-Lobatto quadra-

ture formula on I; = [—1,1], i.e., xl(o) = -1, xl(N) =1, xl(k’) are the zeroes of L'y (x;),

ki=1,---,N —1, and

(k) 2 1
w = - , k=0, ,N.
LN )

Let Oy = {z®|2(*) € Q}. Then

/v(:n)d:rz Z v(z®w® | o e Syy_y.
@ :L‘(k)EQN

Let P.: C(2) — Sy be the interpolation operator, i.e., for any v € C(R2), P.v € Sy
satisfies Po(z(®) = v(z®), V2 € Qn. We introduce the discrete L%-norm and the
discrete L2-inner product associated with the above collocation points as

1
Z |v(x(k))|qw(k)) 7 if 1< qg< oo,
ooy =1 sthenn

sup  [v(z M), if ¢ =00
:L‘(k)EQN

and (v,w)y = Z v(z®)w(2*)w®. Tt is not difficult to verifty that (see [8])
x(k)EQN

Powv=wv, YveSy,
(v,w)y = (P, Pow)n, Yv,w € C(Q).

T —
Let 7 be the mesh size in variable ¢,S, = {t = krlk = 1,2,---, [?H and S, =
Sr U{0}. For simplicity, we denote v(x,t) by v(t) or v sometimes. Define

() = S(u(t +7) + v(t — 7)),

2
olt) = 5-(0(t +7) — ol = 7)),
w(t) = Z((t +7) — o(t))

vi(t) = vt — 1),
1

ui(t) = —(v(t) = vi(t)).
It can be verified that
2(v;(t), 0(8))w = ([l (®)I[%);: (2.1)
2(v3(t), viz(t)) v = (lor@OIIR - 2.2
It is well known that the solution of (1.1) possesses the conservation

E(U,t) = E(U,0) +2 /0 t (%(t’), f(#))dr (2.3)
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W 12 2 2 2 P
where E(U,t) = HEMH +|U@®)|; +0||U@)||* + ]—)HU(t)HL,,. Clearly, a reasonable

discretization of (1.1) should simulate this property. The key point is to approximate
the nonlinear term ¢g(U(z,t)) suitably. To do this, let (see [2, 3])

1
Glv(z, 1)) = /0 gov(@,t + 1)+ (1 — o)u(a, t — 7))do. (2.4)

Clearly, G(v(z,t)) is an approximate to g(v(z,t)). Futhermore, since

1d

b 2.
kg (25)

9(z) =

1
we have 2v;(z,t)G(v(x,t)) = T—p(|v(x,t +7)P — |v(z,t — 7)[P), and so

(G(u(t), v (8)) N = p(llv( ML v)i (2.6)

Now, let u be the approximation to U. We approximate the nonlinear term ¢(U)
by P.G(u) instead of P.g(u). Then the Legendre pseudospectral scheme for (1.1) is to
find u(t) € Vy for all t € S, such that

(ugi(t) + ba(t) + G(u(t),v)n + (Vi(t), vo)n = (f(t),v)y, Vv e Vn,tES,,
ut(0) = uq,

u(0) = uo,
(2.7)

where ug = P.Uy and vy = P.U; + %PC(AUO —bUy — g(Up) + £(0)). We next check the

conservation. By taking v = 2u; in the first equation of (2.7), we have from (2.1), (2.2)
and (2.6) that

(luz@®IR)e + (117 u @13z + 0| [u@®IR); + p(IIU( e n)i = 20/ (1), () -
A summation of the above equality for ¢ € S; yields that

E*(u,t) = E*(u,7) + 27 > (w(t), f{t))n (2.8)

t'<t—rt

where

E*(u,t) =[lug(t)[[3 + 5 (H Vu)lly + Il v ut = IR) + g(HU(t)H?v +lut = 7)IR)

1(Hu( DB x + [t — )% x)-

Obviously (2.8) is a reasonable analogy of (2.3). Thus scheme (2.7) can give better
numerical results.
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3. Numerical Results

This section is devoted to numerical experiments. We shall use (2.7) to solve (1.1).
For comparison, we also consider a Legendre spectral scheme (see[7]) and a finite dif-
ference scheme (see[3, 4]). Let u® be the Legendre spectral approximation to U. We
approximate the nonlinear term g(U) by PyG(u®) instead of Pyg(u®). The Legendre
spectral scheme for (1.1) is

ugs(t) + 00 (t) + G(u®(t)),v) + (Vi (t), v) = (f(t),v), YveVy,d tes,,
ui(0) = PnUr + %PN(AUO — bUo — g(Uo) + £(0)),

) =
u®(0) = PyUp.
(3.1)

1
We now consider the finite difference scheme. Let h = N and Q, = {x|z = (j1h, j2h, -,
Jnh),—N +1 <45 <N —1,1<1<n}. Define e; =(0,---,0,1,0,---,0), and

———

j—1
1 n
Apo(z,t) = =72 z:: x + hej, t) — 2v(z,t) + v(z — hej,t)).

The finite difference scheme is

ul(z,t) — Ayt (,t) + bal(z,t) + G(ul(z, 1)) = f(t), reQ, tes,,
ul(z,t) =0, x € Oy, t € S,,
ul (2,0) = Ur(@) + 5 (8aUo() = bUo() — g(Uo()) + f(x,0)), @ €
u(z,0) = Up(x), T € Q.

