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Abstract

We consider solving integral equations of the second kind defined on the half-line
[0,∞) by the preconditioned conjugate gradient method. Convergence is known
to be slow due to the non-compactness of the associated integral operator. In
this paper, we construct two different circulant integral operators to be used as
preconditioners for the method to speed up its convergence rate. We prove that
if the given integral operator is close to a convolution-type integral operator, then
the preconditioned systems will have spectrum clustered around 1 and hence the
preconditioned conjugate gradient method will converge superlinearly. Numerical
examples are given to illustrate the fast convergence.

1. Introduction

In this paper, we study numerical solutions to integral equations of the second kind
defined on the half-line. More precisely, we consider the equation

y(t) +
∫ ∞

0
a(t, s)y(s)ds = g(t), 0 ≤< t < ∞ (1)

where g(t) is a given function in L2[0,∞) and the kernel function a(s, t) is in L2(R2).
One way of solving (1) is by the projection method [3] where the solution y(t) is
approximated by the solution yτ (t) of the finite-section equation

yτ (t) +
∫ τ

0
a(t, s)yτ (t) = g(t), 0 ≤ t ≤ τ. (2)

It is shown in [3] that

lim
τ→∞ ‖yτ − y‖Lp[0,τ) = 0, 1 ≤ p < ∞.
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The finite-section equation (2) can be solved numerically by either direct or iterative
methods. For a fixed τ, the finite-section operator Aτ defined by

(Aτx)(t) =

{ ∫ τ
0 a(t, s)x(s)ds, 0 ≤ t ≤ τ,

0, t > τ.
(3)

is a compact operator. Therefore, the spectrum of the operator I + Aτ is clustered
around 1 and hence solving (2) by iterative methods such as the conjugate gradient
(CG) method will be less expensive than direct methods. However, as τ → ∞, the
spectrum of Aτ becomes dense in that of A, where A is defined as

Ax(t) =
∫ ∞

0
a(t, s)x(s)ds, 0 ≤ t < ∞,

and hence the convergence rate of the CG method will deteriorate, see the numerical
results in Section 5.

One way of speeding up the convergence rate of the CG method is to apply a precon-
ditioner to (2). Thus instead of solving (2), we solve the preconditioned equation

(I + Hτ )−1(I + Aτ )yτ (t) = (I + Hτ )−1g(t). (4)

We will call the operator Hτ a preconditioner for the operator Aτ . A good precon-
ditioner Hτ is an operator that is close to Aτ in some norm and yet the operator
equation

(I + Hτ )x(t) = f(t) (5)

is easier to solve than (2) for arbitrary function f ∈ L2[0, τ ]. A class of candidates is
the class of operators of the form

Hτx(t) =
∫ τ

0
hτ (t− s)x(s)ds, 0 ≤ t ≤ τ,

where the kernel functions hτ are periodic in [0, τ ]. They are called circulant integral
operators in [5]. The eigenfunctions and eigenvalues of the operator Hτ are given by

um(t) =
1√
τ
e2πimt/τ , m ∈ Z, (6)

and
λm =

√
τ(hτ , um)τ =

√
τ

∫ τ

0
hτ (t)ūm(t)dt, m ∈ Z, (7)

Therefore, (5) can be solved effeciently by using the Fourier transforms.
The convergence rate of solving the preconditioned system (4) with CG method

depends on how close the operator (I+Hτ ) is to the operator (I+Aτ ), see Axelsson and
Barker [1,p.28]. Therefore, a natural idea is to find the circulant integral operator Hτ

that minimizes the difference Aτ−Hτ in some norm over all circulant integral operators.
In this paper, we will consider the minimization in the Hilbert-Schmidt norm ‖| · ‖|. We
will construct two different kinds of circulant integral preconditioners for Aτ . The first
one minimizes ‖|Aτ −Hτ‖| and the second one minimizes ‖|I − (I + Hτ )−1(I + Aτ )‖|.
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Following the terminologies used in the study of Toeplitz matrices, we call the first
minimizer the optimal preconditioner and denote it by P (Aτ ), see [2]. The circulant
operator that minimizes the second one will be called the super-optimal preconditioner,
see [6].

