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Abstract

In this series of three papers we study singularly perturbed (SP) boundary
value problems for equations of elliptic and parabolic type. For small values of
the perturbation parameter parabolic boundary and interior layers appear in these
problems. If classical discretisation methods are used, the solution of the finite
difference scheme and the approximation of the diffusive flux do not converge uni-
formly with respect to this parameter. Using the method of special, adapted grids,
we can construct difference schemes that allow approximation of the solution and
the normalised diffusive flux uniformly with respect to the small parameter.

We also consider singularly perturbed boundary value problems for convection-
diffusion equations. Also for these problems we construct special finite difference
schemes, the solution of which converges ε-uniformly. We study what problems ap-
pear, when classical schemes are used for the approximation of the spatial deriva-
tives. We compare the results with those obtained by the adapted approach. Re-
sults of numerical experiments are discussed.

In the three papers we first give an introduction on the general problem, and
then we consider respectively (i) Problems for SP parabolic equations, for which
the solution and the normalised diffusive fluxes are required; (ii) Problems for SP
elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;
(iii) Problems for SP parabolic equation with discontinuous boundary conditions.
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Part III

PARABOLIC EQUATIONS WITH A DISCONTINUOUS BOUNDARY
CONDITION

1. Introduction

The solution of partial differential equations that are singularly perturbed and/or
have discontinuous boundary conditions generally have only limited smoothness. Due
to this fact difficulties appear when we solve these problems by numerical methods.
For example for regular parabolic equations with discontinuous boundary conditions,
classical methods (FDM or FEM) on regular rectangular grids do not converge in the
`∞-norm on a domain that includes a neighbourhood of the discontinuity [8, 9, 4].

If the parameter multiplying the highest-order derivative vanishes, boundary- and
interior layers generally appear. When a discontinuity is present in the initial function
(given at t = 0), an interior layer is generated. Outside a neighbourhood of the dis-
continuity classical difference schemes converge in the `∞-norm for each fixed value of
the small parameter, but they do not converge in the `∞-norm in the neighbourhood
of the discontinuity. Neither do they converge uniformly in ε in any neighbourhood of
the interior layer [8, 9]. Therefore, it is interesting to construct special methods which
are `∞-convergent for parabolic PDEs with discontinuous initial functions, both in the
regular and in the singularly perturbed case. In the latter case it is important to see
if and when such convergence can be uniform in the small parameter on the whole
domain of definition.

In [8, 9] singularly perturbed parabolic equations with discontinuous boundary con-
ditions were studied. There, special difference schemes were constructed for these prob-
lems. In order to be able to construct a method that was uniformly convergent (in the
small parameter ε), special variables were used in the neighbourhood of the disconti-
nuity. By introducing the variables θ = x/(2ε

√
t) and t, the singularity was removed

from the boundary value problem and the solution became a smooth function in the
new variables. This behaviour of the transformed solution allows the use of a classical
scheme in the transformed variables in the neighbourhood of the singularity. Away
from the singularity the classical scheme can be used with the original variables.

This transformation in the neighbourhood of the singularity implied the use of a
specially condensed grid in the neighbourhood of the boundary and interior layers. So
we can say that the technique is based on: (i) fitted methods in which the coefficients of
the difference equations are adapted to the singularities; (ii) methods that use special,
refined meshes in the neighbourhood of singularities. For these schemes `∞-convergence
on the whole domain is proved, uniformly in the small parameter, but a disadvantage
of these schemes is that they are very hard to realise in practice.
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Because fitting of the coefficients, combined with fitting of the mesh is generally
too complex for practical application, in the present paper we propose a new method
in which only the coefficients are adapted. We use a uniform rectangular grid and
a special difference equation with fitted coefficients. This method is much easier to
realise.

For the construction of the new scheme the coefficients are selected such that the
solution of a model problem with a piecewise constant, discontinuous initial function is
the exact solution of the difference equations. This difference scheme with adapted
coefficients is studied in this paper and it is compared with the classical scheme.

As was shown in [8, 9], no scheme exists that converges uniformly on a uniform grid
for the general problem with a parabolic layer. However, for problems with an interior
layer, the present method has this favourable property, and, in addition, numerical
examples show that the method has practical value for far more general equations with
discontinuous boundary conditions.