(3.2)
For describing the error, let

o WOl s U@ =)
Bt =manw 0 P =" mamn

and

gy _ (T W)~ 0)
( E:cth |U(;1;’ t)|2) 1/2

For simplicity, we take n =b =T =1 and a = 2 in all calculations. The test function
is as follows U(x,t) = A(x? — 1) cos(B(x + t))et.

In Table 1, the calculation is carried out with A = 0.5, B =w = 1.0, N = 8 and
7 = 0.005. The numerical results show that scheme (2.7) gives much better results than
(3.2). Scheme(2.7) and (3.1) provide the numerical solutions with very high accracy
even if N is small. We also know from Table 1 that scheme(2.7) and (3.1) have the same
accuracy. Whereas for scheme(3.1), we have to calculate the coefficients of Legendre
expansion by numerical integration, which is quite difficult job. In particular, it takes
much time for the nonlinear terms. Table 2 shows the numerical results of scheme(2.7)
and (3.2) with A = B = 1.0 and w = 2.0. We find that if NV increases and 7 decreases
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proportionally, then the errors become smaller quickly. Table

of scheme(2.7) and (3.2). But scheme(2.7) gives much better numerical results and

possesses higher convergence rate than (3.2).

X. LI AND B.Y. GUO

Table 1. The errors E(u,t), B°(u®,t) and E"(u",1).

Scheme(2.7)

Scheme(3.1)

Scheme(3.2)

t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

9.21281E-7
5.91656E-7
1.52947E-6
3.82931E-6
6.61214E-6

9.50890E-7
6.52785E-7
1.39562E-6
3.64652E-6
6.31079E-6

1.23154E-3
4.34661E-3
8.66063E-3
1.36452E-2
1.88353E-2

Table 2. The errors E(u, 1.0) and E"(u",1.0).

2 shows the convergences

Scheme(2.7)

Scheme(3.2)

7 = 0.005

7 =0.001

7 = 0.0005

7 = 0.005

7 =0.001

7 =0.0005

W =
@OOHkZ

128

1.52081E-3
2.95840E-5
2.94326E-5
2.92907E-5
2.91293E-5
2.88781E-5

1.54167E-3
1.16568E-6
1.16412E-6
1.16264E-6
1.16087E-6
1.15844E-6

1.54159E-3
2.97163E-7
2.93173E-7
2.90184E-7
2.87146E-7
2.83207E-7

8.79735E-3
2.65475E-3
6.76090E-4
1.83250E-4
6.33188E-5
3.66429E-5

8.78729E-3
2.63820E-3
6.58751E-4
1.64651E-4
4.16680E-5
1.09870E-5

8.78698E-3
2.63768E-3
6.58222E-4
1.64116E-4
4.11237E-5
1.04145E-5

In order to derive the error estimations, we need some notations and lemmas. Let
B be a Banach space. Define C(0,7; B) = {v|v :

4. Some Lemmas

equipped with the norm ||v||c(o,r,B) = 0%22%||U(t)||3' Furthermore

and

Let I = (—1,1) and L*(I; B) = {v|v : I — B s strongly measurable and |[v||2(;.5) <

c™(0,T;B) = {v

HUHCmmJﬂﬂ

oo}, equipped with the norm

o'
Otk

HUHL%IB

€ C(0,T;B),0 < k:gm}

o<k<m H otk H C(0,T;B)’

1
([ Iveipas)?.

[0,T] — B is strongly continuous },

Furthermore, for any non-negative integer m, we have

kv

HWLB%:{O

€ L*(I;B), 0 <k <m}

and
(Z e

For non-negative real number s, we define H*(I; B) by the interpolation between the
spaces Hl*)(I; B) and HIs+(I; B).

2
0] 1) = v
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Let ¢ be a positive constant independent of 7, N and any function. But its value
could be different in different cases. We shall list some lemmas which are the modifi-
cations of results in [3,5,7].

n _r
Lemma 1. If0<r <1ands > =+ 3 then there exists a positive constant c

depending on s such that for any function v € H*(Q), ||v — Pwl|, < eN"~%||v]]s.
Proof. We know from section 4 and section 5 of [9] that
(i) There exists a positive conctant ¢ such that for any v € H'(I),

[[Pev||g1ry < ellvll g - (4.1)

1 r
(ii)) If 0 <r <1 and s > = + —, then there exists a positive constant ¢ depending on s

such that for any function v € H*(I),

[[v — Pev|lgrry < eN"*|[v]| s 1)- (4.2)

-
(iii) f0<r<land s> 1+ 3’ then there exists a positive constant ¢ depending on s

such that for any function v € H*(I?),
lv = Pevl|gr 12y < eN"7°||v]| s (r2).- (4.3)

We shall apply the above results and the induction to prove this lemma. Firstly, (4.2)
and (4.3) that show the conclusion is true for n = 1 and n = 2. Now, we assume

that the result is true for n — 1, i.e., for any real numbers s and r, 0 < r < 1 and
n—1 r . . .
s > 5 + 3 there exists a positive constant ¢ depending on s such that for any

function v € H*(I"71),

H'U - PC'UHHT(Infl) S CNT_SH'UHHS(Infl). (44)

