
Journal of Computational Mathematics, Vol.14, No.3, 1996, 237–248.

ON COMPUTING ZEROS OF A BIVARIATE BERNSTEIN
POLYNOMIAL∗

F.L. Chen1)

(Department of Mathematics, University of Science and Technology of China, Hefei, China)

J. Kozak2)

(Department of Mathematics, University of Ljubljana, 1000 Ljubljana, Slovenija)

Abstract

In this paper, the problem of computing zeros of a general degree bivariate
Bernstein polynomial is considered. An efficient and robust algorithm is presented
that takes into full account particular properties of the function considered. The
algorithm works for rectangular as well as triangular domains. The outlined proce-
dure can also be applied for the computation of the intersection of a Bézier patch
and a plane as well as in the determination of an algebraic curve restricted to a
compact domain. In particular, singular points of the algebraic curve are reliably
detected.

1. Introduction

In [ 6 ] and [ 4 ], the problem of finding the intersection of a cubic Bézier patch
and a plane was considered. [ 6 ] considered a rectangular, and [ 4 ] a triangular patch.
Since the Bernstein operator Bn : f 7→ Bn(f) preserves linear functions, the problem
was simplified to the computation of zeros of a bivariate Bernstein polynomial Bn(f).
Both papers produced simple and efficient computational algorithms. It is based upon
the following idea: determine the points where inside the support the topology of zeros
of Bn(f) changes. This was done by restricting the bivariate polynomial to a particular
line direction, and determine these points from the fact that this restriction is a cubic
polynomial. The zero branches were then separately computed between each pair of
exceptional points.

A similar problem can be traced to [ 7 ] in a slightly different context, this time for
general n. Let

p(x, y) = 0, p(x, y) :=
n∑

i=0

n−i∑

j=0

pijx
iyj (1.1)

be the equation that defines a given planar algebraic curve. Suppose that one is inter-
ested in computing set of points {(x, y)} that satisfies (1.1) in a given triangle T ∈ IR2.
The recipe in [ 7 ] suggests to rewrite p as a Bézier patch over triangle, and look for
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its zeros. Though no special algorithm for this particular problem was suggested, some
help was given by the theorem 1 ([ 7 ]): if the corresponding Bézier net is strictly
increasing along mesh lines in one direction, any line in this direction will cross the
algebraic curve at most once.

In this paper, we extend the algorithm for computing zeros of the Bernstein polyno-
mial presented in [ 4 ] to the general degree case. As it turns out rather unexpectedly,
the general algorithm is as simple as its cubic counterpart though general degree al-
gebraic equations admit no radical solutions. As already pointed out, the outlined
procedure solves also the Bézier patch-plane intersection problem as well as the prob-
lem of computation of algebraic curves restricted to compact domains Ω ∈ IR2. It
should also be mentioned that the given algorithm is computationally superior to the
methods for computing algebraic functions that one encounters in standard mathemat-
ical packages. In particular, the comparison with the ImplicitPlot procedure used in
the Mathematica package ([ 1 , p. 127]) was tested.

For the sake of simplicity, we shall consider only the triangle case. It is easy to see
that the basic steps work out for both the rectangular and triangular support. Thus
it is obvious that the algorithm can be simply transformed to handle the rectangular
case. We shall demonstrate this just by computational examples.

Let us recall some notation and basic facts. Let T be a given nondegenerate triangle.
The most natural way to express the Bernstein polynomial on a triangle is to write it
in the barycentric form. The Bernstein basic functions Bn

ijk in this case are defined as

Bn
ijk(βT (x, y)) := Bn

ijk(u, v, w) :=
n!

i!j!k!
uivjwk

with
β := βT : IR3 → IR2

being the (invertible) barycentric map. The Bernstein polynomial of a function f :
IR2 → IR reads as

Bn(f) :=
∑

i+j+k=n

fijkB
n
ijk

where fijk := f(β−1
T ( i

n , j
n , k

n)) are given coefficients.
The key step of the algorithm is to reduce two-dimensional problem to one dimen-

sion. Let T1, T2, T3 denote the vertices of T . Choose fixed s, 0 ≤ s ≤ 1, and somewhat
arbitrary T4 = (1− s)T2 + sT3. Then by [ 3 ]