We will prove some of the properties of the operator P. In particular, we will show
that for self-adjoint operators Aτ ,

inf
‖x‖2=1

(Aτx, x)τ ≤ inf
‖x‖2=1

(P (Aτ )x, x)τ ≤ sup
‖x‖2=1

(P (Aτ )x, x)τ ≤ sup
‖x‖2=1

(Aτx, x)τ ,

where
(a, b)τ ≡

∫ τ

0
a(t)b̄(t)dt.

Thus if Aτ is a positive operator, then so is P (Aτ ). We also show that the operator
norms of P derived from the 2-norm and the Hilbert-Schmidt norm are both equal to
1. We then show that the super-optimal preconditioners are good preconditioners for
integral equations with convolution kernels because the spectra of the preconditioned
operators will be clustered around 1 for sufficiently large τ. As a corollary, we prove that
the preconditioned conjugate gradient (PCG) method will converge superlinearly for
integral operators A that are close to convolution-type operators in the Hilbert-Schmidt
norm.

The outline of the paper is as follows. In Section 2, we construct the optimal
circulant integral preconditioners P (Aτ ) for integral operators Aτ and study some of
its spectral properties. In Section 3, we construct the super-optimal circulant inte-
gral preconditioners. The convergence analysis of the preconditioned operators for
convolution-type operators and for general integral operators are discussed in Section
4. Finally numerical results are given in Section 5.

2. Optimal Circulant Integral Operator

In this section, we discuss some of the properties of the optimal circulant integral
operator P (Aτ ) for integral operator Aτ given in (3). The preconditioner P (Aτ ) is
defined to be the circulant integral operator that minimizes the Hilbert-Schmidt norm

‖|Aτ −Hτ‖|2 ≡
∫ τ

0

∫ τ

0
a(t, s)− hτ (t− s))(ā(t, s)− h̄τ (t− s))dsdt (8)

over all circulant integral operators Hτ . We first give the expression of the kernel
function of P (Aτ ).

Lemma 1. Let a(·, ·) ∈ L2([0, τ ]2). Then the kernel function of P (Aτ ) is given by

pAτ (s) =
1
τ

∫ τ

τ−s
a(v + s− τ, v)dv +

1
τ

∫ τ−s

0
a(v + s, v)dv. (9)

In terms of Fourier expansions,

pAτ (t− s) =
∞∑

m=−∞
(Aτum, um)τum(t)ūm(s), 0 ≤ s, t ≤ τ. (10)
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Proof. Since a(·, ·) ∈ L2([0, τ ]2), we can write, by using Fourier expansions

a(t, s) =
∞∑

m,n=−∞
vm,num(t)ūn(s), 0 ≤ s, t ≤ τ, (11)

where um(t) is given in (6) and

vm,n ≡
∫ τ

0

∫ τ

0
a(t, s)un(s)ūm(t)dsdt = (Aτun, um)τ , m, n ∈ Z. (12)

Let Hτ be a circulant integral operator with kernel function hτ in L2[−τ, τ ]. By means
of Fourier expansion, we can write

hτ (t− s) =
∞∑

m=−∞
λmum(t)ūm(s), 0 ≤ s, t ≤ τ

where λm is given in (7). Combining this with (11) and using the orthogonality of un,
we can rephrase the distance (8) as

‖|Aτ −Hτ‖|2 =
∞∑

m=−∞
|vm,m − λm|2 +

∞∑

m,n=−∞
m6=n

|vm,n|2.

Clearly, the expression becomes minimal if and only if λm = vm,m = (Aτum, um)τ for
all integers m. Thus (10) follows.

To obtain (9), we observe from (12) that for all integer m,

λm = vm,m =
∫ τ

0

∫ τ

0
a(t, s)um(s)ūm(t)dsdt =

1√
τ

∫ τ

0

∫ τ

0
a(t, s)ūm(t− s)dsdt.

By using Fubini’s theorem and the substitutions v = t− s and s = s, we get

λm =
1√
τ

{ ∫ 0

−τ

∫ τ

−s
a(v + s, v)ūm(s)dvds +

∫ τ

0

∫ τ−s

0
a(v + s, v)ūm(s)dvds

}

=
√

τ

∫ τ

0

{1
τ

∫ τ

τ−s
a(v + s− τ, v)dv +

1
τ

∫ τ−s

0
a(v + s, v)dv

}
ūm(s)ds.