Let P.7 be the one-dimensional interploation operator with respect to the variable xj
and P, = Pévj ‘chj _ chj -chj, where chj =P .pr2..... chj,l ,chj+1 oo PIn,
We first deal with the case with r = 0. Let ¥ be the identity operator. Then

||’U — PCUHL?([") §||’U — Pg/‘j’UHLQ([;LQ(pL*l)) + ||’U — Pg:j’L)||L2([;L2([7L—1))
+[(0 = P27) - (0 = P Yol | 2rypoam1y) -

n —

1 1 1 —1
Let s1 = —s and sy = s. Since s > g, we have s1 > 3 and s9 > nT By (4.2)
n

and (4.4),
lv = Pevl|p2(rmy < e(N"*|[ollgs (1,22 (mm-1)) + N 7|0l z2 g, (1n-1))
+ N30 — P Yol g (LL2(171Y))

< C(N_SHUHHS(I;Lz(In—l)) + N_SHUHLZ(I;HS(I”*U)
+ N_s||U||H51(I;H32([n—1))).
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Since H*(I") «— HS(I; L*(I"7Y)), H5(I") — L*(I; H*(I"Y)), and H*(I") — H*
(I; H*(I"1)), we obtain |[v— Pevl[p2(n) < ¢N~%[[v]|g=(m). We next consider the case
with r = 1. Using (4.1), (4.2), (4.4) and embedding theory, we have that for 1 < j < n,
z;

L2(I™) = HaTj(v - Fe U)‘

(v— Pcv)‘

Ha_xj L2(LLA(Im1))

0 o y
+ Ha—x]( e’ (0 = P )o)l| 2,2 (m-1y)

< N el aspan +CH— (9 = B0 )‘ L2(I;L2(I71))
1—s :E] aU
< eNE |l s (2 m-1y) + cl|[(9 = Pe )8—HL2 L2 (I 1))

< NV ol s rir2any) + N0l s ey

< NVl m)-

Finally, by an argument for the interpolation between the spaces L2(I™) and H!(I"),
we can obtain the desired result.
1
Lemma 2. If v € Sy, then |[v]| < |[ollv < exlloll, ex = (2+ N)
Proof. Let

0|3

N[

(pjl(xl):( ~2 )_

2 + 1

Lj(x0), i) =] @i (x0)-
i=1

Then

v@) = Y (@), (lP =Y ¢

lil<N il <N
We define the discrete inner product in Py (I;) as

N
(v,w)(l) = Z v(xl(k’))w(:nl(kl))wl(kl), Yo, w € Pn(I;).

By the orthogonality of Legendre polynomials,

0, if ji # i,
(sojnsﬁj;)glv) = b . if jo=Jgi <N,
2+N’ if jy =j; = N.
We have "
(91, 05)v = lljlml,sojpﬁe
and so

n
Wil = 3 a3+ X af [J(en ey

BN LN =
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Since
n n
1;[90]1790] §(2+N) )

we obtain the desired result.
Lemma 3. For all v € Sy,

n 1 1/2
ollee < aRlloll, oy = (5¥ + DOV +2))

2 n(g=2)
and ||vl|an < cyay T [loll, ¢ =2
Proof. The first conclusion comes from Lemma 2 of [7]. By Lemma 2, for g > 2,
-2
[ollg0 0 < ol wllel e < K lloll 2ol < Reay ™ o]l

Lemma 4. (Lemma 3 of [7]). For all v € Sy,
1
o1 < gnZN?oll, ¢=1+ = <.

Lemma 5. For all v € Vi, [|vl|f. x < ¢4l|v||]q, where ¢4 is a positive constant
dependent of q.

Proof. Let N be a positive integer and Py (I) be the set of all polynomials of degree
< N on I. Nevai proved the following result (Theorem 9.25 of [10], also see Section 2
of [11]).

Let p be a Jacobi weight, 1 < g < co. If ¢* > 1 is a fixed number and f are an
arbitrary, not necessarily integrable Jacobi weight, then for any v € P_. 5(I),

N 1
S (I €eiw) < 4 [ oIS W) )
1=1 -

where &; and p; are the nodes and the weights of Gauss quadrature with respect to the
weight @ on I = (—1,1).

We shall use the above inequality and the induction to prove this lemma. Firstly, let
n = 1. As we know, the Legendre polynomial Ly, (x1) satisfies the differential equation

(1= 2L, (x1)) + k1 (k1 + 1)Ly, (21) = 0.

Therefore {L}, (1)} is an orthogonoal system with respect to the weight 1 — z%. This
leads to that the interior nodes xgkl)(O < k1 < N) of a Gauss-Lobatto quadrature with
N + 1 nodes coincide With the nodes &, (1 < k3 < N — 1) of a Gauss quadrature with
N — 1 nodes, i.e. :Eg =&, 1 < k:1 < N — 1. Besides the weights are linked by the
following equality wa V= (1—&) pry, 1 < by < N — 1, where w% )(0 <k <N)
are the Gauss—Lobatto weights and pkl(l < k3 < N —1) are the Gauss weights. Let
flx) = (1 —2?)~! and p(x1) = 1 — 22, we have

N-—1
uvum—zrv ) yjag) = Z\v FEY ) = ST u(@)|7(1 — ) o (1)

k1=0 k1=1 ki=1
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Thus by (4.5),