2. Problem Formulation

We consider the Dirichlet boundary value problem for the following singularly per-
turbed equation of parabolic type

L(2.1)u(x, t) = f(x, t), (x, t)∈G,

u(x, t) = φ(x, t), (x, t)∈S,
(2.1a)

where
G = {(x, t)| − 1 < x < 1, 0 < t ≤ T}, S = G\G, (2.1b)

L(2.1) ≡ ε2 ∂2

∂x2
− p(t)

∂

∂t
− c(t) . (2.1c)

The parameter ε may take any value ε∈(0, 1]. The coefficients c(t), p(t) and the source
f(x, t) are sufficiently smooth functions on G and the coefficients are positive:

c(t) ≥ 0, p(t) ≥ p0 > 0, (x, t)∈G. (2.2)

The boundary function φ(x, t) has a discontinuity of the first kind on the set S?:

S? = {(x, t)|x = 0, t = 0}.
A piecewise continuous function v(x, t), (x, t)∈S\S?, is redefined at the discontinuity by

v(x, t) =
1

2

{
lim
s↘0

v(x + s, t) + lim
s↗0

v(x + s, t)

}
, (x, t)∈S?, (2.3)

and the jump in the discontinuity is defined by

[v(x, t)] =

{
lim
s↘0

v(x + s, t)− lim
s↗0

v(x + s, t)

}
, (x, t)∈S?. (2.4)
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For simplicity S? consists of a single point only. Outside S? the function φ(x, t) is
sufficiently smooth on S.

Such boundary value problems with discontinuous boundary condition describe for
example the temperature in a heat transfer problem, when two parts of a material with
different temperatures are instantaneously connected [5]. Then, the small parameter ε

corresponds to a small heat conduction coefficient.
The solution of the boundary value problem (2.1) is a function u∈C(G\S?)∩C2,1(G),

that is on G it is C2 in x and C1 in t.
We say that the discrete approximation converges ε-uniformly (or uniformly in ε)

on G if the `∞-norm of the error converges to zero on G, uniformly in ε.
For the construction of a special difference scheme we shall use the standard function

w0(x, t), which is discontinuous on S?,

w0(x, t) = w0(x, t; p1) =
1
2
v(

x

2ε

√
p1

t
), (x, t)∈G\S? , (2.5)

where p1 = p(0) and v(ξ) = erf(ξ) = 2√
π

∫ ξ
0 exp(−α2) dα is the error function. For

t = 0, at the point x = 0 the function (2.5) is defined by continuous extension. The
function w0(x, t) is the solution of the constant coefficient equation

L(2.6)u(x, t) ≡
(

ε2 ∂2

∂x2
− p1

∂

∂t

)
u(x, t) = 0, (x, t)∈G. (2.6)

This function is piecewise constant on S at t = 0 and has a discontinuity of the first
kind in S? :

[w0(0, 0)] = 1.

Suppose

W0(x, t) = exp
(
−

∫ t

0

c(ξ)
p(ξ)

dξ

)
w0(x, η(t); p1), with η(t) =

∫ t

0

p1

p(ξ)
dξ . (2.7)

Then the function W0(x, t) is continuous on G\S?, it is a solution of the homogeneous
equation

L(2.1)u(x, t) = 0, (x, t)∈G . (2.8)

On S the function u(x, t) is continuous and piecewise smooth. For simplicity we sup-
pose that u(x, t) is sufficiently smooth on the boundary of G, and that a compatibility
condition is satisfied at the corner points. We are interested in the solution of problem
(2.1) in the neighbourhood of the point of discontinuity and in the neighbourhood of
the generated interior layer. Therefore, we suppose that the boundary conditions at
x = ±1 are such that no boundary layers appear.

3. An ε-uniformly Convergent Scheme

On the set G we introduce the rectangular grid

Gh = ω × ω0 . (3.9)
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Here ω and ω0 are uniform grids on the segments [−1, 1] and [0, T ] respectively. For
some N, N0 > 0 we take xi = ih, i∈ZZ; −1 ≤ xi ≤ 1; h = 2/N ; tj = jτ ; j =
0, 1, 2, . . . , N0, τ = T/N0; and

Gh = G ∩Gh; Sh = S ∩Gh; S?
h = S? ∩Gh.