Comparing this with (7), we see that the kernel function pAτ is given by (9).
In Lemma 3 below, we study some of the properties of the operator P which are

useful in proving convergence in Section 4. We first note the following result whose
proof is trivial and will be omitted.

Lemma 2. Let Aτ and Bτ be two integral operators with kernel functions aτ and
bτ respectively. If aτ (·, ·) and bτ (·, ·) are in Lτ ([0, τ ]2), then the kernel function dτ (·, ·)
of the composite operator Dτ = AτBτ is also in L2([0, τ ]2) and is given by

dτ (t, s) =
∫ τ

0
aτ (t, w)bτ (w, s)dw. (13)

Moreover, we have ‖Dτ‖2 ≤ ‖Aτ‖2‖Bτ‖2.
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Lemma 3. The following properties of the operator P hold.
(i) P is a linear projection operator, i.e., P (P (Aτ )) = P (Aτ ).
(ii) Let Hτ be any circulant integral operator. Then we have

P (HτAτ ) = HτP (Aτ ) = P (Aτ )Hτ = P (AτHτ ).

(iii) ‖P‖2 = ‖|P‖| = 1 where ‖ · ‖2 and ‖| · ‖| are the operator norms of P derived from
the 2-norm and the Hilbert-Schmidt norm respectively.

(iv) If Aτ is self-adjoint, i.e., ā(t, s) = a(s, t), then so is P (Aτ ); and we have

inf
‖x‖2=1

(Aτx, x)τ ≤ inf
‖x‖2=1

(P (Aτ )x, x)τ ≤ sup
‖x‖2=1

(P (Aτ )x, x)τ ≤ sup
‖x‖2−1

(Aτx, x)τ .

In particular, if Aτ is positive, i.e.(Aτx, x)τ ≥ 0 for all x ∈ L2[0, τ ], then P (Aτ ) is
also positive.
Proof. The proof of (i) is obvious and will be omitted. For (ii), we first prove that

the operators P (HτAτ ) and HτP (Aτ ) have the same kernel function. Let the kernel
functions of Aτ and Hτ be

aτ (t, s) =
∞∑

m,n=−∞
vm,num(t)ūn(s), 0 ≤ s, t ≤ τ

and

hτ (t− s) =
∞∑

m=−∞
λmum(t)ūn(s), 0 ≤ s, t ≤ τ

respectively. By (13) the kernel function of HτAτ at the point (t, s) is given by
∫ τ

0

∞∑

m=−∞
λmum(t)ūm(w)

∞∑

m,n=−∞
vm,num(w)ūn(s)ds =

∞∑

m,n=−∞
λmvm,num(t)ūn(s).

By Lemma 1, the kernel function of P (HτAτ ) at the point (t− s) is therefore given by

∞∑

m=−∞
λmvm,mum(t)ūm(s).

It is easy to check that HτP (Aτ ) has the same kernel function. Thus the first equality
in (ii) holds. The third equality in (ii) can be proved likewise. The second equality in
(ii) follows from the fact that the composite of two circulant integral operators with
the same period is commutative, see for instance [4,p.181].

To prove (iii), we first note that for an arbitrary function x(s) =
∑∞

m=−∞ αmum(s)
in L2[0, τ ], we have by (10)

‖P (Aτ )x(t)‖2
2 =

∞∑

m=−∞
|αm|2|vm,m|2 ≤ sup

m∈Z
|vm,m|2‖x‖2

2,

where vm,m are defined in (12). Thus ‖P (Aτ )‖2 ≤ supm∈Z |vm,m|. However, for each
integer m,

‖P (Aτ )‖2 ≥ ‖P (Aτ )um‖2 = |vm,m|,
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it follows that ‖P (Aτ )‖2 = supm,∈Z |vm,m|. On the other hand, since un are orthonor-
mal, we see that for all n ∈ Z,

‖Aτ‖2
2 ≥ ‖Aτun‖2

2 = ‖
∞∑

m=−∞
vm,num(t)‖2

2 =
∞∑

m=−∞
|vm,n|2.

Hence,

‖Aτ‖2
2 ≥ sup

n∈Z

∞∑

m=−∞
|vm,n|2 ≥ sup

m∈Z
|vm,m|2 = ‖P (Aτ )‖2

2.