1 1
ol <o [ folanl?(1=ad) " (= addas = ¢, [ Iolanlides = cllole. (46)
Next, assume that the result is true for n — 1. Then we have from (4.6) that

lllfay = > lo@®)®

m(k)GQN
< Z ' 1/ / $17$27“ sy Lpn—1,T )|qu1d$2 dxn—lwﬁlkn)
m-1
kn=0
= fTIL 1/ / 1 Z ‘U T1,T2, "3 Tn—1, x(kn )‘qw (kn) dﬂ?ld.’xg dﬂl‘n 1
" =0
< Cg/ ‘ ‘/IL|U(':L'17$27‘ o 7$n—17$n)|qu1dx2 o 'd$n_1dﬂjn - CZH,UH%(I
n

4
Lemma 6. For all v € H} (), |Jv]|? < —2|v|% If v € Vi, then
nm

1

4e
2 N 2 _
HUHNSWHVUHJ\M eN_erN'

Proof. The first conclusion is Lemma 9 of [7]. Let I; = (—1,1). By Lemma 2 and
the first conclusion,

3 o, 2tz Pu ) < iz( Z ‘ kl))...7xn)‘2wl(kl)

lolft < 5 2+ ) o

which leads to the second conclusion.
Lemma 7. For all v € C*(0,T;C(Q)),

6(t) —v(®)l|v < e [Jvllo20m; 100 (02))

Jote) — 22, < erlvllonoramqay:

ov T 0% H

H’Ut(t) - E(t) - gw(t) v S em?||vlles 0,110 () -

Proof. By the mean value theorem, we have

0(6) — v()] = |50t +7) — v(t)) — 5 (0(6) (s — 7))

T OV T 0V 2 0%
= 55@0) - 55@1)‘ =5 ﬁ(h)’
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where t <tg <t+7,t—7<t; <tandt—7 <ty <t+ 7. Hence |[0(t) —v(t)||ny <
72||v|| o2 (0,7:L¢(q2))- We can prove the other conclusions similarly.
Lemma 8. For allv € C*(0,T;C(Q)),
1
CT||U||3J1F(07T;L00(Q)), for 0 <a <1,

1
CT2||U||3T(O7T;LOO(Q)), for a > 1.

chwan—mwmeg{

Proof. By Taylor’s expansion,

glov(z,t +7)+ (1 —o)v(z,t — 7)) = g(v(z,t — 7)) + o(v(z,t + 7) —v(x,t — 7))

. %(ﬁ(a)v(x,t +7)+ (1 —0(0))v(z,t — 7))

where 0 < f(0) < 0. Thus the first mean value theorem leads to

Gv(z,t)) = gv(z, t — 7)) + %(U(m, t+71)—v(x, t—1))

dg

=, (Orv(x,t +7)+ (1 —0))v(x,t —7)), 0<6; <1.

Similarly,
Glole, 1)) = glv(@,t+7)) = %(v(ﬂc,t +7) —v(z,t — 7))
. %(ﬁzv(x,t +7) 4+ (1= O)v(x,t — 7)), 0<6y<1.

Moreover, we have

dg, . o
W) = @+ 1))
and 9
lv(z,t +71) —v(z,t —7)] < 27”8—:(x,t0)’ t—7 <ty <t+T. (4.7)

Also we know that G(P.v(x,t)) = G(v(z,t)) for all x € Qn. Therefore

A~ 6% av (0%
IG(Pev(t)) — g(o(®)lIv < CTHUHC(O,T;L“’(Q))HEH(,*(O T;L>(Q)) < CTHUHCT(lo,T;LOO(Q))‘

If @ > 1, then by the expression of remainder term of trapezoidal quadrature, we have

. 1 d?
G(0(t) ~ 30(0)| = T3 | T Ol t47)+ (L= Olt 7)ol t+7) (e = 7)P
where 0 < 03 < 1. Moreover,

d%g

@(z) =ala+ 1)|z|a_2z

which together with (4.7), yields the desired conclusion for o > 1.
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Lemma 9. For all v,w € C(0,T;Vy), G(v(z,t) + w(x,t)) = G(v(x,t)) + R(x,t),
with
RN < el01Z0 1y + 1010z )Mt + P + ot = DI
Proof. Let
V(o) =ov(z,t+7)+ (1 —0o)v(z,t —71),
W(o) =ow(z,t+7)+ (1 —o)w(z,t — 7).
Then by Taylor’s expansion and that (see [12])
(a1 + a2)® < c(af 4+ a$), Vai, az >0,

we have
1
|R(z,t)| < /0 l9(V (o) + W (o)) — g(V(0))|do

1
= (a+ 1)/0 V(o) + 0(c)W (0)|*|W(0)|do
<c(lv(x, t + 1) + |v(z,t — 7)|% + |w(z, t + 7)|* + |w(z,t — 7))
(lw(z,t + 1)+ [w(z, t — 7))

3 1
where 0 < 0(0) < 1. Taking = max (5, g, 2—) , we have from Hoélder inequality that
a

1Rz, )13 < c(llo(@, t + 7)[173as v + [|0(2, 8 = 7)[1 7305 x
+ |lw(z,t +7)|[33as v + llw(z, t —7)|[7%0s 5)

(o, t+ 1) 55 A+ llwle,t =71 25 )
LB-1 N LB-1 N

28
Since H(Q) — L2*5(Q) and H(Q) — LB-1(Q), we complete the proof by Lemma 5.

We now consider a special case, i.e.,

1<a<2, forn=1,
1<a<?2, forn=2, (4.8)

a=1, for n = 3.