On the set S?
h the boundary function φ(x, t) is defined by

φ(x, t) =
1
2

{
lim
s↗x

φ(s, t) + lim
s↘x

φ(s, t)
}

, (x, t)∈S?
h. (3.10)

For the numerical approximation of (2.1) we may use classical difference approxi-
mations (see [6, 7]). For example, in the case of the implicit central difference scheme
we have

Λ(3.11)z(x, t) = f(x, t), (x, t)∈Gh,

z(x, t) = φ(x, t), (x, t)∈Sh,
(3.11a)

where
Λ(3.11) ≡ ε2δxx − p(t)δt − c(t), (3.11b)

with δtz(x, t) and δxxz(x, t) the usual first and second difference of z(x, t) on the uniform
grids ω0 and ω respectively; the bar denotes the backward difference. It is well known
that the operator Λ(3.11) is monotone [7], which implies that the maximum principle
holds for (3.11).

Nevertheless, the classical difference scheme (i) does not converge on the whole
domain G

?
h = Gh\S?

h for a fixed value of ε, and (ii) outside a neighbourhood of the
discontinuity it does not converge uniformly with respect to ε in the interior layer
(see Section 4). To obtain uniform convergence, in the present paper we introduce a
specially fitted scheme for the approximation of equation (2.1a),

Λ(3.12)z(x, t) = f(x, t), (x, t)∈Gh,

z(x, t) = φ(x, t), (x, t)∈Sh,
(3.12a)

where
Λ(3.12) ≡ ε2γ(x, t)δxx − p(t)δt − c(t) . (3.12b)

According to the principle mentioned in the introduction, here γ(x, t) is a fitting
coefficient or fitting factor, which is chosen such that the singular solution, W0(x, t), is
the exact solution of the homogeneous difference equation (3.13):

Λ(3.12)W0(x, t) ≡
{
ε2γ(x, t)δxx − p(t)δt − c(t)

}
W0(x, t) = 0, (x, t)∈Gh . (3.13)

More generally we can select γ(x, t) such that (3.13) is satisfied by υ(x, t) =
W0(x, t) + u0(x, t), where W0 is the singular solution and u0 is some smooth solution
of the homogeneous equation

L(2.1)u(x, t) = 0, (x, y)∈G . (3.14)
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This leads to the following expression for γ:

γ(x, t) =
p(t) δtυ(x, t) + c(t)υ(x, t)

ε2 δxxυ(x, t)
, (x, t)∈Gh , (3.15)

for any point (x, t) where δxxυ(x, t) 6= 0.
We notice that for u0(x, t) ≡ 0 the differences δxxυ(x, t) and δtυ(x, t) can be very

small because of the exponentially small derivatives of W0(x, t) for large x/(ε
√

t). To
improve the numerical behaviour in the computation of γ(x, t), we choose the function
u0 such that the differences δxxW0 and δxxu0 have the same sign, for (x, t)∈Gh. In
particular, in the remaining part of this paper we take, for example,

u0(x, t) = −
{

x3 + 6ε2x

∫ t

0

1
p(ξ)

dξ

}
exp

(
−

∫ t

0

c(ν)
p(ν)

dν

)
, (x, t)∈G, (3.16)

so that, for example for c(t) ≡ 0 and p(t) ≡ 1, we obtain

u0(x, t) = u(3.17)(x, t) = −x3 − 6ε2xt , (x, t)∈G . (3.17)

Then, for γ(x, t) we have the general representation

γ(x, t) =
p(t)(δtW0(x, t) + δtu0(x, t)) + c(t)(W0(x, t) + u0(x, t))

ε2δxxW0(x, t) + ε2δxxu0(x, t)
, x 6= 0 , (3.18)

where the functions W0 and u0 are defined by (2.7) and (3.16) respectively. Note that
δxxυ = δtυ = υ = 0, at x = 0, t > 0. Therefore, for definiteness, we set γ(x, t) = 1
at x = 0. Now we define the resulting difference scheme as (3.12), where γ(x, t) is
determined by (3.18).