Since when Aτ is circulant, ‖Aτ‖2 = ‖P (Aτ )‖2, it follows that ‖P‖2 = 1, That ‖|P‖| = 1
can be proved similarly. In fact, by (11) and (10), we see that

‖|Aτ‖|2 =
∞∑

m,n=−∞
|vm,n|2 ≥

∞∑

m=−∞
|vm,n|2 = ‖|P (Aτ )‖|2.

Finally, we prove (iv). It is clear that if Aτ is self-adjoint, then P (Aτ ) is also
self-adjoint. By (11) and (12), we see that

inf
‖x‖2=1

(Aτx, x)τ ≤ inf
m∈Z

(Aτum, um)τ .

However, by (10),

inf
m∈Z

(Aτum, um)τ = inf
m∈Z

(P (Aτ )um, um)τ = inf
‖x‖2=1

(P (Aτ )x, x)τ .

The inequality for the supremum in (iv) can be proved likewise.

3. Super-Optimal Integral Preconditioners

In this section, we consider another type of circulant integral preconditioners which
are obtained by minimizing the Hibert-Schmidt norm

‖|I − (I + Hτ )−1(I + Aτ )‖| (14)

over all circulant integral operators Hτ such that (I + Hτ )−1 exists. The reason we
consider this preconditioner is that in the PCG method (cf (4)), we want the precondi-
tioned operator (I +Hτ )−1(I +Aτ ) to be as close to the identity operator I as possible.
If the minimum of (14) is attained by I + Cτ , then we call Cτ the super-optimal circu-
lant integral preconditioner for Aτ . In order to find the kernel function for Cτ , we first
characterize the inverse of operators of the form I + Hτ .

Lemma 4. Let Hτ be a circulant integral operator with kernel function hτ and
eigenvalues λm given in (7). If I + Hτ is invertible, then its inverse is given by

(I + Hτ )−1 = I −Kτ

where Kτ is also a circulant integral operator with kernel function

kτ (t− s) =
∞∑

n=−∞
(

λn

1 + λn
)un(t)ūn(s). (15)
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Proof. Since I + Hτ is invertible, 1 + λn 6= 0 for all integers n. Moreover, since hτ

is in L2[−τ, τ ],
∑∞

n=−∞ |λn|2 < ∞ and therefore |1 + λn| ≥ 1/2 for all |n| sufficiently
large. In particular, the function kτ defined in (15) is a τ -periodic function in L2[−τ, τ ].
By (13), the kernel function of HτKτ at the point (t− s) is given by

∫ τ

0

∞∑

m=−∞
λmum(t)ūm(w)

∞∑

n=−∞
(

λn

1 + λn
)un(w)ūn(s)dw =

∞∑

n=−∞
(

λ2
n

1 + λn
)un(t)ūn(s).

From this, it is straightforward to check that the kernel function of

Hτ −Kτ −HτKτ = (I + Hτ )(I −Kτ )− I

is the zero function. Thus (I + Hτ )−1 = (I −Kτ ).
In view of this Lemma, the problem of minimizing the norm (14) becomes the

problem of minimizing ‖|I − (I −Kτ )(I +Aτ )‖| over all circulant integral operator Kτ .
In this formulation, it is easy to find the super-optimal circulant preconditioner Cτ for
Aτ .

Lemma 5. a(·, ·) ∈ L2([0, τ ]2) be such that I + P (Aτ ) is invertible. Let Cτ be the
super-optimal circulant integral perator for Aτ . Then I +Cτ is invertible and the kernel
function cτ of Cτ is given by

cτ (t− s) =
∞∑

m=−∞

(
ζm + vm,m

1 + v̄m,m

)
um(t)ūm(s), (16)

where vm,m = (Aτun, um)τ and ζn =
∑∞

n=−∞ |vm,n|2.
Proof. Let Hτ be any circulant integral operator such that I + Hτ is invertible.

Denote the kernel function of Hτ by

hτ (t− s) =
∞∑

m=−∞
λmum(t)ūm(s).

By Lemma 4, (I + Hτ )−1 = I −Kτ where the kernel function of Kτ is given in (15).
Thus

‖|I − (I + Hτ )−1(I + Aτ )‖| = ‖|Kτ + KτAτ −Aτ‖|.
By (13) and (15), the kernel function of Kτ + KτAτ −Aτ at the point (t, s) is given by

∞∑

m,n=−∞

{δm,nλm

1 + λm
+

λmvm,n

1 + λm
−vm,n

}
um(t)ūn(s) =

∞∑

m,n=−∞

(
δm,nλm − vm,n

1 + λm

)
um(t)ūn(s),

where δm,n denotes the Kronecker symbol. By the definition of the Hilbert-Schmidt
norm,

‖|I − (I + Hτ )−1(I + Aτ )‖|2 =
∞∑

m,n=−∞
|δm,nλm − vm,n

1 + λm
|2.