In this case, we can improve the result of the previous lemma.
Lemma 10. If « satisfies (4.8), then for all v,w € C(0,T;Vy), we have

Gv(z,t) +w(z,t)) = Gv(z,t)) + G(w(z,t)) + R(x,t)
with

RO < d@)([lw(t +D)F + |[wt =TI + [wt + )7 x + ot = DI x)
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where d(v) is a positive constant depending on o and ||v||co, 11 (02)) -
Proof. Let V(o) and W (o) be the same as in the proof of lemma 8. Then by
Taylor’s expansion

V(o) + W(0)|* = [V(0)|* + alV(e) + 6: W (0)|**(V(0) + 61 W ()W (0),
V(o) + W(o)|* = [W(0)|* + o] W (o) + 02V (0)|**(W(0) + 62V ())V (0)

where 0 < 61, 03 < 1. Hence g(V (o) + W(o)) = g(V (o)) + g(W (o)) + R(o), where

[R(0)| <c(Jv(z,t+7)|* + v(z, t = 7)[*)(lw(z, t + 7)] + |w(z, t — 7))
+ c(lw(z, t +7)* + |lw(z, t = 7)*)(|jv(z, T +7) + |v(z, t —7)]).
. 3 n 1 .. . .
By taking = max (5, 5 2—), we have from Holder inequality and Lemma 5 that
o'
| ot + 7 w(t +7)l[} < ot +7)l[7%as yllw(t+ )17 55
LB-1 N
< lo(t +7)[[*Jw(t +7)]IE.
We can estimate the term || |v(t + 7)|%w(t — 7)||n similarly, etc. Next we consider the
2(a+2)
norm || |w(t + 7)|*(t + 7)||n. If n =1 or n = 2, then HY(Q) — L 2-a (Q). Thus
Holder inequality and Lemma 5 lead to

| fot + 7)o + 1)} < ot + 717 gapz)  w(t+ 7|78y
L 2-a N

< fu(t + 7)1t + 7)I[75 v

1 1
Note that (see [12]) for ¢,q¢" > 1 satisfying — + = =1,
qa g

aq aql
ajag < -1 + —2/, Yai,as > 0. (49)
q q

Hence we obtain from Lemma 5 that

2(a—1)

22—«
llw(t+7)I7% x < ——lJw(t + 2o N + [w(t +71)[|70 &

< c[hw(t + ) + [Jw(t + 7)l[70 x)

which leads to the conclusion forn = 1,2 and 1 < a < 2. If n =1 and a = 2, we can

prove the conclusion directly. We can also obtain the same result for n = 3 and o = 1.
Lemma 11. (Lemma 4.16 of [13]). Assume that

(1) Q(t) and p(t) are non-negative functions defined on Sy, and p(t) is non-decreasing

m t;

(ii) M is a non-negative constant;

(iii) Q(0) < p(0) and fort € Sy,

Q) <pt) +M Y Q).

t'<t—r1
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Then for allt € S;,
Q) < p(t)e.

5. The Analysis of Generalized Stability

Firstly we derive a priori estimation for the approximate solution of (2.7). Assume
TN? = r < co. By the conservation (2.8), we need only to bound the initial values
E*(u,7) and 27 Z (f(#'),u;(t'))n. By Lemma 2 and Lemma 4, we have

€Sy ' <t—7

9
()% < 2k [uoll® + 232w | P, || v w0} < 2c|uoli + §C?vm“2||m||2- (5.1)
It is not difficult to show that

2r 3 (P, w@)n| < Tl + 20 > (IR + IIF @R (5:2)

t'eSr t'eSr
t/<t—1 t/<t—1
and
or—1 »
—HU( Mo n < > (ol 7o n + TP llualle n)- (5.3)

Then we have from (2.8) that

(1= Dl @)% + 5 (|| vu®)|R + 11 v ult = 7)l[%) + g(IIU(t)II?v + [u(t = )IR)

p(HU( Mo v+ llult =L ) (5:4)
<c(lluollf + [luol s v + llua | + 77 ur |5 x)

+21 Y (lu)IF + IFEIR)-
t'eSr
t/<t—1

On the other hand,

(ut)? = (uo+7 > uglt)? < 2uf +2tr > wd(t))

t'eSr t'eSr
t/ <t t/ <t

which implies
(@)% < 2luol[F + 267 Y |uz(t))[|%-

t'eSr
t/ <t

Hence
’g(IIU(t)II?v+|IU(t—T)|I?v)’ < [pltr|jug()][F + 200l (uol IR+t D [uz®)|[F)- (5.5)

t'eSr
t/<t—r



A Legendre Pseudospectral Method for Solving Nonlinear Klein-Gordon Equation 119

Let byp > 0 and
2

0, for b > —gl,
e
#(b) = nn? /1 mrzg
bl ——(=—b for b < ————
‘1 dex (2 ), for Sen’
2 for b > 0,
_ 2
vy =49 1_ 46N’b’, for — " <p< 0,
2 nm2 8en
bo, otherwise,

b
—, for b >0,
x(b)Z{ 2

0, otherwise.

