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Abstract

This paper deals with the stability analysis of §—methods for the numerical
solution of delay differential equations (DDEs). We focus on the behaviour of such
methods in the solution of the linear test equation y'(t) = a(t)y(t) + b(¢)y(t — 7),
where 7 > 0 ,a(t) and b(t) are functions from R to C. It is proved that the linear
f#—method and the one-leg #—method are TGP-stable if and only if § = 1.

1. Introduction

This paper deals with the numerical solution of the following initial- value problems
{ y'(t) = f(tyt),yt—7(t)) t=0,
yt) =o(t) <0,

where y : R — C, 7(t) > 0 is the delay term , ¢(¢) : R — C is the initial function,
whereas y(t) is unknown for ¢ > 0.

(1.1)

Let us consider the following linear delay differential equation:

YO =ay) +byt—r) 20 .
y(t) =) —T7<t<0, '
where y : R — C, a,b are complex, 7 > 0 is a constant delay. ¢(t) denotes a given

function on [ —7 ,0] .

It is well-known that (see[1,2]), if ¢(¢) is continuous and if
|b] < —Re(a), (1.3)

then the solution y(t) to (1.2) tends to zero as t — oo for every 7 > 0. In this case the
solution y(t) to (1.2) is called asymptotically stable.

Concerning numerical solution of (1.2), let’s recall Barwell’s (see[3]) definitions of
P- and GP-stability .
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Definition 1.1. A numerical method for DDEs is called P-stable if, for all coeffi-
cients a, b satisfying (1.3), the numerical solution y, ~ y(t,) of (1.2) at the mesh points
t, =nh, n >0, satisfies

yn — 0, as n — oo,
for every stepsize h such that h = T/m, m is a positive integer.

Definition 1.2. A numerical method for DDEs is called GP-stable if, under con-
dition (1.3), yp, — 0, as n — oo for every stepsize h > 0.

Consider the following linear test equation which was introduced in [9]:

y'(t) =a)y(t) +bt)yt—7) =0,
{Mﬂ =¢(t) -—7<t<0,

where y : [-7,+00) — C, a,b:[0,+00) — C and 7 > 0, and the solution y(¢) of (1.4)

is bounded by max_r<¢<o |¢(t)|, provided that, for every ¢ > 0,

(1.4)

1b(t)| < —Re(a(t)). (1.5)
In [9], Torelli introduced two definitions of stability based on the test equation (1.4) as
follows:
Definition 1.3. A numerical method for DDEs is said to be PN-stable if, under
the condition (1.5), the numerical solution y, of (1.4) is such that

[yn| < max_r<i<ol¢(t)] (1.6)

for every n > 0 and for every stepsize h = T/m, where m is a positive integer.

Definition 1.4. A numerical method for DDFEs is called GPN-stable if, under the
condition (1.5), the numerical solution of (1.4) satisfies (1.6) for every n > 0 and for
every stepsize h > 0.

The numerical stability of #-methods and Runge-Kutta methods have been widely
investigated in [5,7,8,12]. The numerical stability of the §— methods with respect to
the linear test equation (1.2) have been carefully studied in [7]. In [9], Torelli has dealt
with numerical stability based on Definition 1.3 and 1.4 of the #—methods with respect
to the linear test equation (1.4).

It is the purpose of this paper to investigate the asymptotic stability behaviour of
the theoretical solution and the numerical solution of (1.4). In section 2 , we derive a
sufficient condition for (1.4) such that the solution to (1.4) is asymptotically stable. In
section 3 and section 4, it is proven that the linear 6—method and the one-leg § —method
are TGP-stable if and only if § = 1.

2. Asymptotic Stability of the Theoretic Solution of DDESs

First of all, let us consider the following nonlinear systems
{ y'(t) =fty@),yt—1) t=0,

y(t) =o¢(t) t<0, (2.1)
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and

Z(t) = [ftz(t),2(t—7)) t=0,
z(t) =¢(t) t<0,
where f:[0,00] x C* x C* — C®, y(t), 2(t) : R— C*,7 > 0.
Theorem 2.1. Assume that ¢(t) and ¥(t) are continuous and

Re < f(t,y1,u) = f(t,y2.u), 51 — y2 >< o (t)|lyr — yal [,
YVt € R,Yu,y1,y2 € C%,
F (@t y,ua) = fty, u2)l| < y(#)[Jur — usl],
Vt € R, Yy, u1,us € C°,
o(t) and v(t) are continuous and satisfy
V(1) < —qo(t), 0<g<1,

and
ot) < —B<0, R=[0,00), |z|?*=<z,2> x¢cC°

If the solutions of (2.1) and (2.2) exist uniquely, then
limi—oolly(t) — 2(8)[| = 0.
Remark 1. Before proving the theorem, observe that, if

fty(t),y(t — 7)) = ay(t) + by(t — 1)
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(2.2)

(2.5)

as in (1.2), then o(t) = Re(a),y(t) = |b|. In this case , if |b| < —Re(a),by theorem 2.1,
we obtain at once that lim; .o, y(t) = 0, i.e., the solution to (1.4) is asymptotically

stable.