It is clear that the above expression is minimized if and only if the term

|λm|2 − λmv̄m,m − λ̄mvm,m + ζm

|1 + λm|2
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is minimized for all integers m, However, by differentiating this quotient with respect
to the real and imaginary parts of λm, we see that the minimum will be obtained if we
set

λm =
ζm + vm,m

1 + v̄m,m

for all m, Hence (16) follows. We note that by (10), the assumption that I + P (Aτ ) is
invertible implies that the denominator 1+ v̄m,m in the above expression is nonzero for
all m. Moreover, since

1 + λm =
∑∞

n=−∞,n6=m |vm,n|2 + |1 + v̄m,m|2
1 + v̄m,m

6= 0.

we see that I + Cτ is invertible.

4. Convergence Analysis

In this section we consider the convergence rate of the optimal and super-optimal
circulant integral preconditioners for solving integral equations of the second kind. We
begin with equations having convolution kernel first. In this case, the convergence
analysis for the optimal circulant integral preconditioners has already been studied.

Lemma 6 (Gohberg, Hanke and Koltracht[5]). Let A be a self-adjoint, positive
convolution-type integral operator unth kernel function a(·) ∈ L1(R). Let P (Aτ ) be the
optimal circulant integral operator of Aτ . Then for each ε > 0 there is a positive integer
ρ and a τ∗ > 0, such that for each τ ≥ τ∗, there exists a decomposition

Aτ − P (Aτ ) = Qτ + Rτ , (17)

with self-adjoint operators Qτ and Rτ satisfying ‖Qτ‖2 ≤ ε and rankRτ ≤ ρ. Moreover,
the spectrum of

(I + P (Aτ ))−1/2(I + Aτ )(I + P (Aτ ))−1/2

has at most ρ eigenvalues outside interval (1− ε, 1 + ε).
This lemma basically states that the spectrum of the preconditioned operator is

clustered around 1. Hence using standard theory of the PCG method, see for instance
[1,p.28], we can conclude that the method with the optimal preconditioner converges
super-linearly. We now prove a similar result for the super-optimal preconditioner.

Theorem 1. Let A be a self-adjoint, positive convolution-type integral operator
with kernel function a(·) ∈ L1(R)∩L2(R). Let Cτ be the super-optimal circulant integral
preconditioner for Aτ . Then for each ε > 0, there is a positive integer ρ and a τ∗ > 0,
such that for each τ > τ∗, there exists a decomposition

Aτ − Cτ = Sτ + Tτ , (18)

where Sτ and Tτ are self-adjoint operators satisfying ‖Sτ‖2 ≤ ε and rankTτ ≤ ρ.
Moreover, the spectrum of (I + Cτ )1/2(I + Aτ )(I + Cτ )−1/2 has at most ρ eigenvalues
outside interval (1− ε, 1 + ε).
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By comparing (17) and (18), we see that Theorem 1 can be easily proved if we can
show that

lim
τ→∞ ‖P (Aτ )− Cτ‖2 = 0.

The next Lemma and Corollary are devoted to proving this limit.
Lemma 7 Let A be a self-adjoint convolution-type integral operator with kernel

function a ∈ L1(R) ∩ L2(R). Then

lim
τ→∞ ‖P (A2

τ )− P (Aτ )2‖2 = 0. (19)

Proof. Since a ∈ L1(R), for each ε > 0, there is a τε > 0 such that
∫∞
τε
|a(s)|ds < ε.

Define
τ∗ ≡ max{τε‖a‖1/ε, 36τ2

ε ‖a‖2
2/ε, 2τε}. (20)

For each τ > τ∗, we decompose the difference Aτ − P (Aτ ) as

Aτ − P (Aτ ) = Eτ + Fτ (21)

where Eτ and Fτ are self-adjoint operators with kernel functions

eτ (s) =

{
a(s)− pAτ (s), |s| ≤ τ − τε,

0, |s| > τ − τε

and

fτ (s) =

{
a(s)− pAτ (s), τ − τε ≤ |s| ≤ τ,

0, otherwise
(23)

respectively. Using the decomposition (21) and Lemma 3 (ii), we then bave

P (Aτ
2)− P (Aτ )2 =P [(Aτ − P (Aτ ))(Aτ − P (Aτ ))]

=P [(Eτ + Fτ )2]
=P (Eτ

2 + EτFτ + FτEτ ) + P (Fτ
2).

