
Journal of Computational Mathematics, Vol.15, No.2, 1997, 127–137.

CONVERGENCE OF VORTEX WITH BOUNDARY

ELEMENT METHODS∗

P.W. Zhang
(Department of Mathematics, Peking University)

Abstract

In this work, the vortex methods for Euler equations with initial boundary
value problem is considered, Poisson equations are solved using boundary element
methods which can be seen to require less operations to compute the velocity field
from the vorticity by Chorin[6]. We prove that the rate of convergence of the
boundary element schemes can be independent of the vortex blob parameters.

1. Introduction

The paper written by Chorin[6] in 1973 was the basis of the vortx methods. He

divided numerical program into three steps: the first step is to solve the Euler equation

with the vortex method, where the velocity flied is computed from the vorticity field

with the boundary element method; the second step is to produce the vorticity on

the boundary; the third step is to simulate diffusion with random method. It is very

difficult that to build the fully mathematic theorey of vortex methods. None can get

the convergence of Chorin’s algorithm now. In 1978, Chorin, Hughes, McCracken,

Marsden[7] regarded the methods as

ω(n△ t) = (H(△t)ΘE(△t))nω0, (1.1)

where Θ is “operator created vorticity”, E(·) is Euler’s operator, H(·) is Stoke’s oper-

ator.

People have more studied (1.1) in order to build the mathematical theory of vortex

methods. For the simple model, it can be divided as convergence of viscous splitting;

convergence of vortex method for Euler equation; and convergence of random vortex

method.

The problem in viscous splitting is to consider convergence of the approximate so-

lution, where in every time step, Euler’s operator and Stoke’s operator both exact, and

“operator created vorticity” is considered as a projection operator. Beale and Majda[3]

got a fully result for the initial prblems. L. Ying and P. Zhang[21] have studied the

initial boundary problems and got a series result. About the random vortex methods,

the main result is to see Goodman[8] and D. Long[14]. The convergence of vortex meth-

ods for Euler equation is always the main direction. There are many results about the
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convergence of Euler equation for initial problems, we can rerefence Hald[10], Beale and

Majda[3,4], Anderson and Greengard[2], Raviart[16] and so. L. Ying[18] first considered

the initial boundary problem with extrapolation method and got the convergence of

semi-discretization. L. Ying and P. Zhang[20] got completely result for the vortex in

finite element method. A similar result was got by P. Zhang[22]. Chorin[6] used the

boundary element method to disretize Laplace equation. Since the boundary element

method is simple and fast for numerical computation instead of the Green function

method, especially for the exterior domain which it is not fit for the finite element

method. J. Yang[17] have studied the vortex with boundary element methods. con-

vergence results were given for semi-discretization, but constants in the error bounds

depended on the vortex blob parameters.

One purpose of this paper is to prove that the rate of convergence of the boundary

element scheme is independent of vortex blob parameters.

2. Boundary Element Method

Boundary element method can be divided into two cases: one is only to consider the

error produced by approximation function when the boundary is exact; and the other

is both to consider the errors produced by boundary and approximation function. For

simplity we only consider the first case.

Let Γ be a smooth curve, x = x(s), s ∈ [0, L], s is parameter of curve, and
dx

ds
is

not zero in any point.

L = L(Γ) is the length of curve Γ, if Γ is smooth curves in Ck, then x(s) ∈ (Ck)2.

We choose NE points Ae (1 ≤ e ≤ NE), such that

Ae = x(se) 1 ≤ e ≤ NE

We define s0 = 0, sNE = L and A0 = ANE , Γ = ∪NE
e=1Γe for closed curve Γ. Γe may

be expressed as in the local frame
{
u = ξhe 0 ≤ ξ ≤ 1

v = fe(ξ) = ve ◦ Ae−1x(s)

where he = |x(se)− x(se−1)|, and denote h = max1≤e≤NE(se − se−1), and s is function

of ξ, their relation is

ue ◦ Ae−1x(s) = ξhe,

since x(s) is continuous differential, s is uniqne according to ξ if h is small enough.

Denote

s = φe(ξ), ξ ∈ [0, 1],

φe is one to one in [0, 1] 7−→ [se−1, se], while equation of Γe in local coordinates (ue, ve)

is

x = Φe(ξ), Φe(ξ) = x(φe(ξ)) = x(s).