Qs := Bn(f)|T1T4

is a Bernstein polynomial of one variable, with coefficients being polynomials in s. As
already computed in [ 4 ]

Qs(t) =
n∑

i=0

ai(s)Bn
i (t),

ai(s) :=
i∑

j=0

fn−i,i−j,jB
i
j(s) (1.2)
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with

Bn
i (t) :=

(
n

i

)
ti(1− t)n−i. (1.3)

If now the intersections of the algebraic curve branches Bn(f) = 0 and the line T1T4

are known for some s, i.e.

Qs(ti) = 0, i = 1, 2, · · · , r,

they can be efficiently computed also for s±∆s for small ∆s as long as the intersection
changes continuously. Thus it is crucial to determine in advance all the (exceptional)
values

E : {0 < s1 < s2 < · · · < sm < 1} (1.4)

for which at least at some (ti, si) the line-algebraic curve branch intersection changes
topology. On each of the subintervals (si, si+1) separately it is then simple and stable to
compute all the branches of the algebraic curve since their number as well as topological
structure does not change.

A search for (1.4) will be done with the help of the following proposition.
Proposition. If s is an exceptional value then one of the following alternatives

must hold
• Qs(1) = 0,

• ∃t ∈ [0, 1) such that Q
(r)
s (t) = 0, r = 0, 1, · · · , k, k ≥ 1.

Proof. The first condition detects the algebraic curve branch that leaves the support.
Assume now that Qs(1) 6= 0. By definition, if a point (t, s), t ∈ (0, 1) is exceptional
then at least one branch of the algebraic curve Bn(f) = 0 does not continue in at least
one direction (t, s) → (t, s± 0). But Bn(f) is a continuous function, thus if (t, s) is an
isolated singular point of the algebraic curve,

Qs+0(t + 0), Qs+0(t− 0), Qs−0(t− 0), Qs−0(t + 0)

are nonvanishing, and of the same sign. This implies that order of the zero of Qs(t)
as a function of t must be even. Assume now that a given branch continues, say as
(t, s) → (t, s + 0). The zero (t, s) cannot be simple. Since Qs(t) does not vanish
identically, a simple zero would contradict the fact that

Qs(t + 0), Qs−0(t), Qs(t− 0)

are nonvanishing, and of the same sign. By continuity, this discussion holds for s = 0
too.

Thus one has only look for zeros of Bn(f) at the boundary, and for zeros of a
particular direction derivative of order at least 2. In [ 4 ] the condition that determined
an exception point was necessary and sufficient due to the cubic case. In the general
case the condition given can be only necessary, but not sufficient. This implies that
some computed si might be actually extraneous without really influencing efficiency of
the algorithm.
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Figure 1. Different types of line-algebraic curve branch intersections

Figure 1 shows five types of line-algebraic curve branch intersections one might
encounter. (a), (e) shows the intersection at regular curve point, (d) at ordinary dou-
ble point - crunode, and (b), (c) at singular double point (cusp and acnode). The
intersections (e), (d) are not exceptional.

The basic lemmas and the algorithm will be given in the next section, and numerical
examples in the section 3.

2. The Basic Lemmas and the Algorithm

Let us first outline some simple facts. Let f := (fi) be given sequence of real
numbers, Bn

i as defined in (1.3) , and let

Bn,i := Bn,i(f) :=
n+i∑

j=i

fjB
n
j−i,

denote the Bernstein polynomial of degree ≤ n, based upon the values fi, fi+1, · · · , fn+i.
Lemma 1. The Bernstein polynomial Bn,i vanishes at least twice at t0 iff t0 is a

common zero of Bn−1,i(f), Bn−1,i+1(f).
Proof. Recursive formula for Bn,i(f)(t), B′

n,i(f)(t) produces

(
Bn,i(f)(t)
B′

n,i(f)(t)

)
=

(
1− t t
−n n

) (
Bn−1,i(f)(t)

Bn−1,i+1(f)(t)

)
. (2.5)

Since determinant of the matrix in (2.5) is equal to n independently of t, conclusion
follows.