By Lemma 2, Lemma 6 and the above functions, we have from (5.4) that
(1 =7 = TtoO)|luz®)|IF + »(0)( V u()|[} + 1| 7 ult = 7))
+x(0)(Jul)|[F + ult —7)IIF) + (HU( Lo n + lult = 7ILr n)

<p(uo, u, f) +2r(1 +to(b) Y HUE( IR (5.6)

t'eSr
t/<t—7

where

pluo, ur, f) = c(lluollf + [Juol[Zo n + [furl[* + 7P[Jur|Fs ) +em D7 IIFE)IR-

t'eSr
t/<t

Let 7 be sufficiently small and define

E* (u,t) = [Jur)||% + | 7 ()[R + [Ju@®)|[F5 x-
By applying Lemma 11 to (5.6), we get
E**(u,t) < ep(ug,ur, f)e. (5.7)
Remark 1. Indeed we have from (1.2) and Lemma 5 that ||ugl[}, N < < cf|uol 3.
Also by Lemma 3 and 7 = O(%), | Jug |7, N < P N™P=2)| |y ||P < ¢f|ug||P. Hence

p(ug,u1, ) only depends on ||ugl|1, ||u1|| and Z |£(t")||%. On the other hand, if
teS 1<t
2n—np
b > 0, then we do not use (5.1). Also 7°||u1[|7, y < ¢||u1|[P when 7 =O(N » ).

Now we consider the generalized stability of (2.7). Suppose that ug,u; and P.f
have the errors ug,u; and f respectively which induce the error of u denoted by .
Then they satisfy the following error equation

(g (t) + bia() + G(ut)), v)n + (Vi(t), 7o)y = (F(£),0)n, Vo€ Vi,
(0) = 7, (5.8)
@(0) = dg
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where G(x,t) = G(u(z,t) +a(z,t)) — G(u(z,t)). By taking v = 2i; in the first formula
of (5.8), we have from (2.1) and (2.2) that

U@ + (7 a®)3); + bllam|3); + 2G ), a6)w = 2F(1), %)y (5.9)

Let d(u) and d(@) be two positive constants depending only on ||ul[c(1;m1(0)) and
@]l c(0,1; 1 (2)) Tespectively. Then we get from Lemma 2 and Lemma 9 that

2(G(t), az())n| < la@)II + llazOlR + (d(w) + d(@)(|[alt +7)I[F + [[at - 7))
< Na O + @)1y + (d(u) + d@)(|| v alt + )R + || 7 at = 1)IIR)-

By an argument similar to the derivation of (5.6), we obtain

(1= 27 = 27t(b)|[@ (IR, + (¥ (b) — 7d(w) — rd(@)(|| v )|} + || 7 ult = 7)IF)

+xO)(la®lx + llat - 7)lIx)
<p1(to, ar, f) +7(2 + 2t(b) + d(w) +d(@)) D (llat)IF + 11 v a)|R) 5.0
t'eSr 5.10

t! <t—7

where

pi(ao, @1, f) = (e +7d(uo) + 7d(1do)) (|||} + [[aal[*) +er D IIFE)II%

On the other hand, by a priori estimation (5.7), we have ||u||c o, 7.1 () < cp(uo, u1, et

Similarly [|u+a|co,r:m1 () < cp(uo + 1o, ur + 41, f + f)eT. Thus if p; < My for cer-
tain My > 0, then we conclude that p(ug + g, u1 + U1, f + f), and furthermore d(a)
are bounded above by a positive constant depending only on p(ug, u1, f) and My. Con-
sequently if 7 is sufficiently small, then (5.10) implies that

laz(OIR + 11 7 @)} < Mipi(ao, ar, f)e™.
2n—np

Theorem 1. Let (1.2) hold, TN?> < r forb<0andT=O(N P ) forb>0. If
p1(ig, @y, f) < My, then for suitably large N and all t € S, |[az(t)]|3 + || v @(t)]|3 <
M, py (g, a1, f)eM2t, My and My being positive constants depending only on ||uol|1,
|[url], ||f||C(O,T;L2(Q)) and Mo.

Remark 2. Theorem 1 shows that scheme (2.7) is not stable in the sense of Lax
(see [14]). But if the errors of data are bounded, then the error of numerical solution
is still controlled by the errors of data. Indeed, it means that (2.7) is of generalized
stability with the index s < 0 (see[15]).

Next we consider the case with (4.8). We have from Lemma 10 that G(z,t) =
G(i(z,t)) + R(z,t), with

IROIR < dlu)(([alt + )1 + llat — I + 1t + )l + llatt = 7)[7 v)
< d) (Il v att + DR + 11 v alt =)l + llalt + )l x + llalt =)l x)-
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By taking the inner product with 2;(t) in the first equation of (5.8). We get
. 2 .
(laz(®)13)e + (I 7 a@®)l|R); + b(l1a)l1%); + UL e )i+ 2(B(2), () v

=270 % (). (511)
Besides, (5.3) implies

op—1 .
—HU( Wie x < ——lol|7s x + P[0l l70 n)-
P

By an argument similar to the derivation of (5.6), we obtain that
(1 = 27to(0))l[ag (O3 + (@ (b) — rd(uw))|| 7 a(®)l|%
- 1 -
FXOEOI + (5 = 7d(w) 1301