If we use Pm(ξ) to express the polynomial function spaces that degree is less than

m in [0, 1]. Then we can define function spaces P e
m

P e
m = {p : p = p̃ ◦ Φ−1

e , p̃ ∈ Pm},
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then the boundary element spaces Vh(Γ) may denote by

Vh(Γ) = {vh : vh|Γe
∈ P e

m}.

For two-dimensional Poisson equation

{
−△ ψ = ω, inΩ,

ψ|∂Ω = 0,

the solution ψ(x) of this equation can be expressed as

ψ(x) = −
1

2π

∫

Γ

∂ψ

∂n
(y) ln |x− y|dsy −

1

2π

∫

Ω
ω(y) ln |x− y|dy

let

v(x) = −
1

2π

∫

Γ

∂ψ

∂n
(y) ln |x− y|dsy = −

1

2π

∫

Γ
σ(y) ln |x− y|dsy

where σ(y) =
∂ψ

∂n
(y), y ∈ Γ, and v(x) satisfies the equation






△v = 0, in Ω ∪ Ω′,

v|∂Ω =
1

2π

∫

Ω
ω(y) ln |x− y|dy

where Ω′ is the outside domain of Ω.

The boundary element method for Poisson equation is to find σh ∈ Vh(Γ) ⊂

H−
1
2 (Γ), such that






b(σh, σ
′
h) =

1

2π

∫

Γ

∫

Ω
ω(x)σ′h ln |x− y|dxdsy

b(σh, σ
′
h) = −

1

2π

∫

Γ

∫

Γ
σh(x)σ′h ln |x− y|dsxdsy.

The boundary element solution of Poisson equation is

ψh(x) = −
1

2π

∫

Γ
σh(y) ln |x− y|dsy −

1

2π

∫

Ω
ω(y) ln |x− y|dy.

Then we have

Theorem 2.1. Let ψ be solution of two-dimensional Poisson equation, and satisfies

{
−△ ψ = ω, in Ω

ψ|∂Ω = 0,

and ω ∈ Hk−1(Ω), then ψ(x) can be expressed as

ψ(x) = −
1

2π

∫

Γ

∂ψ

∂n
(y) ln |x− y|dsy −

1

2π

∫

Ω
ω(y) ln |x− y|dy
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and ψh is approximation solution

ψh(x) = −
1

2π

∫

Γ
σh(y) ln |x− y|dsy −

1

2π

∫

Ω
ω(y) ln |x− y|dy.

where σh ∈ Vh(Γ), then

‖ψ − ψh‖s+1,Ω ≤ Chm+
3
2−s‖ω‖

m+
1
2 ,Ω

, ∀ − 1 ≤ s ≤
3

2
. (2.1)

Proof. Suppose Sh is a projection operator from L2(Γ) to Vh(Γ). Since we have

ψ|∂Ω = 0, then we have

‖σ − σh‖−1
2 ,Γ

≤ C inf
σ̃∈Vh

‖σ − σ̃‖
−

1
2 ,Γ

≤ C‖σ − Shσ‖−1
2 ,Γ

≤ Chm+
3
2 ‖σ‖m+1,Γ.

According to the theorey of finite element, we know σh ∈ H1(Γ), by inverse inequal-

ity, we have

‖σ − σh‖1,Γ ≤ Chm‖σ‖m+1,Γ.

In virtue of theorey of elliptic differential equations

‖ψ − ψh‖s+1,Ω ≤ C‖σ − σh‖s−
1
2 ,Γ

≤ Chm+
3
2−s‖σ‖m+1,Γ ≤ Chm+

3
2−s‖ω‖

m+
1
2 ,Ω

.

3. Vortex Method Scheme for Semi-discretization

Let Ω ⊂ R2 be a convex and bounded domain, whose boundary ∂Ω is sufficiently

smooth. Denote by x = (x1, x2) the points in R2. We consider the following initial

boundary value problems

∂u

∂t
+ (u · ▽)u+

1

ρ
▽ π = f, (3.1)

▽ ·u = 0, (3.2)

u · n |x∈∂Ω= 0, (3.3)

u |t=0= u0, (3.4)

where u = (u1, u2) stands for velocity, π stands for pressure, f = (f1, f2) is the external

force, the density ρ is a positive constant, n is the unit outward normal vector along

∂Ω.