Under the condition that
τ3/2

h
≤ ψ(h, τ) (3.19)

where ψ(h, τ) > 0 and ψ(h, τ) → 0 for h, τ → 0, then the scheme (3.12,3.18) converges
uniformly in ε:

max
Gh

|u(x, t)− z(x, t)| ≤ M {(h + τ)ν + ψ(h, τ)} , (3.20)

for any ν∈(0, 1/3).
If, for instance,

h ≥ O(τ
3

2(1+ν) ) (3.21)

then
max
Gh

|u(x, t)− z(x, t)| ≤ M(hν1 + τν1) , (3.22)

According to (2.7) to compute δxxW0(x, t) on time layer t = jτ we use the difference derivative

δxxw0(x, η(t)). The difference derivatives δtW0(x, t), δxxW0(x, t), δtu0(x, t), δxxu0(x, t) can easily be

found, for example when the functions p(t) and c(t) are analytical.
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for any ν1∈(0, 1/3). Thus, we have the following theorem [3]:
Theorem 3.1. Under condition (3.19), the solution of the difference scheme (3.12,

3.18) converges on Gh in the discrete `∞-norm to the solution of problem (2.1) uniformly
in ε. Under the conditions (3.19) or (3.21) respectively, the estimates (3.20) or (3.22)
hold for the solution of the difference problem.

4. Numerical Results

By theory [8, 9] and by numerical experiments [2] it is shown that, for discontin-
uous initial conditions, classical difference schemes do not converge in the `∞-norm
everywhere on the set Gh\S?, even for a fixed value of ε. Neither do they converge
uniformly in ε in the neighbourhood of the interior layer, outside a neighbourhood of
S?. However, both the true solution u(x, t) and the numerical approximation z(x, t) are
bounded, uniformly in ε and it may be the case that the error maxGh

|z(x, t)− u(x, t)|
is relatively small for the classical difference scheme. That would reduce the need for a
special scheme.

On the other hand, the above theorem shows that the fitted scheme converges
uniformly in ε on Gh, but no indication is given about the value of the order constant
M in (3.22). Moreover, the order of convergence is rather small. It might be possible
that the error is rather large for any reasonable value of h or τ . This might also reduce
the practical value of our fitted scheme. To decide on the practical value of the new
scheme numerical experiments are necessary to provide a more detailed comparison.

4.1. The model problem

To see the effect of the fitted scheme in practice, for the approximation of the model
problem for a singularly perturbed heat equation with a discontinuous initial condition

L(4.23)u(x, t) ≡ ε2 ∂2

∂x2 − ∂
∂tu(x, t) = 0, (x, t)∈G,

u(x, t) = φ(x, t), (x, t)∈S,

(4.23)

we compare the numerical results for the classical scheme (3.11) and the fitted scheme
(3.12, 3.18). For problem (4.23) we have

υ(x, t) = w0(x, t; 1) + u(3.17)(x, t) ,

so that the coefficient γ(x, t) in (3.12) takes the form

γ(x, t) =





δtw0(x, t)− 6ε2x

ε2δxxw0(x, t)− 6ε2x
for (x, t)∈Gh, x 6= 0,

1 for (x, t)∈Gh, x = 0.

(4.24)
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For ε = 1/8, N = 32, N0 = 40 the solution of the model problem (4.23), with

φ(x, t) =
5
2
w0(x, t) + u2(x, t), (x, t)∈S , (4.25)

u2(x, t) = −(x + 0.5)2 − 2ε2t , (4.26)

for which we have the representation

u(x, t) = u2(x, t) +
5
2
w0(x, t), (x, t)∈G\S? , (4.27)

is shown in Figure 1. The fitting coefficient (4.24) is shown in Figure 4.

Figure 1. Computed solution with the fitted scheme.

The solution of problem (4.23,4.25) with u(4.23)(x, t) = 5
2w0(x, t) + u2(x, t);

ε = 1/8; N = 32; N0 = 40.

We can see that the solution has a jump at S? for t = 0, and for t > 0 it is smooth.
The space derivatives of the solution are large in the neighbourhood of the interior
layer. The fitted coefficient varies strongly in the neighbourhood of the set S? and
becomes almost constant (equal to 1) away from S?.
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Figure 2. Coefficients γ(x, t) in the fitted scheme.

Scheme (3.18), for the same problem as used in Figure 1.

