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DEPENDENT PROBLEMS∗1)
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Abstract

The stability in L∞-norm is considered for the Ritz-Volterra projection and
some applications are presented in this paper. As a result, point-wise error esti-
mates are established for the finite element approximation for the parabolic integro-
differential equation, Sobolev equations, and a diffusion equation with non-local
boundary value problem.

1. Introduction

We are concerned with the finite element method for parabolic integro-differential

equation

ut(t) + V (t)u(t) = f(t), t ∈ (0, T ), (1.1)

u(0) = v,

where V (t) is in general an integro-differential operator defined on a Hilbert space X

and that u and f are X-valued functions defined on J = (0, T ) with a positive time

T . A typical example of the Hilbert space X in the application will be the Sobolev

space H1
0 consisting of functions defined on an open bounded domain Ω with vanished

boundary value and first order derivatives summable in L2, while the operator V (t) is

the one defined by

V (t)u(t) ≡ A(t)u(t) +

∫ t

0
B(t, τ)u(τ)dτ, in Ω (1.2)

for any u(t) ∈ H1
0 (Ω), where A(t) is a linear elliptic operator of second order and that

B(t, τ) any linear operator of no more than second order. Although more examples

of integro-differential operators will be considered in this paper, we shall illustrate our

results for the operator V (t) defined by (1.2), since the others can be modified to fit

the strategy designed for (1.2).
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Numerical methods to the equation (1.1) have been studied by several authors

recently. For finite difference schemes we refer to [23] and the references cited therein.

The finite element method for this problem has also been studied; in [23] both smooth

and non-smooth data cases were considered and optimal error estimates in L2 were

obtained, the semi-linear equation with non-smooth data and an operator B of zero

order was treated in [12] along with a particular attention paid to the computation of

the memory term by the quadrature rule. Recently, a different approach to the error

analysis was proposed in [3] and [4]. Their idea can be summerized as introducing a

so-called Ritz-Volterra projection to decompose the error. A systematic study of Ritz-

Volterra projection and its applications to parabolic and hyperbolic integro-differential

equations, Sobolev equation, and the equations of visco-elasticity can be found from

[14].

For the sake of convenience of the analysis, we shall take Ω to be a plane convex

polygonal domain. Let Th be a quasi-uniform triangulation so that Ωh = ∪K∈Th
K = Ω.

Let Sh be the finite element subspace associated with Th. Without loss of generality,

we shall assume that Sh is made up of piece-wise linear functions.

The object of this paper is to study the convergence behavior of the finite element

approximation in the L∞-norm. As a matter of fact, this problem had been considered

by Lin and Zhang[15], where an optimal maximum norm has been obtained for piecewise

linear elements for a very special case, that is, the operators A and B are divergence

form which allows us to use the standard regularized Green function[16,22], and by Lin,

Thomee, and Wahlbin in [14], where the following estimate for any small ε > 0

‖u(t) − uh(t)‖0,∞ ≤ C(u, ε)hr−ε

was derived based on their estimate in Lp. Here r is the optimal order in the approxi-

mation and C(u) a constant dependent upon the exact solution u only. It is clear that

such an estimate is not optimal in compare with the results for the elliptic and parabolic

equations[17,22,10,20,18]. We shall, therefore, study this problem from a different point of

view in order to get a sharp estimate in the L∞-norm. The main idea of our approach

can be summarized as firstly introducing an auxiliary problem associated with the Ritz-

Volterra operator V and then establishing our main results with the help of the solution

of this auxiliary problem. The auxiliary problem to be introduced in next section is

an analogy of the regularized Green’s function in the study of the L∞-stability for the

elliptic equation of second order. Thus, the only contribution of the authors would be

to apply the known technique appropriately to the current problem. However, such an

extension is not trivial due to the memory term involved in the operator V .

Our main result regards to the maximum norm error estimate for the Ritz-Volterra

projection Vh defined by

V (t;Vhu(t), φ) = V (t;u(t), φ), φ ∈ Sh (1.3)

for each t ∈ J , where V (t; ·, ·) is the bilinear form associated with the Ritz-Volterra

operator V (t) defined by

V (t;u(t), v(t)) = A(t;u(t), v(t)) +

∫ t

0
B(t, τ ;u(τ), v(t))dτ (1.4)
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for u(t), v(t) ∈ H1
0 with t ∈ J . Applications to finite element approximations for the

parabolic integro-differential equation, Sobolev equation, and a diffusion equation with

non-local boundary condition are presented in this paper.

This paper is organized as follows. In section 2, we shall introduce and study an

auxiliary problem associated with the operator V . The solution of this problem can

be regarded as a certain regularized Green’s function associated with the Ritz-Volterra

operator. In section 3, we shall establish an estimate in the L∞-norm for the Ritz-

Volterra projection onto the finite element subspace Sh, while the applications to the

parabolic integro-differential equation, Sobolev equation, and a diffusion equation with

non-local boundary condition will be given in section 4.

A preliminary of this paper can be summarized as follows. Denote by Wm,p the

Sobolev space on the domain Ω defined by

Wm,p = {v; Djv ∈ Lp with |j| ≤ m}

‖v‖m,p =
(

m
∑

|j|=0

‖Djv‖p
0,p

)

1
p

for non-negative integers m and p ∈ [1,∞], whereDj is the differential operator of order

|j| with a multi-index j and that ‖ · ‖0,p the Lp norm of the corresponding function. In

the case of p = 2 we shall use the notation Hm with norm ‖ · ‖m rather than Wm,p.

With an abuse of notation, ‖ · ‖∞ will be used to indicate the L∞-norm.