Proof of Theorem 2.1. According to the definition of the norm on C*, we have

1/2(d/dt)(lly(t) — 2(O)I*) = Re < y/(t) — 2'(t), y(t) — =(t) >
=Re < f(t,y(t),y(t — 7)) = f(t,2(), 2(t = 7)), y(t) — 2(¢) >
=Re < f(t,y(t),y(t — 7)) = f(t,2(t), y(t — 7)), y(t) — 2(t) >

Application of Schwartz’s inequality yields

1/2(d/dt)(|ly(t) — 2()|*) < o(®)lly(t) — =)

+yOlly() — 2Oyt —7) = 2(t = 7)][.

Let Y (t) = ||ly(t) — z(¢)||- Then

1/2(d/dt)(Y ()*) < o(t)Y (£)* + (DY ()Y (t = 7),

(2.8)
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which implies
Y(O)Y'(t) S oY (1) + ()Y (t = 7)Y (2)

(Note that Y (t) > 0 for every ¢t > 0 because we assume that the function f is such that
(2.1) has only a unique solution for every initial condition. See [9] ). Then

{ Y'(t) <ot)Y(t)+~@®)Y(t—7) t>0, (2.9)
V() = l6() - b0l = o) t<o. |
Consider the following differential equation
{ ?’(t) =Y () +y(®Y(t-7) t=0, (2.10)
Y(it) =ot) t<O0.
When t € [0, 7], then (2.10) reads
{ 1:/’(15) =ot)Y(t) +y()®(t—7) te[0,7], (2,107
Y(t) = ®(0),
The solution of (2.10) is
Y (t) = e d(0) 4 eo® /t e~ 0@ (YD (x — 7)d, (2.11)
where ,
Ait) :/ o(z)da,t € [im, (i + 1)7],i = 0,1,2, -
Since
Y(t) < —qo(t),0< g <1, oft) <-4<0,
we have
Y(t) < (e P4+ (1—ePYgM = Go(t)M (2.12)
where
M =max_,<;<g ®(t), Go(t) =e P+ (1—eP)q.
When t € [7,27], then (2.10°) reads
{ }:/’(t) = (i(t)}_/(t) +y)Y(t—-71) te]lrn27], (2.13)
Y(r) =Y(7).

Then the solution of (2.13) is
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¢ )
Y(t) = e Oy () 4 eM®) / e~ M@y ()Y (2 — 7)dx

¢
< {eM DGy (1) + MO / e~ M@ ()G (x — 7)dx} M

< {eMDGy(1) + e DGy (&) / t e M@ (—o(z))dz}M (& € [0,7])

< {e"OGo(7) + qGo(0)(1 — M)}

<{e DGy(7) + qGo(0)(1 — e )M

= {e PGy (7) + q(1 — e P M

= Gi(t—7)M, (2.14)

where Gy (t) = e P Go(1) + q(1 — e7P).
For t € [27,37],we can see that

t _
Y (t) = e20Y (27) + A2 / e_AZ(x)’y(x)Y(:c — T)dx
27

< {06 (1) +qG1 (&)1 — ™) (& €0,7))

< {e®DGo(7) + ¢Go(r) (1 — e t))}M

< Go(r){e™W + (1 — e0) M

< Go(r){e P72 4 g(1 — e P2 M

< Go(1)Go(t — 2T)M. (2.15)

When ¢ € [37,47], we have
Y(t) < Go(T)G1(t — 37)M. (2.16)
By induction, we obtain
Y(t) <Y(t) < [Go(T)]FGo(t — 2kT)M  for t € [2kT, (2k + 1)7],
Y () <Y (t) < [Go(m))*Gi(t — (2k + 1)7)M for t € [(2k + 1)7,2(k + 1)7].
Therefore we have limy; o Y (¢) = lim;_oo ||y(t) — 2(¢)|| = 0.
This completes the proof of this theorem.