<pa(iig, i, ) + (e +d(u)) D (Hﬁf(t’)H?erHvﬁ(t’)H?erHﬁ(t’)H’iva)( |
t'eSr 5.12

t/<t—7

where

oz _ _ 1ot _
pa(tio, iy, f) =(c + 7d(uo)) (|||} + [|81]]%) + (]—9 + e + Td(UO))HUOH%p,N

p—1

2 5 ~
+ 7|y + 21 D )R
t'eSr
t/ <t

p

If N is suitably large, then we can verify the boundedness of d(u) as before. Thus by
applying Lemma 11 to (5.12), we get

laz()|% + 1| 7 @Ol + [[@t)[[}0 y < Mspa(iio, aa, fle'™".
Theorem 2. Let TN? < r and (4.8) hold, Then for suitably large N and all t € S,
laz()I[% + 1| 7 @Ol + [a@)|l2s 5 < Mapa(iio, @, f)eM™

where M3 and My are positive constants depending only on b, o and ||ul|c(o,r;m1())-

Remark 3. If the conditions of Theorem 2 are fulfilled, then scheme (2.7) is of
generalized stability with the index s = —oo (see [15]). It means that there is no
restriction on the errors of data and so (2.7) is stabler.

6. The Convergence
Setting w = P,U, we get from (1.1) that
(wiz(t) + b (t) + G(w(t)), v)n + (V(t), V)N
3

FO+ S £, 0)N, Vv e Vy, tes,,
)+ 2 S0 ) Ve Vy o)
wy(0) = P.U; + gPC(AUO —bUy — g(Up) + f(0)) + fu,

w(0) = P.Uy
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where 24
fult) = witt) - 220,
f2(t) = Pe[G(w(t)) — g(U(1))]
fa(t) = P. A U(t) = APU(t),
ow T O%w
J1=w(0) — E(O) - 5@(0)-

Setting U = u — w, we get from (2.7) and (6.1) that
(Oye(t) + U (1) + Gluw(t) + U (1) — Glw(t),v)x + (TU 1), 7o)n
3
—(Zfi(t),v)]v, YveVy, tesS,,

ﬁt(o) :_ _f47
U(0) = 0.

By taking v = 2(?5 in the first formula of (6.2), we have from (2.1) and (2.2) that
(TR + (I 7 T@)[R + T O
3

+2(G(w(t) + U 1) = Gw(t), Us(t)n = =2 _(fi(t), U(t)n

i=1
Evidently we can get the results similar to Theorem 1 and Theorem 2. But ||az(¢)||n,

| 7 a(t)||n and [[@(t)|[,  are replaced by |~|U£(t)||N7 |7 U@®)||n and |[U @)% v
respectively, while p; (@, a1, f) and pe(ag, a1, f) become

Pi(t) = (c+7d(w(0)))I|T:(0 ||2+CTZ > AR, (6.3)

i=1 t'eSr
t/<t—7

and

-1

2p
’ 77||U(0 pN+ch > fEEIR. (64)

i=1 t'eSr
t/<t—7

p3(t) = (c+ md(w(0))I|U: (0)]|* +

For the convergence, we have to estimate pj(t) and p3(t). We have from Lemma 7 that
AR < er IUN24 0,11 (5))-
By Lemma 8, we know that if U € C1(0,T;C(f2)), then

||f2( )||N < CTﬁ(a ||U||%%+02T L0 ()
where f(a) =4 for @ > 1 and f(a) =2 for 0 < o < 1. On the other hand, the inverse

1
inequality, Lemma 1 and Lemma 2 lead to that for s > g + 3

15OI% = 1P AU () = ARUDIIR < cl|lPe A U(t) = ARU®)]1*
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<c|P.ATU®R) — AUW@)|)? + | AU — ARU®)|?
< eN“ZB||AU®)|s + eNY| 7 U(t) — v PU(1)]]?
< CN_2SHU(t)H§+2 + CN_2SHU(t)H§+3 < CN_2S"UH%'(O,T;HS+3(Q))'

We obtain from Lemma 7 that

1T < 10:O)IR = @I < er U125 0,725 (-

So we can get the following result.

1
Theorem 3. Let the conditions of Theorem 1 hold. We conclude that if s > g+ =

2
and U € C(0,T; Hy(Q) N H¥3(Q)) N C*(0,T;C(Q)), then for allt € Sy,
10:t) 3 + 1l 7 T (@)% < My (77 4 N=2)

where M7 is a positive constant depending only on the norms ||U||c(o,r;ms+3(q)) and
U 0,7;000 (92)) -
We now consider the special case with (4.8). In this case, by Lemma 3 and Lemma

7, 70Oy y < er? N"C-2[T ()P < er®N" =202 g 11 -

1
Theorem 4. Let the conditions of Theorem 2 hold. We conclude that if s > g+ =

2
and U € C(0,T; HY(Q) N H*3(Q)) N C40,T;C(R)), then for all t € S,,
OO + 17 UK + 1T @)y < M5 (8 + 7PN 4+ N7

where M3 is a positive constant depending only on the norms ||U||c(o r;ms+3(q)) and

U 0,7:15¢ (02)) -
If we analyze the generalized stability and the convergence with the negative norm,
then we can get better results. The negative norm || - || is defined as

ol = sup 1]
eeri() || vV ellv

We also note that (9.7.15 of [16]) for any v € H}(Q2) and s > 2, there exists vV € Viy
with the same boundary behavior as v, such that

o =N, < eNT75|ulls, 0< 7 <2 (6.5)