Along with the operator V (t) of (1.2), we define a new operator V ∗(t) by

V ∗(t)u(t) ≡ A(t)u(t) +

∫ T

t
B∗(τ, t)u(τ)dτ, u(t) ∈ H1

0 (1.5)

for each t ∈ J , where B∗ is the adjoint of the linear operator B in H1
0 . By changing

the order of integration it is not hard to check that

∫ T

0
V (t;u(t), v(t))dt =

∫ T

0
V ∗(t; v(t), u(t))dt, (1.6)

where V (t; ·, ·) and V ∗(t; ·, ·) are the bilinear forms associated with the operators V (t)

and V ∗(t), respectively. Thus, the operator V ∗(t) can be considered as the adjoint of

V (t).

To analyze the solution associated with the operator V ∗(t), the Gronwall’s lemma in

the following version will be used. Let ψ and φ are two non-negative functions defined

on [0, T ] and

ψ(t) ≤ φ(t) + C

∫ T

t
ψ(τ)dτ, t ∈ J.

Then,

ψ(t) ≤ C
{

φ(t) +

∫ T

t
φ(τ)dτ

}

.

We shall refer the last relation as ‘back-ward’ Gronwall’s inequality. Here and through-

out this paper we shall use C to denote genetic non-negative constant independent of
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the mesh size h and any functions involved. But it may depend upon the time interval

[0, T ].

The following a priori estimates for the operators V (t) and V ∗(t) are valid due to

the Gronwall’s lemma. Let f(t) ∈ L2 for each t ∈ J and u and w satisfy

V (t)u(t) = f(t), for all t ∈ J (1.7)

and

V ∗(t)w(t) = f(t), for all t ∈ J (1.8)

with homogeneous Dirichlet boundary condition, respectively. Then, u,w ∈ H1
0 ∩H2

for each t ∈ J and there exists a constant C such that

‖u(t)‖2 ≤ C
(

‖f(t)‖0 +

∫ t

0
‖f(τ)‖0dτ

)

, (1.9)

‖w(t)‖2 ≤ C
(

‖f(t)‖0 +

∫ T

t
‖f(τ)‖0dτ

)

. (1.10)

It can also be seen easily that the following estimate holds

‖∇w(t)‖0 ≤ C
(

‖f(t)‖−1 +

∫ T

t
‖f(τ)‖−1dτ

)

(1.11)

with ‖ · ‖−1 being the norm in the space H−1.

2. An Auxiliary Problem

In studying the convergence in the L∞-norm for the finite element method associ-

ated with elliptic equations, one needs to introduce and study the approximation for

the Green’s function in W 1,∞[22,10,18,21,9,27] or alternatively, to employ a weighted norm

in the analysis[16,17]. The Green’s function is usually defined to be the solution of a

conjugate problem of the problem under consideration. Here in our problem (1.1) we

have the operator V as an analogue of the elliptic operator of the second order, so that

we need to introduce an auxiliary problem whose solution plays the role as the Green’s

function in the elliptic case.

For this purpose we now define an operator V ∗ on H1
0 × J , understood to be the

adjoint of V , so that for any u(t) ∈ H1
0

V ∗u(t) ≡ A(t)u(t) +

∫ T

t
B∗(τ, t)u(τ)dτ, (2.1)

where B∗ is the adjoint of the operator B. Formally, let g(t) = g(z, t, z0, t0) satisfy

V ∗g(t) = δz0(z) δt0(t), (2.2)

where z = (x, y) is the space variable and that δz0(z) and δt0(t) the dirac δ-function

associated with the points z0 and t0, respectively. Thus, for any sufficiently smoothing

function w(z, t) one may have

w(z0, t0) = 〈δz0(z) δt0(t), w(z, t)〉 =

∫ T

0
V ∗(t; g(t), w(t))dt
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=

∫ T

0
V (t;w(t), g(t))dt, (2.3)

where we have used the relation (1.6) to derive (2.3). It is clear that the function g(t)

acts as the Green’s function in a certain space. However, to make everything be more

precise from the mathematical point of view, we define a function G(t) ≡ G(z, t; z0) to

be the solution of the equation

A(t)G(t) +

∫ T

t
B∗(τ, t)G(τ)dτ = δz0

h (z)φ(t), in Ω, (2.4)

G(t) = 0, on ∂Ω,

where φ(t) ∈ C∞(0, T ) and δz0
h (z) is a smoothed δ-function associated with the point

z0 and the piecewise linear finite element subspace Sh. They are required to satisfy the

following properties

1. (δz0
h , χ) = χ(z0), χ ∈ Sh,

2. |δz0
h (z)| ≤ Ch−2, sup (δz0

h ) ⊂ {x; |x− z| ≤ Ch},

3. ‖φ‖L1(0,T ) ≤ 1.

The solution of the auxiliary problem (2.4) plays the same role as the regularized

Green’s function used in the L∞ error analysis for the finite element method of the

elliptic problem of second order[22,10,21,9,27], though the function on the right hand side

of (2.4) is not precisely a regularized δ-function. In fact, since our analysis will be

made only for the semi-discretization algorithm the function δz0
h φ(t) can be regarded as

a regularized δ-function in the space variable. Thus, the solution of the problem (2.4)

shall be referred to as the regularized Green’s function for the Ritz-Volterra operator

V .

Let Gh(t) be the finite element approximation of the regularized Green’s function

for t ∈ [0, T ]; i.e.

A(t;G(t) −Gh(t), χ) +

∫ T

t
B∗(τ, t;G(τ) −Gh(τ), χ)dτ = 0, χ ∈ Sh. (2.5)

It is not hard to see that (cf. [3] [4] [14])

‖G−Gh‖0 + h‖∇(G −Gh)‖0 ≤ Ch2
{

‖G‖2 +

∫ T

t
‖G(τ)‖2dτ

}

. (2.6)

Thus, the a priori estimate (1.10) implies that

‖G −Gh‖0 + h‖∇(G−Gh)‖0 ≤ Ch(1 + |φ(t)|), (2.7)

since

‖G‖2 +

∫ T

t
‖G(τ)‖2dτ ≤ Ch−1(1 + |φ(t)|).