Lemma 2. Let
Bn,0(f)(1) 6= 0, (2.6)
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and Bn−1,0(f), Bn−1,1(f) be linearly independent. Let

Rn := Rn(f) := (rij)
n−1,n−1
i,j=1

be a symmetric matrix with coefficients for i ≤ j given as

rij :=
min(n−1,2n−i−j−1)∑

k=n−i

(
n− 1

k

)(
n− 1

2n− i− j − 1− k

) ∥∥∥∥
fk f2n−i−j−k−1

fk+1 f2n−i−j−k

∥∥∥∥ . (2.7)

Bn,0(f) vanishes at least twice at some point t0 iff

det Rn−r(f) = 0, r = 0, 1, · · · , k, k ≥ 0.

Proof. By lemma 1 Bn,0(f) has a zero of order ≥ 2 iff the vector polynomial
(

Bn−1,0(f)
Bn−1,1(f)

)
(2.8)

has a zero. Recall the Bezout resultant for Bernstein polynomials in
[ 5 , p. 336, prop. 4.1] that gives the necessary and sufficient condition for existence of
a zero of a vector Bernstein polynomial in terms of its coefficients. By rewriting it for
a particular polynomial (2.8) one obtains the resultant matrix (2.7) . Its determinant
vanishes if (2.8) has zero, or fn−1 = fn = 0. But the latter is not possible by (2.6) .

Moreover, [ 5 ] provides also a way of computing t0: let the suppositions of the
lemma 2 hold, and let detRn−k−1(f) 6= 0. Perform Gauss elimination on R to reduce
it to upper triangular matrix. Let

{0, 0, · · · , hk, hk−1, · · · , h0}

be the (n− k − 1)-th row of the upper triangular matrix, and

h(u) :=
k∑

r=0

hru
r. (2.9)

The zeros of h, and zeros t of (2.8) are connected by the relation

t =
u

u + 1

Thus
t0 ∈ [0, 1) ⇐⇒ u ∈ [0,∞).

Since [ 4 ] solves the problem for n = 2, 3, the determinants of R2, R3 can be found
already there. In order to help the reader we compute here the lower triangles of R4, R5

too:

R4 =




3f2
3 − 3f2f4

3f2f3 − 3f1f4 9f2
2 − 8f1f3 − f0f4

f1f3 − f0f4 3f1f2 − 3f0f3 3f2
1 − 3f0f2



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R5 =




4f2
4 − 4f3f5

6f3f4 − 6f2f5 24f2
3 − 20f2f4 − 4f1f5

4f2f4 − 4f1f5 16f2f3 − 15f1f4 − f0f5 24f2
2 − 20f1f3 − 4f0f4

f1f4 − f0f5 4f1f3 − 4f0f4 6f1f2 − 6f0f3 4f2
1 − 4f0f2




Lemma 3. Let
Bn−1,0(f), Bn−1,1(f)

be linearly dependent. Then Rn(f) = 0. Also, Bn(f) = const or it has n-fold zero.
Proof. By supposition, one can find α such that

Bn−1,0(f) = αBn−1,1(f).

This implies
fi = αfi+1 = · · · = αn−ifn, i = 0, 1, · · · , n− 1. (2.10)

The determinants in (2.7) then vanish all,
∥∥∥∥

fk f2n−i−j−k−1

fk+1 f2n−i−j−k

∥∥∥∥ = f2
n

∥∥∥∥
αn−k αi+j+k+1−n

αn−1−k αi+j+k−n

∥∥∥∥ = f2
n(αi+j − αi+j) = 0,

and first claim is confirmed. (2.10) also implies

Bn,0(f)(t) = fn((1− t)α + t)n.

If α = 1, Bn,0 is constant, otherwise vanishes n-fold at α
α−1 .

We are now ready to outline the algorithm. Let us assume that Bn(f) 6= const. Let
A denote the algebraic curve Bn(f) = 0.