Therefore by Lemma 3(iii), we then have

‖P (Aτ
2)− P (Aτ )2‖2 ≤ ‖Eτ

2 + EτFτ + FτEτ‖2 + ‖P (Fτ
2)‖2. (24)

We now estimate the 2-norm of the two terms on the right hand side of (24).
For the first term, we need estimates of ‖Eτ‖2 and ‖Fτ‖2. From (22), (20) and (9),

we get

‖Eτ‖2 ≤‖eτ‖1 = 2
∫ τ−τε

0

s

τ
|a(s− τ)− a(s)|ds

≤2{
∫ τ−τε

0
|a(s− τ)|ds +

∫ τε

0

τε

τ
|a(s)|ds +

∫ τ−τε

τε

|a(s)|ds}

≤2{
∫ −τε

−τ
|a(v)|dv +

τε

τ
‖a‖1 + ε} < 6ε.

From (21) and Lemma 3 (iii), we see that
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‖Fτ‖2 ≤ ‖P (Aτ )‖2 + ‖Aτ‖2 + ‖Eτ‖2 ≤ 2‖Aτ‖2 + ‖Eτ‖2 ≤ 2‖a‖1 = 6ε.
Thus for the first term in the right hand side of (24), we have

‖Eτ
2 + EτFτ + FτEτ‖2 ≤ 36ε2 + 12ε(2‖a‖1 + 6ε) = 108ε2 + 24‖a‖1ε. (25)

Next we estimate second term in the right hand side of (24). By (13), the kernel
function of Fτ

2 is given by

f̂τ (s, t) =
∫ τ

0
fτ (s− w)fτ (w − t)dw

and by (9), the kernel function of P (Fτ
2) is

pF 2
τ
(s) =

1
τ

∫ τ

τ−s
f̂τ (v + s− τ, v)dv +

1
τ

∫ τ−s

0
f̂τ (v + s, v)dv.

Using the definition of fτ in (23), we can check that
{ |f̂τ (s, t)| ≤ ‖fτ‖2

2, τ − τε ≤ s, t ≤ τ or 0 ≤ s, t ≤ τε,

|f̂τ (s, t)| = 0, otherwise.

Using this, it is straightforward to check that
{

pF 2
τ
(s) = 0, τε ≤ s ≤ τ − τε,

|pF 2
τ
(s)| ≤ 2τε‖fτ‖2

2/τ, 0 ≤ s ≤ τε or τ − τε ≤ s ≤ τ.

Terefore, it follows that for all τ > τ∗

‖pF 2
τ
‖1 =

∫ τε

0
|pF 2

τ
(s)|ds +

∫ τ

τ−τε

|pF 2
τ
(s)|ds ≤ 4‖fτ‖2

2τ
2
ε

τ
.

We now claim that ‖fτ‖2
2 ≤ 9‖a‖2

2. If this is true, then by our choice of τ∗ in (20),
‖P (F 2

τ )‖2 ≤ ‖pF 2
τ
‖1 < ε. Putting this result and (25) back into (24), our Lemma

follows.
Thus it remains to prove that ‖fτ‖2

2 ≤ 9‖a‖2
2. But by (23),

‖fτ‖2
2 ≤ ‖pAτ ‖2

2 + ‖aτ‖2
2 + 2‖aτ‖2‖pAτ ‖2

and by (9),

|pAτ (t)| = |τ − t

τ
a(t) +

t

τ
a(t− τ)| ≤ |a(t)|+ |a(t− τ)|, 0 ≤ t ≤ τ.

Using Schwarz’s inequality, we have ‖pAτ ‖2
2 ≤ 4‖a‖2

2. Hence ‖fτ‖2
2 ≤ 9‖a‖2

2.
Corollary 1. Let A be a self-adjoint convolution-type integral operator with kernel

function a ∈ L1(R) ∩ L2(R). Let vm,n = (Aum, un)τ . then

lim
τ→∞ sup

m∈Z

∞∑

n=−∞
n6=m

|vm,n|2 = 0. (26)
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Proof. By (11) and (13), the kernel function of Aτ
2 at the point (t− s) is given by

∞∑

m,k=−∞
(

∞∑

n=−∞
vm,nvn,k)um(t)ūk(s).