We are now ready to establish the result for the regularized Green’s function.

Theorem 2.1. Assume the triangulation Th to be regular [6]. Then, there exists a

constant C , independent of h, z, and φ(t), such that

‖G(t) −Gh(t)‖1,1 ≤ Ch log
1

h
(1 + |φ(t)|). (2.8)
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Proof. Let σz0(z) = (|z − z0|
2 +K2h2)1/2 be the weight function used in [10] (see

also [16] [17] [22]) for the standard Galerkin approximation. We omit the well known

properties regarding the weight function for sufficiently large K. Since no confusion is

possible, we shall take K = 1 in our analysis. Thus, by Schwarz inequality,

‖G−Gh‖1,1 ≤ ‖G−Gh‖0,1 + ‖∇(G−Gh)‖0,1

≤ C‖G−Gh‖0 + C
(

log
1

h

)1/2
‖∇(G−Gh)‖σ2 , (2.9)

where, as usual, ‖ · ‖σα,Q is a weighted norm defined by

‖ϕ‖2
σα ,Q =

∫

Q
σαϕ2dQ for α real

and ‖ · ‖σα the weighted norm for Q = Ω. It follows from (2.7) and (2.9) that it suffices

to prove the following

‖∇(G−Gh)‖σ2 ≤ Ch
(

log
1

h

)1/2
(1 + |φ(t)|). (2.10)

By the ellipticity of the operator A(t), we may assume, without loss of generality,

that

‖∇w‖2
0 ≤ A(t;w,w), w ∈ H1

0 (Ω)

is valid. Thus, a simple calculation shows that

‖∇(G−Gh)‖2
σ2 ≤ C‖G−Gh‖

2
0 +A(t;G −Gh, ψ), (2.11)

where ψ = σ2(G−Gh). Let ψI be the piece-wise linear interpolation of ψ on Sh. Then,

A(t;G−Gh, ψ) =A(t;G−Gh, ψ − ψI) −

∫ T

t
B∗(τ, t;G(τ) −Gh(τ), ψ − ψI)dτ

+

∫ T

t
B∗(τ, t;G(τ) −Gh(τ), ψ)dτ. (2.12)

Thus, by applying the Schwarz inequality we get

A(t,G−Gh, ψ) ≤
1

4
‖∇(G−Gh)‖2

σ2 + Ch2‖∇2ψ‖2
σ−2 + C‖G−Gh‖

2
0

+

∫ T

t
B∗(τ, t;G(τ) −Gh(τ), ψ)dτ + C

(

∫ T

t
‖∇(G −Gh)‖σ2dτ

)2

(2.13)

and

∫ T

t
B∗(τ, t;G(τ) −Gh(τ), ψ)dτ ≤

1

4
‖∇(G−Gh)‖2

σ2 + C‖G−Gh‖
2
0

+ C
(

∫ T

t
(‖G −Gh‖0 + ‖∇(G−Gh)‖σ2)dτ

)2
,

(2.14)
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where

‖∇2ψ‖2
σ−2 =

∑

K∈Th

‖∇2ψ‖2
σ−2,K

and ∇2ψ denotes a general second order derivative operator. As in the case for elliptic

equations of second order, it is not hard to see that

h2‖∇2ψ‖2
σ−2 ≤ C

(

‖G−Gh‖
2
0 + h2‖∇(G −Gh)‖2

0 + h2‖∇2G‖2
σ2

)

. (2.15)

Set

g(t) = ‖G−Gh‖0 + h‖∇(G −Gh)‖0 + h‖∇2G‖σ2

and

ρ(t) = ‖∇(G−Gh)‖σ2 .

It follows from (2.13), (2.14), and (2.15) that

A(t;G−Gh, ψ) ≤
1

2
ρ2(t) + C

(

∫ T

t
(ρ(s) + g(s))ds

)2
. (2.16)

This last inequality combined with (2.11) yields

ρ(t) ≤ Cg(t) + C

∫ T

t
(ρ(s) + g(s))ds. (2.17)

Thus, by applying the back-ward Gronwall’s lemma we get

ρ(t) ≤ C
(

g(t) +

∫ T

t
g(s)ds

)

.

Now (2.8) follows from the last inequality combined with the relation (2.18) below.

To complete the proof of Theorem 2.1, we present here an estimate for the function

g(t) defined above.

Lemma 2.1. Let the function g(t) be defined as before. Then, there exists a

constant C such that

g(t) ≤ Ch

√

log
1

h
(1 + |φ(t)|). (2.18)

Proof. It follows from (2.7) that

g(t) ≤ Ch(1 + |φ(t)|) + h‖∇2G‖σ2 . (2.19)

Thus, one only needs to estimate h2‖∇2G‖2
σ2 in order to conclude (2.18). The estimate

of this term can be given along the same line as in the case for the elliptic problem of

second order. For the sake of completness, an outline is presented as follows.

Let z = (x, y) and z0 = (x0, y0). Then, there exists a constant C such that

‖∇2G‖2
σ2 ≤ C(‖∇2ξ(t)‖0 + ‖∇2η(t)‖0 + ‖∇G‖0 + h‖∇2G‖0)

2
, (2.20)

where

ξ(t) = (x− x0)G(t)
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and

η(t) = (y − y0)G(t).