As a special case of (2.1), in (1.4), o(t) = Re(a(t)),y(t) = |b(t)|, then (2.5) becomes
(2.57), where Re(a(t)) and | b(t)| are continuous and

b(t)] < —qRe(a(t)), 0<q<1, Re(a(t))<-B<0. (2.5)

Corollary 2.2. Suppose a(t) and b(t) satisfy (2.5") and ¢(t) is continuous, then
the solution to (1.4) is asymptotically stable.
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We now introduce some new definitions of stability based on the linear test equation
(1.4).

Definition 2.3. A numerical method for DDFEs is called TP-stable if, under the
condition (2.5%), the numerical solution y, of (1.4) satisfies

limy, ooy =0 (2.17)

for every stepsize h such that h = 7/m, where m > 1 is a positive integer.

Definition 2.4. A numerical method for DDEs is called TGP-stable if, under the
condition (2.57), the numerical solution y, of (1.4) satisfies (2.17) for every stepsize
h > 0.

From Definition 2.3 and 2.4 , one can see at once that TGP-stability implies TP-
stability.

3. Stability Analysis of the Linear §-Method

Consider the following method called the linear § —method :

Ynt1 = Yn + BOF (b1, Yot Y (Engr — T(tns1)))
+ (1= 0)f(tn, Y,y (tn — T(tn))) (3.1)

forn =0,1,2,---, here 0 is a parameter with 0 < 8 < 1, h > 0 is the stepsize. y, = ¢(0),
y"(t) = ¢(t) for t <0, and y"(t) with t > 0 is defined by piecewise linear interpolation,
i.e.,

t —nh h—t
Y (t) = hn Yn+1 + (n+h)yn, for nh <t <(n+1)h,n=0,1,2,--- (3.2)

Applying (3.1) and (3.2) to (1.4), we arrive at the following recurrence relation

Yn+1 = Yn + hO[a(tnt1)yns1 + 0(tnt1) (0Yn—mt2 + (1 — 8)Yn—m+1)]
+ (1 = 0)hfa(tn)yn + b(tn)(6Yn—m+1 + (1 — 0)yn—m)]- (3.3)

Here n > m, m is the smallest integer with 7h=! <m,§ =m — th~!, 6 € [0,1).
Definition 3.1. Leté € [0,1) and a(t) and b(t) : R — C. Then a numerical method
for DDEs is called T'é—stable at (a(t),b(t)), if any application of the method to (1.4)
yields approzimation y, —0 as n — oo, whenever h is given with h = (m — &)~'7. The
set consisting of all (a(t),b(t)) at which the method is T'd-stable is called T'§— stability
region. For the linear 0—method we denote it by Sps. The stability region Sy of the
linear 0—method is defined by
Sy = m So.5- (3.4)

0<6<1

Define H = {(a(t),b(t)): a(t) and b(t) satisfy (2.5’) }.
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At once we have the following lemma.
Lemma 3.2. (i) A numerical method for DDEs is TP-stable if and only if

H C Spp.
(ii) A numerical method for DDFEs is TGP-stable if and only if
H C Sy.

Lemma 3.3.1"Y Let y be either root of a real quadratic equation 2% —bx + ¢ = 0. If
b and ¢ are real, then |y| < 1 if and only if |c| < land |b] < 1+ c.

Theorem 3.4. Let 0 < 0 < 1. Then the linear —method is TGP-stable if and only
if 0 =1.

Proof. (I) 0 < @ < 3. Consider the linear test equation (1.2), from Remark 1 and
[7], we can obtain at once that the linear §—method is not TGP-stable.

(I) 3 <6 < 1. Consider the following special DDE

{ y'(t) = —a()y(t) — Oa(t)y(t —1), =0,

y(t) =o(t), t<0, (3.5)

where a(t) > IT_G is a real continuous function, ¢(t) is continuous. Then the condition
(2.5”) is satisfied.
Let stepsize h = 1 and hence § = 0. Then (3.3) reads

1—(1-0)a(ty) — Qaltnsr) 01— 0)alty)

yn+1 = 1 + ea(tn+1) yn - 1 + ea(tn+1) yn—17

where n =0,1,2,... . Now we choose a sequence {a(t,)} such that it is 2-periodic with
a(ty) = a(te) = ... =e = IT_G, a(ty) =a(ty) = ...=f = 1%“9. Define Y, = (yx, ye—1)" -
Hence equation (3.6) is equivalent to

Yn—l—l = AnYn7 (37)
where n =0,1,---, and

1—(1—-0)a(tn)—0%a(tnt1) —0(1—0)a(ty)
An — ( 1+9a(tn+1) 1+9a(tn+1) >
1 0

The periodicity of the sequence {a(t,)} yields
Yoo = BY,, (3.8)
where B = Ap114, ,n=20,24,---.