Let ω = −▽∧u, ω0 = −▽ ∧u0 and ψ be the stream function corresponding to u,

then (3.1)—(3.4) is equivalent to

∂ω

∂t
+ u · ▽ω = −▽∧f ≡ F, (3.5)

−△ψ = ω, u = ▽∧ ψ, (3.6)

ψ |x∈∂Ω= 0, (3.7)
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ω |t=0= ω0. (3.8)

We extend functions u0 and f , still denoted by u0 and f , such that they are suffi-

ciently smooth on R2 and R2×[0, T ] respectively and the supports of them are compact.

Let d be any positive constant, we define

Ωd = {x, dist (x,Ω) < d}.

The “blob function” is defined as follows, ζ(x) is a cutoff function, such that ζ ≡ 0 for

|x| > 1 and

ζε(x) =
1

ε2
ζ
(x
ε

)
.

and the kth-moment condition
∫

R2

ζ(x)dx = 1,
∫

R2

xαζ(x)dx = 0, ∀α ∈ N2 with 1 ≤ |α| ≤ k − 1. (3.9)

With those notations, the semi-discretization scheme for (3.5)—(3.8) is

ωε(x, t) =
∑

j∈J1

αε
j(t)ζε(x−Xε

j (t)), (3.10)

dαε
j

dt
= h2F (Xε

j (t), t), αε
j(0) = αj, (3.11)

dXε
j

dt
= gε(Xε

j (t), t),Xε
j (0) = Xj , (3.12)

−△ψε = ωε, ψε |x∈∂Ω= 0, (3.13)

uε = ▽∧ ψε, (3.14)

gε(x, t) =
M∑

i=1

aiu
ε(x(i), t), (3.15)

where j = (j1, j2), Xj = (j1h, j2h), αj = h2ω0(Xj) and J1 = {j, Xj ∈ Ωd}; if x ∈ Ω

then x(i) = x otherwise

x(i) = (i+ 1)Y − ix,

where Y is the nearest point on ∂Ω to x; the terms ai are the solutions of the system

M∑

i=1

(−i)jai = 1 j = 0, · · ·,M.

Equations (3.15) makes sense only if x(i) belongs to Ω, but it is proved in [10] that

this fact is true provided d is small enough. In this scheme the function gε plays the

role of velocity which is equal to uε in the domain and interpolated to the exterior

part of Ω. This is a natural way to deal with blobs near the boundary. Using gε and

a “slightly larger” domain Ωd in computation, all blobs move according to a uniform

formula (3.12).
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The notation Wm,p(Ω) for conventional Sobolev spaces and ‖ · ‖m,p for the norms

of them are applied throughout this paper. Let Xj(t) be characteristic curves which

satisfy
dXj(t)

dt
= u(Xj(t), t), Xj(0) = Xj .

As a rule, we admit the value of u as an extension if Xj(t)∈Ω. Then set

J2 = {j;Xj ∈ ΩC0ε ∩ Ωd},

‖e(t)‖p =
(
h2

∑

j∈J2

|Xj(t) −Xε
j (t)|p

)1/p
, 1 ≤ p <∞,

where C0 is a positive constant to be determined. The following theorem is proved in

[10]:

Theorem 1. If we have m ≥ 1, k ≥ 2, such that ζ ∈ Wm+1,∞(R2) and kth-

moment condition (3.9) is satisfied, if there is a constant C̃, such that

C̃−1εa ≤ h ≤ C̃ε1+
k−1
m (3.16)

where a ≥ 1 +
k − 1

m
, and if the constant in expression (3.15), M ≥ k, then for any

p ∈ [1,∞), there are positive constants d0, C0, C1 and C2 such that if d ≤ d0, then the

solution of problem (3.10)–(3.15) satisfy

| ▽ uε(x, t)| ≤ C1, x ∈ Ω, (3.17)

‖u− uε‖0,p,Ω + ‖e(t)‖p ≤ C2ε
k, (3.18)

for t ∈ [0, T ].

For our later use, we need the following Corollary which is proved in [7]:

Corollary. Under the assumption of Theorem 1, Let C3 > 0 be given, then there

is a constant C4, such that

‖ωε(·, t)‖k−1,p,ΩC3ε
≤ C4, t ∈ [0, T ]. (3.19)

4. Further Discretization with Boundary Element Method

In pratical computation, we can not exactly find the solution of the Laplace equa-

tions {
−△ ψε = ωε,

ψε|∂Ω = 0.