Since G(t) is the solution of (2.4), there exist two functions w1(t) and w2(t) so that

A(t)ξ(t) +

∫ T

t
B∗(τ, t)ξ(τ)dτ = (x− x0)δ

z0
h (z)φ(t) + w1(t) (2.21)

and

A(t)η(t) +

∫ T

t
B∗(τ, t)η(τ)dτ = (y − y0)δ

z0
h (z)φ(t) + w2(t), (2.22)

By the structure of ξ(t) and η(t) we know that w1(t) and w2(t) are made of the first

order derivatives of G(t) and its integral in time from t to T . Thus, they can be

estimated as follows

‖wi(t)‖0 ≤ C(‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ) (2.23)

for i = 1, 2. Applying the a priori estimate (1.10) yields

‖∇2ξ(t)‖0 ≤ C
(

‖r(t)‖0 +

∫ T

t
‖r(τ)‖0dτ

)

, (2.24)

where

r(t) = (x− x0)δ
z0
h (z)φ(t) + w1(t).

Clearly,

‖r(t)‖0 ≤ ‖(x− x0)δ
z0
h (z)φ(t)‖0 + ‖w1(t)‖0

≤ C
(

1 + |φ(t)| + ‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ

)

. (2.25)

It follows from (2.24), (2.25), and (2.23) that

‖∇2ξ(t)‖0 ≤ C
(

1 + |φ(t)| + ‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ

)

. (2.26)

Similarly, the following is valid for η(t)

‖∇2η(t)‖0 ≤ C
(

1 + |φ(t)| + ‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ

)

. (2.27)

Combining (2.20) with (2.26) and (2.27) gives

‖∇2G(t)‖2
σ2 ≤ C

(

(1 + |φ(t)|) + ‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ

)2
, (2.28)

where we have used the fact that h‖∇2G‖0 ≤ C for a positive constant C. It remains

to estimate ‖∇G(t)‖2
0 +

∫ T

t
‖∇G(τ)‖2

0dτ in the last inequality. This can be done by

applying the a priori estimate (1.11) to the problem (2.4). Thus,

‖∇G(t)‖0 +

∫ T

t
‖∇G(τ)‖0dτ ≤ C(1 + φ(t))

√

log
1

h
. (2.29)
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It follows from (2.29) and (2.28) that

‖∇2G(t)‖2
σ2 ≤ C(1 + |φ(t)|)2 log

1

h
, (2.30)

which, together with (2.19), demonstrates (2.18).

3. Estimate of the Ritz-Volterra Projection

Let’s apply the result in § 2 to establish an estimate for the Ritz-Volterra projection

Vh in the maximum norm. We shall consider in the rest of this paper the finite element

method for a parabolic integro-differential equation, Sobolev equation, and a diffusion

equation with non-local boundary condition. The maximum norm error estimates for

those problems converge to the estimate for Ritz-Volterra type projections.

For the sake of convenience in the analysis, we consider a projection operator Kh

defined by seeking Khu(t) ∈ Sh such that

V (t;u(t) −Khu(t), χ) = C(t;w(t), χ), χ ∈ Sh, (3.1)

where w(t) ∈W 1,∞∩H1
0 for each t ∈ J and C(t; ·, ·) is a bilinear form on H1

0 associated

with a second order differential operator. It is clear that the case w(t) = 0 for every

t ∈ J corresponds to the Ritz-Volterra projection. Our object here is to present an

estimate for the projection operator Kh, and then it follows the estimate for the Ritz-

Volterra projection. Assume that the bilinear form C(t; ·, ·) is bounded in H1
0 and there

exists a constant C such that

C(t;u, v) ≤ C‖u‖∞ ‖v‖2,1

for u ∈ L∞ ∩H1
0 and v ∈W 2,1 ∩H1

0 .

Lemma 3.1. Let u(t) ∈ W 1,∞ ∩H1
0 for each t ∈ J . Then, there exists a constant

C such that

‖u−Khu‖∞ ≤ C log
1

h
( inf

χ∈Sh

‖|u− χ‖|h + ‖|w‖|h
)

, (3.2)

where for any φ(t) ∈ H1
0 , the mesh dependent norm ‖|φ‖|h is defined as follows

‖|φ‖|h = max
t∈J

(‖φ(t)‖∞ + h‖∇φ(t)‖∞). (3.3)

Proof. Clearly,

Khu− u = (Khu− χ) + (χ− u). (3.4)

Thus, it suffices to estimate ρ = Khu − χ in order to conclude (3.2). Since ρ ∈ Sh

holds, it follows from (2.4) and the definition of the regularized Dirac δ-function that

∫ T

0
ρ(z0, t) φ(t)dt =

∫ T

0
(Khu− χ, δz0

h φ(t))dt =

∫ T

0
V ∗(t;Gh,Khu− χ)dt (3.5)

Applying the relation (1.6) to (3.5) gives

∫ T

0
ρ(z0, t)φ(t)dt =

∫ T

0
V (t;Khu− χ,Gh)dt
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=

∫ T

0

(

V (t;u− χ,Gh) − C(t;w(t), Gh)
)

dt, (3.6)

where we have used the error equation (3.1) in deriving the last equality. To estimate

(3.6), let’s rewrite (3.6) in the following way

∫ T

0
ρ(z0, t) φ(t)dt = I1 + I2 − I3 − I4, (3.7)

where

I1 =

∫ T

0
V (t;u− χ,Gh −G),

I2 =

∫ T

0
V (t;u− χ,G),

I3 =

∫ T

0
C(t;w(t), Gh −G)dt,

and

I4 =

∫ T

0
C(t;w(t), G)dt.

By Theorem (2.1) and the fact that

∫ T

0
|φ(t)|dt ≤ 1,

I1 ≤ Ch log
1

h
max
t∈J

‖∇(u− χ)‖∞

∫ T

0
(1 + |φ|)dt ≤ Ch log

1

h
max
t∈J

‖∇(u− χ)‖∞. (3.8)