1. Compute E1 := {s | 0 < s < 1, Qs(1) = an(s) = 0}.
2. Compute the polynomial det Rn(f), with f := (ai(s)), and ai(s) given in (1.2) .

3. Determine the zeros E2 := {s | 0 ≤ s < 1, detRn(f)(s) = 0}. The set

E := {0 = s0 < s1 < · · · < sm = 1} := E1 ∪ E2 ∪ {0, 1}

by lemma 2 and lemma 3 contains all the exceptional values.

4. For each s ∈ E determine the zeros t ∈ [0, 1] of Qs(t), and add them to A. If
there are none, one can exclude that particular s from E.

5. For each pair (si, si+1), si ∈ E, si+1 ∈ E find all the zeros

tij ∈ (0, 1) : Qs(tij) = 0, j = 1, 2, · · · , k

with
s :=

si + si+1

2
.
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6. Follow the branch j of the algebraic curve from the point

(tij ,
si + si+1

2
)

to the boundaries si, si+1. If ∆s is the chosen step in s parameter, and (s, t)
already computed point on the curve, take

t + ∆t, ∆t := −∂Qs(t)
∂s

/
∂Qs(t)

∂t
∆s

as the initial guess for the value of the other parameter, and improve this value
by Newton iteration.

Some remarks have to be added. Steps 1 and 2 require determination of the zeros
of a polynomial that lie in a given interval. Thus the methods that take into account
this fact such as the Sturm method would be most efficient to apply. However, general
polynomial solvers are widely available. Note also that det Rn(f)(s) is (for the triangle
case) in general polynomial of degree ≤ n(n − 1), so the step 3 will be most time
consuming. This follows from the fact that

degree rij(s) ≤ (n− i)(n− j),

and the highest power of s in det Rn(f) is obtained by the product of diagonal elements.
The step 4 is required to determine isolated points of the algebraic curve. (2.9) can
be applied.

3. Numerical Examples

We shall demonstrate the algorithm for both triangular and rectangular support.
Let us throughout assume that the triangle is given as

T = {(x, y)|0 ≤ x, y ≤ x + y ≤ 1}, T1 = {0, 0}, T2 = {1, 0}, T3 = {0, 1},
and the rectangle as

M = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
T1 = {0, 0}, T2 = {1, 0}, T3 = {1, 1}, T4 = {0, 1}.

The coefficients of the Bernstein polynomial over T will be given as lower triangular
matrix with indexes ordered as follows

(i, j, n− i− j), i = n, n− 1, . . . , 0, j = n− i, n− i− 1, . . . , 0.

Similarly,
(i, j), i = 0, 1, · · · , n, j = 0, 1, · · · , n

for the rectangular case. For example, take n = 3. The coefficients (fi,j,k) are given as

(fi,j,k) =




f300

f210 f201

f120 f111 f102

f030 f021 f012 f003


 ,
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and (fi,j) as

(fi,j) =




f00 f01 f02 f03

f10 f11 f12 f13

f20 f21 f22 f23

f30 f31 f32 f33


 .

Example 1. Let us consider first a rather complex algebraic curve that has no
singular points in the support:

p1(x, y) := 3− 42x + 180x2 − 560x3 + 855x4 − 546x5 + 116x6 − 24y+

330xy − 420x2y + 720x3y − 1230x4y + 588x5y + 165y2 − 2460xy2+

3780x2y2 − 2460x3y2 + 795x4y2 − 460y3 + 6360xy3 − 7800x2y3 + 2520x3y3+

315y4 − 6000xy4 + 4410x2y4 + 210y5 + 1674xy5 − 204y6 = 0.

Plot of p1 is given in figure 2.

Figure 2. The plot of p1

A linear transformation to Bernstein basis over T gives

(fi,j,k) =




3
−4 −1
1 3 6
−10 12 −20 1
−8 10 −6 10 −18
2 −3 3 6 −3 3
6 −4 −10 0 22 −20 5



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The coefficients ai(s) are computed as

( 3, −4 + 3s, 1 + 4s + s2,
−10 + 66s− 162s2 + 107s3,
−8 + 72s− 204s2 + 264s3 − 142s4,
2− 25s + 110s2 − 140s3 + 25s4 + 31s5,
6− 60s + 60s2 + 240s3 − 240s4 − 336s5 + 335s6).