Therefore by (10), the kernel function P (A2
τ ) at the point (t− s) is given by

∞∑

m=−∞
(

∞∑

n=−∞
vm,nvn,m)um(t)ūm(s) =

∞∑

m=−∞
(

∞∑

n=−∞
|vm,n|2)um(t)ūm(s).

Howerver by (10) and (13) again, the kernel function of P (Aτ )2 at the point (t− s) is
given by

∞∑

m=−∞
|vm,m|2um(t)ūm(s).

Thus the kernel function of P (Aτ
2)− P (Aτ )2 at the point (t− s) is given by

∞∑

m=−∞




∞∑

n=−∞
n6=m

|vm,n|2

 um(t)ūm(s).

Hence (26) follows from (19).
Now we are ready to prove theorem 1.
Proof of Theorem 1. By Lemma 6, I + P (Aτ ) is invertible. Hence by Lemma 5,

the super-optimal preconditioner Cτ of Aτ exists. Using (10) and (16) and noting that
vm,m = (Aτum, um)τ is real, we see that the kernel function of Cτ − P (Aτ ) is given by

∞∑

m=−∞

(
ζm − v2

m,m

1 + vm,m

)
um(t)ūm(s) =

∞∑

m=−∞




1
1 + vm,m

∞∑

n=−∞
n6=m

|vm,n|2

 um(t)ūm(s),

Since A is a positive operator, 1 + vm,m ≥ 1 for all m. Hence (26) implies that

lim
τ→∞ ‖Cτ − P (Aτ )‖2 = lim

τ→∞ sup
m




1
1 + vm,m

∞∑

n=−∞
n6=m

|vm,n|2

 = 0.

By combining this result with (17), equation (18) follows with Sτ = Qτ + P (Aτ )− Cτ

and Tτ = Rτ .

Finally we prove the clustering of the spectrum of the preconditioned operator. By
(16), the eigenvalues of the operator I + Cτ are equal to

ζm + 2vm,m + 1
1 + vm,m

≥ 1.
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Thus I + Cτ is a positive operator with ‖(I + Cτ )−1‖2 ≤ 1. Using (18), we therefore
have

(I + Cτ )−1/2(I + Aτ )(I + Cτ )−1/2 − I

=(I + Cτ )−1/2Tτ (I + Cτ )−1/2 + (I + Cτ )−1/2Sτ (1 + Cτ )−1/2 = T̃τ + S̃τ ,

where clearly we have rankT̃τ = rank Tτ ≤ ρ and

‖S̃τ‖2 ≤ ‖Sτ‖2‖(I + Cτ )−1/2‖2
2 ≤ ε.

Thus, by the min-max theorem [4,p.123], theorem 1 follows.
In the following, we extend the convergence result to operators that are close to

convolution operators in the Hilbert-Schmidt norm. We first note that if E is an
operator with finite Hilbert-Schmidt norm, then Eτ , the restriction operator of E onto
[0, τ), can be decomposed as the sum of a small norm operator and a low rankoperator.

Lemma 8. Let E be a self-adjoint operator with kernel function e(s, t). If
∫ ∞

0

∫ ∞

0
|e(t, s)|2dtds ≤ M < ∞ (27)

for some constant M, then for each given ε > 0, at most M/ε2 eigenvalues of Eτ outside
the interval (−ε, ε).

Proof. The Lemma follows easily by noting that the eigenvalues λn of Eτ satisfies

∑
n

|λn|2 ≤
∫ τ

0

∫ τ

0
|e(t, s)|2dtds ≤ M,

see [7,p.32] for instance.
Combining this together with Lemma 6 or Theorem 1, we have our main theorem.
Theorem 2. Let B be a self-adjoint integral operator with with kernel function

b(t, s) = a(t − s) + e(t, s) where a(·) ∈ L1(R) ∩ L2(R) and e(s, t) satisfies (27). Let
Aτ be the operator on [0, τ) with kernel function a(·) and Dτ be the optimal (or super-
optimal) preconditioner for Aτ . Then for each ε > 0, there is a positive integer ρ and
a τ∗ > 0 such that for each τ > τ∗, there exists a decomposition

Bτ −Dτ = Sτ + Tτ ,

where Sτ and Tτ are silf-adjoint operators satisfying ‖Sτ‖2 ≤ ε and rankTτ ≤ ρ. More-
over, the spectrum of (I + Dτ )−1/2(I + Bτ )(I + Dτ )−1/2 has at most ρ eigenvalues
outside interval (1− ε, 1 + ε).