As far as I2 was concerned, note that G(t) is the solution of (2.4) and ‖δz0
h ‖0,1 ≤ C for

some constant C. Thus,

I2 =

∫ T

0
(δz0

h φ(t), u − χ)dt ≤

∫ T

0
‖u− χ‖∞‖δz0

h ‖0,1φ(t)dt ≤ Cmax
t∈J

‖u− χ‖∞. (3.9)

The estimates for I3 and I4 can be done along the same line. Thus, we have

I3 ≤ Ch log
1

h
max
t∈J

‖∇w(t)‖∞ (3.10)

and

I4 ≤ C log
1

h
max
t∈J

‖w(t)‖∞, (3.11)

since ‖G‖2,1 ≤ C log
1

h
holds. Now combining (3.7) with (3.8), (3.9), (3.10), and (3.11)

gives
∫ T

0
ρ(z0, t)φ(t)dt ≤ C log

1

h
(‖|u − χ‖|h + ‖|w‖|h). (3.12)

Since φ and z0 ∈ Ω can be arbitrary, we have from (3.12) that

‖ρ‖∞ ≤ C log
1

h
(‖|u− χ‖|h + ‖|w‖|h), (3.13)
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which, together with (3.4), demonstrates (3.2).

Theorem 3.1. Under the assumptions of Lemma 3.1, there exists a constant C

such that

‖u− Vhu‖∞ ≤ C log
1

h
inf

χ∈Sh

‖|u− χ‖|h. (3.14)

4. Applications

We intend to apply the result derived in § 3 to some time dependent problems. The

Ritz-Volterra type operator is the key structure of those problems. The first problem

we are considering is the parabolic integro-differential equation.

4.1. Parabolic Integro-differential equation

Consider the finite element approximation of the problem (1.1) with an operator

V (t) defined by (1.2). The problem is termed as a parabolic integro-differential equa-

tion with homogeneous Dirichlet boundary condition. For the sake of convenience, we

restate the problem as follows. For each t ∈ J , find u(t) ∈ H1
0 such that

(ut, v) +A(t;u, v) +

∫ t

0
B(t, s;u(s), v)ds = (f, v), v ∈ H1

0

u(0) = u0, in Ω. (4.1)

It is clear that formally the problem (4.1) is similar to the heat equation with homo-

geneous Dirichlet boundary condition, except the memory term charactrized by the

integration on the bilinear form B(t; ·, ·). In fact, these two problems share many prop-

erties that are used in the analysis in both theoretical and computational aspects (e.g.,

energy and Gronwall argument etc.) A semi-discrete finite element approximation for

(4.1) is defined by seeking uh(t) ∈ Sh for each t ∈ J such that

(uh,t, χ) + V (t;uh(t), χ) = (f(t), χ), χ ∈ Sh (4.2)

with an initial data uh(0) = uh
0 , where uh

0 is an approximation to the initial value u0 in

the finite element subspace Sh. Our object is to establish a similar analysis to the heat

equation of the error in L∞-norm for this problem. For any function v(x, t) ∈ W 2,∞,

denote by ‖|v‖|2,∞ the norm

‖|v‖|2,∞ = max
t∈J

‖v‖2,∞.

Then, our first result concerning this method can be stated as follows.

Theorem 4.1. Let u(t) be the exact solution of the parabolic integro-differential

equation (4.1), and uh(t) the finite element approximation in Sh defined by (4.2). As-

sume that u(t) ∈ W 2,∞ for each t ∈ J . Then, there exists a constant C, independent

of h and u, such that

‖u(t) − uh(t)‖∞ ≤ Ch2 log
1

h

(

‖|u‖|2,∞ +
(

∫ t

0
‖ut(τ)‖

2
2dτ

)1/2)

, (4.3)
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provided that the initial approximation uh
0 is the Ritz projection on Sh associated with

the operator A0 ≡ A(0).

Proof. Let θ = uh−Vhu and η = Vhu−u with Vhu being the Ritz-Volterra projection

of u defined by (1.3). It is easy to see that

uh − u = (uh − Vhu) + (Vhu− u) = θ + η. (4.4)

As shown in [14], the function θ can be estimated as follows

‖∇θ‖0 ≤ Ch2
(

‖v‖2 +
(

∫ t

0
‖ut(τ)‖

2
2dτ

)1/2)

.

Thus,

‖θ(t)‖∞ ≤ C
(

log
1

h

)1/2
‖∇θ‖0 ≤ Ch2

(

log
1

h

)1/2(

‖v‖2 +
(

∫ t

0
‖ut(τ)‖

2
2dτ

)1/2)

, (4.5)

since θ ∈ Sh. To estimate η = Vhu−u in the L∞-norm, one can apply (3.14) combined

with the interpolation theory to get

‖η‖∞ ≤ Ch2 log
1

h
‖|u‖|2,∞. (4.6)

Thus, combining (4.4) with (4.5) and (4.6) yields the conclusion of Theorem 3.1.

Our next goal in this section is to relax the assumption on the approximation uh
0 of

the initial value u0. We intend to derive a sharp estimate for this method as long as the

initial data is approximated with a certain accuracy compatible to the interpolation.

To be more precise, let the differential operator A be time independent. Assume that

the initial value satisfies the following approximation properties

‖u0 − uh
0‖0 ≤ Ch2‖u0‖2, (4.7)

‖u0 − uh
0‖i,∞ ≤ Ch2−i‖u0‖2,∞, i = 0, 1. (4.8)

Then, a point-wise error estimate for this method can be given as follows.

Theorem 4.2. Assume that the solution of (4.1) u(t) ∈ W 2,∞ for each t ∈ J .