We obtain
B (C1d1 + ¢ C1d2)
a dq dsy
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where
1—(1—0)e—06f —0(1 —0)e 1—(1—-0)f —6%
c = , = ——————, d| = )
1+06f 1+0f 1+ e
and
d —0(1—-0)f
2 1+ e
Thus

det(\I — B) = A — (da + c1dy + o)\ + daca

B l—e—f+(1-0)*2+6* 6%(1 — 6)?
=X - —arwoarey M tarearepy 39
Since
6%(1 — 6)?

’1—e+f+(1—9)2+94

(L+6e)(1+6f) (1+0e)(1+0f)
then from Lemma 3.3, it follows that p(B) > 1. Hence the linear §—method yields a
numerical solution y, which cann’t tend to zero as n — oo for some continuous ¢(t)
(t € [-7,0]). Thus we can conclude that the linear #—method is not TP-stable and
hence not TGP-stable.

(III) § = 1. Let § € [0,1) and let (a(t),b(t)) € H. Then the recurrence relation (3.3)
becomes

‘>1+]

(1 = ha(tn+1))Yns1 = Yn + Bb(tn+1) (0Yn+2-m + (L = 0)Ynt1-m), (3.10)
here n =0,1,2,--- .
(a) m>1.

When n = 0, then

1 hb(t1)
=—Yo+ ———F——(0y_m 1—0)y_my1).
Y1 l—ha(tl)y +1—ha(t1)( Yem2 + ( )Y—m+1)
Since
ll—the(a(t))’ ‘1—the a(t)) ‘ ’1+qhﬁ b1
1 — ha(t) ~ 1 1—nhRe(a(t)) ! =1 1+hpg ’
then (al
1 —ghRe
< .
1| < ‘ ha(tl ‘ pmax_r<¢<o|d(t)]
One easily shows by induction that
|[Ynt1| < pmax_r<i<olo(t)| (3.11)

forall n <m — 1.
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When m <n < 2m — 1, we have

Ynt1] < ‘m“ Yn| + ‘;f;ﬂ‘wynu m + (1= 6)ynt1-m|
e
< p’max_r<i<ol$(t)|- (3.12)
By induction we derive
|yn+1] < P max_r<i<ol ()], (3.13)
for all rm <n < (r+1)m — 1.

(b) m=1.
In this case, (3.3) reads

1+ (1= 6)hb(tnt1)

] = - 3.14
I ha(tne) — 0hb(tni1) (3.14)
Then
=T ha(th) 5hb th Yn
<’ 1+ (1 =209)hb(tni1) M |
B |1 — ha(tn+1)| — 5h|b thrl Yn
~ 1 —hRe(a(tn+1)) + q5hRe(a(tn+1)) "
1+ (1—=9)ghp
—— |y, 3.15
e (3.15)
From (3.13) and (3.15), it follows that
limy ooy = 0,
which implies the linear 6—method is TGP-stable.
This completes the proof of this theorem.
4. Numerical Stability of the One-leg #-Method
Consider the following one-leg §—method:
Yn+1 = Yn + hf(tn+9, yh (tn-‘r@)’ yh(tn+9 - T(tn-i-@))) (4'1)

for n = 0,1,2,..., here 0 is a parameter with 0 < 0 < 1, t,49 = (n+ 0)h, y, = ¢(0),
y"(t) = ¢(t) for t <0, and the definition of y"(¢) is given by (3.2).

Concerning the numerical stability of the one-leg 6 —method for DDEs based on the
test equation (1.4), we apply (4.1) and (3.2) to (1.4):

Yn+l = Yn + ha(tn+9)(0yn+1 + (1 - e)yn) + hb(thrG)(ayn—H-l + (1 - U)yn—r)7 (4'2)
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where n > r, m is the smallest integer such that 77'h < m,d =m —77'h € [0,1),
c=0+6 and r=m, if 0<dI<1—6,

c=0+06—1 and r=m—-1, if 1-0<d<1.

We can derive the following theorem.

Theorem 4.1.Let 0 < 6 < 1. The one-leg 0—method is TGP-stable and hence
TP-stable if and only if 6 = 1.

Proof. (I) 0 < 6 < 1. Consider the linear test equation (1.2), from Remark 1 and
[7], we conclude that the one-leg §—method is not TGP-stable.

(IT) # = 1.The method (4.2) and (3.3) coincides, from Theorem 3.4, and hence the
method is TGP-stable.
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