Thus if I + Bτ is preconditioned by I + Dτ , we expect fast convergence.

5. Numerical Results

In this section, we test the convergence performance of the optimal and super-
optimal preconditioners for solving integral equations of the second kind. In the tests,
the operators are all discretized by the rectangular quadrature rule. The rule using N
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points will yield N -by-N matrices. Random vectors are used as initial guesses and are
kept the same for all preconditioners. The stopping criterion is ‖rk‖2/‖r0‖2 < 10−7,
where rk is the residual vector of preconditioned conjugate gradient method after k
iterations.

We first test the preformance on integral equations with convolution kernels.Two
kernel functions were tested and they are:

1. a1(t) = σ
1+e|t| .

2. a2(t) = σ
1+|t|1.01 .

We note that in real applications, σ−1 is the regularization parameter used and is
usually small. In all our experiments, we set σ−1 = 0.01. We note that the discretiza-
tion matrices formed from I + Aτ and I + P (Aτ ) are Toeplitz and circulant matrices
respectively. Tables 1 and 2 gives the numbers of iterations required for convergence
for different preconditioners. In the tables, O, S and I denote that the optimal, super-
optimal and no preconditioner is used respectively. We see from the tables that the
two preconditioners perform almost the same when τ is large and their performances
are much better than that of no preconditioning.

Table 1.
Number of iterations for test fuction a1(t).

N τ = 16 τ = 64 τ = 256 τ = 1024
O S I O S I O S I O S I

1024 7 11 38 6 7 65 6 6 59 5 5 23
2048 8 11 40 6 8 66 6 6 71 5 5 40
4096 7 11 39 6 7 66 6 7 75 6 6 59
8192 8 11 42 7 8 68 5 7 75 6 6 70

Table 2.
The number of iterations for test function a2(t).

N τ = 16 τ = 64 τ = 256 τ = 1024
O S I O S I O S I O S I

1024 7 10 48 7 8 77 7 7 66 7 7 31
2048 7 11 52 7 9 85 8 8 96 8 8 52
4096 7 10 48 7 8 79 8 8 109 8 8 83
8192 8 10 54 8 9 88 9 9 123 8 8 122

Next we test our algorithms for general integral equations. We tried the following
two kernel functions:

1. a3(s, t) = σ( 1
1+(s−t)2

+ e−
√

t2+s2).
2. a4(s, t) = σ

1+(s−t)2(1+(1+t+s)−1)
.

Again σ−1 was set to 0.01 in our experiments. We remark that with a(t) = σ/(1+t2),
the function a3(s, t) satisifies the assumptions in Theorem 2 while a4(s, t) does not. In
the tests, we used the optimal preconditioner for the operator Aτ as the preconditioner
in both cases. The convergence results are listed in Table 3. We see that the numbers
of iterations of PCG method are smaller than that of the CG method considerably.
We also emphasize that if we look at the numbers of iterations for fixed mesh-size, i.e.
τ/N is fixed, we see that the numbers are increasing rapidly with increasing τ for the
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non-preconditioned systems. This indiciates that the finite-section equation (2) is less
well-conditioned as τ → ∞. However, the numbers stay basically unchanged for the
preconditioned one.

Table 3.
The numbers of iterations for a3(s, t) and a4(s, t).

a3(s, t) a4(s, t)
N τ = 164 τ = 32 τ = 64 τ = 128 τ = 16 τ = 32 τ = 32 τ = 32

O I O I O I O I O I O I O I O I
64 8 45 8 49 * * * * 9 45 8 47 * * * *
128 10 42 8 66 7 61 * * 9 45 9 66 8 63 * *
256 10 42 8 65 8 85 7 70 10 45 10 66 9 83 8 69
512 10 40 9 63 8 85 8 97 10 44 9 66 10 84 8 97
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