Then, there exists a constant C such that

‖u(t) − uh(t)‖∞ ≤ Ch2 log
1

h

(

‖u0‖2,∞ + ‖|ut‖|2,∞

)

. (4.9)

The proof of Theorem 4.2 will be given along a similar idea employed in [20, 21]

(see also [1] [25]) for the heat equation. But we need to do a little preparation before

presenting the proof. Let Ah : Sh → Sh be a linear operator defined by

(Ahφ,ψ) = A(φ,ψ), φ, ψ ∈ Sh.

Similarly, one could define an operator Bh(t, τ) from the bilinear form B(t, τ ; ·, ·). Here

we would like to recall that A(·, ·) and B(t, τ ; ·, ·) are respectively the bilinear forms as-

sociated with operators A and B(t, τ). Next, let Th : L2(Ω) → Sh be the approximation

operator of T = A−1 defined by

A(Thf, χ) = (f, χ), χ ∈ Sh.
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It is easy to see that Th = A−1
h on Sh and

‖(Th − T )f‖0 + h‖∇(Th − T )f‖0 ≤ Ch2‖f‖0. (4.10)

Lemma 4.1. There exists a constant C such that

‖ThBhχ‖i ≤ C‖χ‖i, χ ∈ Sh (4.11)

for i = 0, 1.

Proof. We shall prove the case i = 0 only, since the proof for i = 1 is similar. For

any ψ ∈ L2 we have from (4.10) and the definition of Th and Bh(t, τ) that

(ThBhχ,ψ) = (Bhχ, Thψ) = B(t, τ ;χ, Thψ) = B(t, τ ;χ, (Th − T )ψ) +B(t, τ ;χ, Tψ)

= C‖χ‖1‖(Th − T )ψ‖1 − (χ,B∗(t, τ)Tψ)

≤ Ch−1‖χ‖0h‖ψ‖0 + C‖χ‖0 ‖ψ‖0 ≤ C‖χ‖0 ‖ψ‖0.

Thus, (4.10) follows.

Remark 4.1. It follows from (4.10) and the weak Sobolev inequality [17] that

‖ThBhχ‖∞ ≤ C
(

log
1

h

)1/2
‖χ‖1. (4.12)

Let Eh(t) be the semi-group generated by the operator Ah. For our purpose, we

would like to cite some estimates regarding this operator. A complete analysis can be

found from [21].

Lemma 4.2. There exists a constant C such that for any χ ∈ Sh,

‖Eh(t)χ‖0 ≤ C‖χ‖0,
∥

∥

∥

d

dt
Eh(t)χ

∥

∥

∥

0
≤

C

t+ h2
‖χ‖0, (4.13)

‖Eh(t)χ‖∞ ≤ C
(

log
1

h

)1/2
‖χ‖∞. (4.14)

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Note that the error uh − u has been decomposed into θ

and η as in (4.4). The component η can be estimated by (4.6). Thus, we need only to

deal with the estimate for θ. It is not hard to see that θ satisfies the following equation

(θt, χ) + V (t; θ, χ) = −(ηt, χ), χ ∈ Sh

or in other words

θt +Ahθ +

∫ t

0
Bh(t, τ)θ(τ)dτ = −P0ηt, (4.15)

where P0 is the L2 projection onto Sh. Thus, by applying Duhamel’s principle we get

θ(t) = Eh(t)θ(0) −

∫ t

0
Eh(t− τ)P0ηt(τ)dτ −

∫ t

0
Eh(t− τ)

∫ τ

0
Bh(τ, s)θ(s)dsdτ

= K1 −K2 −K3. (4.16)
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The estimates for K ′
is can be given as follows. It follows from (4.14) and (3.14) that

‖K1‖∞ ≤ C log
1

h
‖θ(0)‖∞ ≤ C log

1

h
(‖uh

0 − Vhu(0)‖∞)

≤ C log
1

h
(‖η(0)‖∞ + ‖u0 − uh

0‖∞) ≤ Ch2
(

log
1

h

)2
‖u0‖2,∞,

(4.17)

where the approximation assumption (4.8) has been used as well. To estimate K2,

assume for the moment that there exists a constant C such that

‖ηt‖∞ ≤ Ch2 log
1

h
(‖u0‖2,∞ + ‖|ut‖|2,∞). (4.18)

Then, the L∞-stability of the L2 projection P0 implies that

‖K2‖∞ ≤ C log
1

h

∫ t

0
‖P0ηt‖∞dτ ≤ C log

1

h

∫ t

0
‖ηt‖∞dτ

≤ Ch2
(

log
1

h

)2
(‖u0‖2,∞ + ‖|ut‖|2,∞). (4.19)

As far as K3 was concerned, we see from integration by parts that

K3 = −

∫ t

0
ThBh(t, s)θ(s)ds +

∫ t

0
Eh(t− τ)ThBh(τ, τ)θ(τ)dτ

+

∫ t

0
Eh(t− τ)

∫ τ

0
ThBh,τ (τ, s)θ(s)dsdτ,

so that by Lemmas 4.1 and 4.2

‖K3‖∞ ≤ C
(

log
1

h

)1/2
∫ t

0
‖∇θ‖0dτ.

Recall from [14] that

∫ t

0
‖∇θ‖0dτ ≤ Ch2

(

‖u‖2 +

∫ t

0
‖ut‖2dτ

)

.

Thus,

‖K3‖∞ ≤ Ch2
(

log
1

h

)1/2(

‖u‖2 +

∫ t

0
‖ut‖2dτ

)

. (4.20)

Combining (4.16) with (4.17), (4.19) and (4.20) yields

‖θ‖∞ ≤ Ch2
(

log
1

h

)2
(‖u0‖2,∞ + ‖u‖2 + ‖|ut‖|2,∞),

which, along with the estimate for η, demonstrates Theorem 4.2.