Here we will find the approximation solution of Lapace equation with the boundary

element method. Now the scheme for the resolution of Euler equation

ωδ(x, t) =
∑

j∈J1

αδ
j(t)ζε(x−Xδ

j (t)), (4.1)
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dαδ
j

dt
= h2F (Xδ

j (t), t), αδ
j (0) = αj, (4.2)

dXδ
j

dt
= gδ(Xδ

j (t), t),Xδ
j (0) = Xj , (4.3)

ψδ(x) = −
1

2π

∫

Γ
σδ(y) ln |x− y|dsy −

1

2π

∫

Ω
ωδ(y) ln |x− y|dy (4.4)

where δ is the scale of boundary division.

gδ(x, t) =
m∑

i=1

aiu
δ(x(i), t), uδ = ▽∧ ψδ . (4.5)

And σδ ∈ Vδ(Γ) satisfy





b(σδ, σ
′
δ) =

1

2π

∫

Γ

∫

Ω
ωδ(y)σ′δ(x) ln |x− y|dsxdy

b(σδ, σ
′
δ) = −

1

2π

∫

Γ

∫

Γ
σδ(x)σ

′
δ(y) ln |x− y|dsxdsy,

for any σ′δ ∈ Vδ(Γ), where Vδ(Γ) is the boundary element space.

We need to estimate uε − uδ and Xε
j −Xδ

j . Let

‖e(t)‖p =
(
h2

∑

j∈J1

|Xε
j (t) −Xδ

j (t)|p
)1

p ,

‖e(t)‖∞ = max
j∈J1

|Xε
j (t) −Xδ

j (t)|.

and we define a function ψ1 which solves
{

−∆ψ1 = ωδ, x ∈ Ω,

ψ1 |x∈∂Ω= 0.
(4.6)

Then function ψδ determined by (4.2) is the boundary element approximation of ψ1.

Let

u1 = ▽∧ ψ1 = Gωδ. (4.7)

We suppose that there is a constant C5, such that

| ▽ u1| ≤ C5. (4.8)

Lemma 1. On the assumption of Theorem 1, we have

‖uε(·, t) − u1(·, t)‖l,p,Ω ≤
C

εl

{(
1 +

‖e(t)‖∞
ε

)2
q ‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
,

(4.9)

‖u1(·, t) − uδ(·, t)‖s,2,Ω

≤ Cδm+
3
2−s + C

δm+
3
2−s

εm+
1
2

{(
1 +

‖e(t)‖∞
ε

)
2
q ‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
,

(4.10)



134 P.W. ZHANG

where
1

p
+

1

q
= 1, p > 2, 0 ≤ s ≤

3

2
.

Proof. We decomposition uε − u1 as [5],

uε − u1 = G
( ∑

j∈J1

αε
jζε(· −Xε

j (t)) −
∑

j∈J1

αδ
jζε(· −Xδ

j (t))
)

= v1 + v2 (4.11)

where

v1 = G
( ∑

j∈J1

αδ
j(ζε(· −Xε

j (t)) − ζε(· −Xδ
j (t))

)
,

v2 = G
∑

j∈J1

(αε
j − αδ

j(t))ζε(· −Xε
j (t)).

Repeating the argument in the proof of Lemma 6 in [18], we get (4.9).

By (2.1)

‖u1(·, t) − uδ(·, t)‖s,2,Ω ≤ ‖ψ1(·, t) − ψδ(·, t)‖s+1,2,Ω

≤ Cδm+
3
2−s

∥∥∥G
∑

j∈J1

αδ
jζε(· −Xδ

j (t))
∥∥∥

m−
1
2 ,2,Ω

≤ Cδm+
3
2−s

∥∥∥G
∑

j∈J1

αδ
jζε(· −Xδ

j (t))
∥∥∥

m− 1

2
,p,Ω

≤ Cδm+
3
2−s + C

δm+
3
2−s

εm+
1
2

{(
1 +

‖e(t)‖∞
ε

)
‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
,

for p > 2. This complete the proof of (4.10).

Lemma 2. Under the assumption of Theorem 1 with k ≥ 2, then we have

‖e(t)‖p ≤C6(ε
k + δm)

+ C6

(
1 +

δm

εm+
1
2

){(
1 +

‖e(t)‖∞
ε

)2
q ‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
(4.12)

where p ∈ (1,∞).

Proof. We consider the case of p > 2, we define

g1(x, t) =
M∑

i=1

aiu1(x
(i), t).

and

gδ
1(x, t) =

M∑

i=1

aiu1(x
(i)
δ , t).