The boundary zeros are determined as zeros of a6(s),

E1 = { 0.1205817297277968, 0.4617632574259461,
0.7479972987939762, 0.9542034415358480}.

The resultant matrix, even the resultant, would be too clumsy to present. The zeros
of the resultant in [0, 1) are

E2 = { 0.1215264354251871, 0.2707817768296583,
0.5294143589879580, 0.6795268231893524,
0.7601818933359121, 0.9519920879214000 },

and the set E has finally ten points. The values

0.529414358987958, 0.6795268231893524

are extraneous as shown in figure 3, and would be detected on step 4. Figure 4 reveals
that they correspond to two exceptional points lying in M − T . In the Bernstein basis

Figure 3. The lines s ∈ E and the plot of p1 = 0 over T

over M , p1 now reads

(fi,j) =




3 −1 6 1 −18 3 5
−4 7/6 −10 −15/2 −7 35/3 −18
1 32/3 −98/15 32/5 206/15 15 −31
−10 11/2 −39/5 72/5 81/5 −4 −23
−8 7 −24/5 74/5 −61/15 −115/3 45
2 31/6 −41/3 −19/2 −161/3 −199/3 247
6 0 −18 −17 −51 55 815




.
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The roles of the lines T1 → (1− s)T2 + sT3 are now playing that of the lines

(1− x)T1 + xT2 → (1− x)T4 + xT3.

As a result,

E1 = { 0.0378849393303741, 0.1062272779679897,
0.4022080383277741, 0.8129587231380680 }

and

E2 = { 0.0468897629167010, 0.1863282899219849, 0.2178113399491106,
0.2393089960526824, 0.3019553483048598, 0.3893871112700215,
0.4047902547627562, 0.5359584747568275, 0.5387740195311480,
0.5390230579738621, 0.5461798336859473, 0.7770167302864178 }.

The algebraic curve as well as the lines that correspond to E are given in figure 4.

Figure 4. The lines x ∈ E and the plot of p1 = 0 over M

Example 2. Consider now the cubic algebraic curve plotted in figure 1 (c). Its
power basis expansion reads

p2(x, y) := 2891− 27588x + 87120x2 − 85184x3 − 864y + 1728y2.

The B-form over T is computed as

(fi,j,k) =
1

1728




2891
−6305 2603
13539 −6593 2891
−22761 13251 −6305 3755


 .

The coefficients ai(s) are
1

1728( 2891, −6305 + 8908s,
(4513− 7404s)(3− 4s),
−22761 + 108036s− 166704s2 + 85184s3).
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Figure 5. The lines s ∈ E and the plot of p2 = 0 over T

There is only one zero of a3(s) in (0, 1),

E1 = {0.4656123746463041}.

The resultant matrix R3 is small enough, i.e.

23328r11 = 621819− 3224166s + 6401224s2 − 5669264s3 + 1848256s4

23328r12 = −152823 + 485452s− 495776s2 + 137128s3

23328r22 = 9559 + 63646s− 97928s2.

Its determinant is given by

121
5038848( −1332331 + 12024254s− 45309539s2 + 91231976s3

−103225400s4 + 61890368s5 − 15289264s6).

It has only one (double) zero in [0, 1), i.e.

E2 = {0.5}.

This reveals the isolated point (acnode) of the algebraic curve, (x, y) = (1
4 , 1

4), that
would be by more general methods hard to uncover.

As for the rectangular case,

(fi,j) =
1

1728




2891 2603 2891 3755
−6305 −6593 −6305 −5441
13539 13251 13539 14403
−22761 −23049 −22761 −21897


 .

E1 = { 0.5380115821196769, 0.6105187724683388 }
and

E2 = { 0.25, 0.5227272727272727 }.
The final result is plotted in figure 6.
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Figure 6. The lines x ∈ E and the plot of p2 = 0 over M
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