It now remains to prove (4.18). Clearly,

A(η, χ) +

∫ t

0
B(t, τ ; η(τ), χ)dτ = 0, χ ∈ Sh.
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Thus, by taking differentiation we get

A(ηt, χ) +B(t, t; η, χ) +

∫ t

0
Bt(t, τ ; η(τ), χ)dτ = 0, χ ∈ Sh. (4.21)

Set w = ut and wh = uh,t. Then,

u =

∫ t

0
w(τ)dτ + u0, uh =

∫ t

0
wh(τ)dτ + uh

0

Substituting the last two equations back to (4.21) gives

W (t;w − wh, χ) = D(t;uh
0 − u0, χ), (4.22)

where the bilinear forms W (t; ·, ·) and D(t; ·, ·) are defined respectively by

W (t;φ,ψ) = A(φ,ψ) +

∫ t

0
B(t, t;φ(τ), ψ)dτ +

∫ t

0

∫ τ

0
Bt(t, τ ;φ(s), ψ)dsdτ

D(t;φ,ψ) = B(t, t;φ,ψ) +

∫ t

0
Bt(t, τ ;φ(τ), ψ)dτ.

The bilinear form W (t; ·, ·) is of Ritz-Volterra type. Thus, the Lemma 3.1 is applicable

to the problem (4.22). Thus,

‖w − wh‖∞ ≤ C log
1

h

(

inf
χ∈Sh

‖|w − χ‖|h + ‖|u0 − uh
0‖|h

)

. (4.23)

Now (4.18) follows from (4.23).

We shall now show the following type error estimates in which there is no time

derivatives involved [21].

Theorem 4.3. There exists a constant C > 0 such that

‖u(t) − uh(t)‖0 ≤ Ch2
(

1 + log
(

1 +
t

h2

))

sup
0≤s≤t

‖u(s)‖2. (4.24)

Proof. First of all, we see from [14] that

‖η‖0 ≤ Ch2
(

‖u‖2 +

∫ t

0
‖u‖2dτ

)

≤ Ch2 sup
0≤s≤t

‖u(s)‖2.

Furthermore, θ can be expressed as

θ(t) =Eh(t)θ(0) − Eh(t)P0η(0) − P0η(t) −

∫ t

0

d

dt
Eh(t− τ)P0η(τ)dτ

+

∫ t

0
ThBh(t, s)θ(s)ds −

∫ t

0
Eh(t− τ)ThBh(τ, τ)θ(τ)dτ

−

∫ t

0
Eh(t− τ)

∫ τ

0
ThBh,τ (τ, s)θ(s)dsdτ (4.25)
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Thus, we obtain by Lemmas 4.1 and 4.2 that

|θ(t)‖0 ≤ C{‖θ(0)‖0 + ‖η(0)‖0 + ‖η‖0} + C

∫ t

0

(

‖θ‖0 +
‖η(s)‖0

s+ h2
ds

)

≤ Ch2
(

1 + log
(

1 +
t

h2

))

sup
0≤s≤t

‖u(s)‖2 + C

∫ t

0
‖θ‖0dτ.

An argument of Gronwall’s lemma will yield

‖θ‖0 ≤ Ch2
(

1 + log
(

1 +
t

h2

))

sup
0≤s≤t

‖u(s)‖2, (4.26)

which concludes Theorem 4.3.

4.2. Sobolev Equation

Consider following problem for the Sobolev equation. Find u(t) for each t ∈ J such

that

A(t)ut +B(t)u(t) =f(t), in Ω,

u(x, 0) =v(x), in Ω, (4.27)

u(x, t) =0, on ∂Ω,

where A(t) is a symmetric positive definite elliptic operator and B(t) an arbitrary

differential operator of second order with smooth coefficients. Assume that f(t) ∈ L2

for each t ∈ J . A finite element method for (4.27) can be defined by seeking uh(t) ∈ Sh

for each t ∈ J such that

A(t;uh,t, χ) +B(t;uh, χ) = (f, χ), χ ∈ Sh, t > 0 (4.28)

with initial value uh(0) = vh. Here A(t; ·, ·) and B(t; ·, ·) are the bilinear forms associ-

ated with the operators A(t) and B(t), respectively, and vh is an approximation of the

initial value v in Sh.

Set w(t) = ut(t) and wh(t) = uh,t(t). Then,

u(t) =

∫ t

0
w(τ)dτ + v, uh(t) =

∫ t

0
wh(τ)dτ + vh. (4.29)

Thus, substituting (4.29) back into (4.28) yields

A(t;w(t) −wh(t), χ) +

∫ t

0
B(t;w(τ) − wh(τ), χ)dτ = B(t; vh − v, χ), χ ∈ Sh, (4.30)

where a corresponding weak form for (4.27) has been used as well. It is clear that

the equation (4.30) is of form (3.1). Thus, the result of Lemma 3.1 could be used to

estimate w − wh. The estimate is then summarized as follows.

Theorem 4.3. Assume that u(t) is the unique solution of (4.27) and uh(t) its

discrete analogue defined by (4.28). Then, there exists a constant C such that

‖u− uh‖∞ + ‖ut − uh,t‖∞ ≤ Ch2 log
1

h
(‖v‖2,∞ + ‖|ut‖|2,∞), (4.31)
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provided that v, ut ∈W 2,∞ for each t ∈ J and

‖v − vh‖∞ ≤ Ch2 log
1

h
‖v‖2,∞

holds.