Then taking (3.12) and (4.5) into accout, we have

dXε
j (t)

dt
−
dXδ

j (t)

dt
= I1 + I2 + I3, Xε

j (0) −Xδ
j (0) = 0. (4.13)
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where

I1 = gε(Xε
j (t), t) − g1(X

ε
j (t), t)

I2 = g1(X
ε
j (t), t) − gδ

1(X
δ
j (t), t),

I3 = gδ
1(X

δ
j (t), t) − gδ(Xδ

j (t), t)

We define a set

J0 = {j;Xj ∈ Ω},

then by Lemma 5.4, Chapter 2 of [5],

(
h2

∑

j∈J0

|(uε − u1)(Xj(t), t)|
p
)1

p ≤ C(‖uε − u1‖0,p,Ω + h|uε − u1|1,p,Ω). (4.14)

On the other hand, denote by Φ(i) the mapping Xj(t) → (Xj(t))
(i), then

(
h2

∑

j∈J1\J0

|(uε − u1)((Xj(t))
(i), t)|p

)1
p

=
(
h2

∑

j∈J1\J0

|(uε − u1)(Φ
(i)Xj(t), t)|

p
)1

p

≤ C(‖(uε − u1) ◦ Φ(i)‖0,p,ΩC0ε\Ω
+ h|(uε − u1) ◦ Φ(i)|0,p,ΩC0ε\Ω

)

≤ C(‖uε − u1‖0,p,Ω + h|uε − u1|1,p,Ω). (4.15)

Combining (4.14) with (4.15) and noting (4.9) we get

(
h2

∑

j∈J1

|(uε−u1)(Xj(t), t)|
p
)

1
ps ≤ C6

{(
1+

‖e(t)‖∞
ε

)2
q ‖e(t)‖p+

∫ t

0
‖e(s)‖pds

}
. (4.16)

By (3.17) (3.18) and (4.8), we have

(
h2

∑

j∈J1

|I1|
p)

1
p ≤ εk +C6

{(
1 +

‖e(t)‖∞
ε

)
2
q ‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
. (4.17)

In virtue of (4.8), we have

|I2| ≤ C|(Xε
j (t))(i) − (Xδ

j (t))
(i)
δ |.

where (Xδ
j (t))

(i)
δ = (Xδ

j (t))(i), and so

|I2| ≤ C|Xε
j (t) −Xδ

j (t)|. (4.18)

By (4.10) and interpolation inequality, we obtain

|I3| ≤ C‖u1(·, t) − uδ(·, t)‖0,∞,Ω ≤ C‖u1(·, t) − uδ(·, t)‖3
2 ,2,Ω
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≤ Cδm + C
δm

εm+
1
2

{(
1 +

‖e(t)‖∞
ε

)
2
q ‖e(t)‖p +

∫ t

0
‖e(s)‖pds

}
.

(4.19)

Combining (4.17) (4.18) and (4.19), we obtain (4.12).

Theorem 2. If the assumption of Theorem 1 holds with k ≥ 2, m ≥ 1 and d0 is

small, and if δ ≤ Cε1+
1

2m , then

| ▽ u1| < C7 (4.20)

‖e(t)‖p + ‖uε(·, t) − uδ(·, t)‖0,p,Ωδ ≤ C(εk + δm), (4.21)

for any p ∈ [1,∞).

Proof. From Lemma 2, we can claim that

‖e(t)‖p ≤ C8(ε
k + δm), (4.22)

for large p. The proof is standard.

From (3.17), we know

| ▽ uε(x, t)| < C1

and we also know

‖u1(·, 0) − uε(·, 0)‖1,∞,Ω = 0

then

| ▽ u1| < C

for t = 0. By continuity, (4.8) holds for t ∈ [0, T ∗], where T ∗ is a certain positive

constant. Thus Lemma 2 is valid. Let p > 2a and l = 0, 1, 2, then in conjunction with

Lemma 1 implies

|u1(·, t) − uε(·, t)|l,p,Ω ≤ C
εk + δm

εl
.

Then by interpolation theorem

‖u1(·, t) − uε(·, t)‖1,∞,Ω ≤ C
εk + δm

ε1+s
≤ Cε

3
2−1−s ≤ Cε

1
2−s.

Let ε be small enough, such that

‖u1(·, t) − uε(·, t)‖1,∞,Ω ≤ 1.

Then we get | ▽ u1| < C. By continuous extension we get (4.20) for t ∈ [0, T ].

Using Lemma 1, 2 again, we obtain the estimate (4.21) for sufficiently large p and

small ε, then for small p and any ε are also true.
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