We can use the above techniques to improve the results. In these cases, the right terms
f1(t), f2(t) and f3(t) in (6.1) are replaced by Fi(t), Fo(t) and F3(t)+ F3(t) respectively,
where F1(t) = fi(t), Fa(t) = fa(t), F3(t) = P.AU(t) — AUN(t) and F3(t) = AUN(t) —
APU(t) . And so

(Fi(t) + Fo(t) + F3(t) + F5(),v)n = (Fi(t) + Fa(t) + F3(t), v)n + (F3(t),v)n, Vv € V.
We also note that (Lemma 1.5 of [17])

21 Y (o), u;(t")n = (v(t = 7),u(®))n + (v(t = 27),u(t — 7)x = (v(27), u(7))N
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= (v(r),u(0)n =21 Y (vt u(t))n,

t'est
t/<t—2T1

where S. = S;\{7}. Hence we have
2 Y (B3(t),w(t")n = (B3(t — ), u(®))n + (B3t —27),ult —7))n — (E3(27), u(7) N

— (B5(7),u(0)n =27 Y (Fy(t), u())w-

! /
t'es,
t! <t—2r1

Evidently we can get the results similar to Theorem 3 and Theorem 4, but pj(t) and
p5(t) become

Ai(t) = (c+ Td(w(0)||T:(0 H2+CTZ > NE@IR +11FsE )2,

i=1 t'eS,
t/<t—1
(= 20)|2 g + [BEO)IP + B + > I1EE)12,
t'es) (6.6)
t’§t727'

and

-1

op
» TpHUt HLPN+CTZ Z | (' HN

p5(t) = (c+ 7d(w(0))||T: (0)]* +

=1 t'eSr
t'<t—1
F (=121 + [[Fs(t = 2m)120 + |22 + [1F3 ()24
+ > [ E()E (6.7)
t'est
t’gt—ZT

If U € C(0,T; HY(Q) N H*2(2)), then Lemma 1 and the inequality (6.5) lead to that

for s>max(2 2),

IF3(0|[3 = [|[P. AU(t) = AUN @)} < ol|P. AU(E) — AUV ()]
< d|P.AU) = AU®)P + el ATE) — AUN (1))
SN AT@)]s + eN#|U®)|210 < eNTH(|U )24
< eN"2NU o mmrs+2(0))-

If U € C(0,T; H () N Ht1(Q)), then Lemma 1 and (6.5) lead to that for s >
n 1
max (5 + 5,2),
(Bt 0)n] = (VO () = PU)), vo)n| < ellUN(#) = UL 7 vllw
< c([|lUN() = U@ +11UEF) = PO vllw
< c(NTNUE) o1 + N U sl v vlly
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< eNN[Ullcoras+1 @)l v vlIn

where t' =t — 7,t — 27,27 and 7. Hence, ||F3(t')||_1 < N |Ullco,; 151 ()
If U € CY0,T; HY(Q) N H*1(Q)), then Lemma 1 and (6.5) lead to that for s >

max (g + %,2),

(Eyi(t),v)n| = (VTN () = PU(t)), vo)n| < el|Up(t') — PU(E)[1]] 7 vl
< (HUN( t) = Uit + 10:(t") = PU(E) 1)1 7 vl |
< ( 0|51 + N0 s 7 0l
< eN|Ullero,mms+1 o)l 7 0]y

where ¢’ € S/ and t' < t — 27. Finally, we get |[Fy:(t')||-1 < cN 72 (|Uller o715+ () -
So we obtain the following results.
Theorem 5. Let the conditions of Theorem 1 hold. We conclude that if s >

max (g + %2) and U € C(0,T; HE(Q) N H*F2(Q)) N CH0,T; HE (Q) N H*+L(Q)) N
C*0,T;C(Q)), then for allt € S,

10:t) |3 + 1l 7 T @)% < My (75 4 N=2)

where MY is a positive constant depending only on the norms ||U|[corm+20));
U1 0,15+ () and |[U]| 40,115 (@) -

Theorem 6. Let the conditions of Theorem 2 hold. We conclude that if s >
max (g + %2) and U € C(0,T; HH(Q) N H*2(Q)) N CH0,T; HE (Q) N H*+1(Q)) N
C*0,T;C()), then for allt € S,

TN + 17 T + [T @),y < M (r* + 79N 4 N~2)

where M3 is a positive constant depending only on the norms ||U|[co 1 ms+20));
[Ullcro,1;m5+1 (@) and |[U]lcao, 10 @))-

Remark 4. The above estimations for the convergence rate are not optimal. This
is caused by our comparison between u(t) and P.U(t) in the proof, which generates the
terms P.(AU(t)) — A(P.U(t)), and so decreases the convergence rate. However, if «
is an integer, then we can compare u(t) with PyU(t), the H'-orthogonal projection of
U(t) onto Vi, instead. Indeed, let Py : Hi(Q2) — Vi be the orthogonal projection,
ie., for any v € HE(Q), (V(Phv —v),vp) = 0, Vo € Vy. Furthermore for any
v € H§(Q), we define (VPyv, V)N = (Vv, V), Vo € V. Then for any v € H (),
we have (V Py, Vo)n = (Vv, Vo) = (VPLv, ), Yo € Viy. Moreover for v € H®(Q)
and s > 1,

l[v — Pyv|lr < eN"*|jv]ls, 0<r <1, (6.8)

By such technique, we can weaken the conditions in Theorem 3 - Theorem 6 and then
the optimal error estimations follow.
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