4.3. A Diffusion Equation

Consider the following heat equation with non-local boundary condition and initial

value. The problem reads to seek u(t) for each t ∈ J such that

ut − ∆u =f, in Ω,

u(x, 0) =v(x), x ∈ Ω, (4.32)

∂u

∂µ
+

∫ t

0
K(t, τ)u(τ)dτ = 0, on ∂Ω,

where µ = (µ1, µ2) denotes the outer-ward normal direction on ∂Ω and K, f , and v are

known functions. A weak form of (4.32) is defined by finding u(t) ∈ H1 for each t ∈ J

such that

(ut, ψ) +A(u, ψ) +

∫ t

0
〈K(t, τ)u(τ), ψ〉dτ = (f, ψ), ψ ∈ H1(Ω) (4.33)

with initial value u(·, 0) = v, where

A(u, v) =

∫

Ω
∇u · ∇vdx, 〈f, g〉 =

∫

∂Ω
fgds.

Thus, a finite element approximation can be defined by solving uh(t) ∈ Sh from the

following linear system.

(uh,t, χ) +A(uh, χ) +

∫ t

0
〈K(t, τ)uh(τ), χ〉dτ = (f, χ), χ ∈ Sh, t > 0 (4.34)

with initial value uh(0) = vh, where vh is an appropriate approximation of v in the

finite element subspace Sh. Here the finite element subspace Sh is the piecewise linear

one associated with H1. The method (4.34) and the corresponding estimates in L2

and H1 norms have been considered in [5]. There, a Ritz-Volterra type projection was

introduced as follows. Find Fhu(t) ∈ Sh for each t ∈ J such that

A(u−Fhu, χ) + λ(u−Fhu, χ) +

∫ t

0
〈K(t, τ)(u(τ)−Fhu(τ)), χ〉dτ = 0, χ ∈ Sh, (4.35)

where λ is a sufficiently large positive constant. The purpose of introducing the λ-

term is to enhance the bilinear form A(·, ·) so that the resulting one is coercive in

H1. It is not hard to see that the operator Fh is well defined for any positive λ. The

error estimate for this projection when λ is large enough can also be derived easily.

However, the estimate may dependent upon λ. Thus, the limiting case of λ → ∞ is

less interesting in our analysis. Actually, the projection operator Fh is of Ritz-Volterra
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type for sufficiently large λ and hence, the result of Lemmas 3.1 or 3.2 can be applied

to Fh. This yields the existence of a constant C such that

‖u− Fhu‖∞ ≤ Ch2 log
1

h
‖|u‖|2,∞, (4.36)

provided that u(t) ∈W 2,∞ for each t ∈ J .

We are now ready to establish the error estimate in maximum norm for the finite

element method (4.34). The result can be stated as follows.

Theorem 4.4. Let u be the unique solution of (4.32) and uh the finite element

approximation defined by (4.34). Then, there exists a constant C such that

‖u− uh‖∞ ≤ Ch2 log
1

h

(

‖|u‖|2,∞ +
(

∫ t

0
‖ut‖

2
2dτ

)1/2)

, (4.37)

provided that the initial approximation vh is taken to be the projection Fhv.

Proof. Let θ = uh − Fhu and η = Fhu− u. Then,

uh − u = θ + η. (4.38)

Because of (4.36) it suffices to estimate θ. By (4.33), (4.34) and (4.35) one obtains

(θt, χ) +A(θ, χ) +

∫ t

0
〈K(t, τ)θ(τ), χ〉dτ = (ηt, χ) − λ(η, χ), χ ∈ Sh.

By letting χ = θt,

‖θt‖
2
0 +

1

2

d

dt
‖∇θ‖2

0 = (ηt − λη, θt) −

∫ t

0
〈K(t, τ)θ(τ), θt(t)〉dτ

Notice that θ(0) = 0. Thus, by integration on t

∫ t

0
‖θt‖

2
0dτ +

1

2
‖∇θ‖2

0 ≤

∫ t

0
(‖ηt‖0 + λ‖η‖0)‖θt‖0dτ

−

∫ t

0

∫ s

0
〈K(s, τ)θ(τ), θs(s)〉dτds = H1 +H2.

(4.39)

We have for H1 that

H1 ≤

∫ t

0
‖θt‖

2
0dτ + C

∫ t

0
(‖ηt‖

2
0 + ‖η‖2

0)dτ. (4.40)

By integration by parts H2 can be rewritten as follows

H2 = −

∫ t

0
〈K(t, τ)θ(τ), θ(t)〉dτ

+

∫ t

0
〈K(τ, τ)θ(τ), θ(τ)〉dτ +

∫ t

0

∫ s

0
〈Ks(s, τ)θ(τ), θ(s)〉dτds.
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Thus, it follows from the trace theorem that

H2 ≤
1

4
‖∇θ‖2

0 + C
(

‖θ‖2
0 +

∫ t

0
‖θ‖2

1

)

dτ
)

. (4.41)

Substituting (4.40) and (4.41) into (4.39) and using Gronwall’s lemma yield

‖θ‖2
1 ≤ C

(

‖θ‖2
0 +

∫ t

0
(‖ηt‖

2
0 + ‖θ‖2

0 + ‖η‖2
0)dτ

)

.

By recalling Theorem 3.1 of [5] we have that

‖θ‖2
0 +

∫ t

0
(‖ηt‖

2
0 + ‖η‖2

0)dτ ≤ Ch4
(

‖v‖2
2 +

∫ t

0
‖ut‖

2
2dτ

)

.

Thus,

‖θ‖1 ≤ Ch2
(

‖v‖2 +
(

∫ t

0
‖ut‖

2
2dτ

)1/2)

Finally, by the weak Sobolev inequality

‖θ‖∞ ≤ Ch2
(

log
1

h
)1/2

(

‖v‖2 +
(

∫ t

0
‖ut‖

2
2dτ

)1/2)

. (4.22)

Combining (4.38) with (4.36) and (4.42) gives (4.37).

This first version of this paper was carried out at McGill University in 1989 when

author held a research fellowship and was reported at the CAM annual meeting held

in Halifax, NS, in 1990. The author would like to thank Professor Junping Wang for

numerous discussions and comments on the topic.
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