4.2. Results with the classical difference approximation for the model
problem

We show the behaviour of the classical difference scheme (3.11), central in x and
backward in t, for the model problem (4.23,4.25). We know that this scheme converges
for a fixed parameter ε on each smooth part of the solution of (4.23,4.25). Therefore
we are primarily interested in the singular part of the solution for problem (4.23,4.25).
Hence, we select the boundary conditions such that u(x, t) = w0(x, t),

φ(x, t) = w0(x, t), (x, t)∈S . (4.28)

For the approximation of problem (4.23,4.28) we use the classical scheme (3.11).
We solve the problem for different values of the mesh, h = 2/N , and the time step,
τ = 1/N0, and for different values of the small parameter ε. The results for a set
numerical experiments are summarised in Table 1 and Table 2.

We notice that asymptotically for larger N or N0 and smaller ε, the `∞-norm of
the error does not depend on ε, N and N0 independently , but behaves as depending
on a single parameter N0ε

−2 or Nε−1 for Table 1, and N0ε
−2 or N for Table 2. Note

that |w0(x, t)| ≤ 0.5. From Table 1 we see that for no value of the parameter ε we can
guarantee the error on G to be less than 12% for any sufficiently large N, N0:

η1(K, ε) = max
N, N0≥K

{[ max
(x,t)∈G

|w0(x, t)|]−1E(N, N0, ε)} ≥ 12%

when K is sufficiently large. From the results in Table 2 we see that for no values of
N0, N we can guarantee the error on G, t ≥ 0.2 to be less than 6% for ε∈(0, 1]:

η2(N, N0) = max
ε
{[ max

(x,t)∈G,t≥0.2
|w0(x, t)|]−1E(N, N0, ε)} ≥ 6% .
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Table 1. Table of errors E(N, N0, ε) for the classical scheme.

N0 N

8 16 32 64 128 256

10 ε = 1 5.76(-2) 6.08(-2) 6.16(-2) 6.25(-2) 6.26(-2) 6.26(- 2)

40 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 6.20(-2)

160 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2)

640 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2)

10 ε = 1/8 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10 (-2)

40 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2)

160 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2)

640 3.29(-2) 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2)

ε

40 1 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 6.20(-2)

0.5 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2)

2−2 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2)

2−3 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2)

2−4 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2)

2−5 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2)

2−6 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2)

2−7 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2)

2−8 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2)

2−9 3.05(-5) 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2)

In this table E(N, N0, ε) = max(x,t)∈Gh
|e(x, t;N, N0, ε)|, e(x, t;N, N0, ε) =

z(x, t)− w0(x, t) with h = 2/N and τ = 1/N0.
The solution w0 is as defined in (2.5) with p1 = 1.

Thus, the computations also confirm that: (i) the classical scheme converges on the
set Gh with t ≥ t0 > 0 for a fixed value of ε; (ii) on G\S? the classical scheme does
not converge for any fixed ε; (iii) on the set Gh with t ≥ t0 > 0 the scheme does not
converge uniformly in ε.

4.3. A fitted difference approximation

Let us study the behaviour of the fitted scheme applied to model problem (4.23,4.25),
where the function u(x, t) is the sum of a smooth and a singular part

u(x, t) = u2(x, t) +
5
2
w0(x, t), (x, t)∈G\S? . (4.29)

Because the problem is linear, we can study both parts of the error independently.
First we consider the behaviour of the fitted scheme for the singular part, that is for
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Table 2. Table of errors E0.2(N, N0, ε) for the classical scheme.

N0 N

8 16 32 64 128 256

10 ε = 1 3.08(-2) 3.39(-2) 3.40(-2) 3.40(-2) 3.40(-2) 3.40(-2)

40 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3)

160 3.77(-3) 2.73(-3) 2.45(-3) 2.38(-3) 2.37(-3) 2.36(-3)

640 2.12(-3) 9.97(-4) 6.98(-4) 6.22(-4) 6.02(-4) 5.98(-4)

10 ε = 1/8 3.18(-2) 2.05(-2) 2.47(-2) 3.01(-2) 3.32(-2) 3.33(-2)

40 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3)

160 3.29(-2) 2.56(-2) 7.40(-3) 2.59(-3) 2.29(-3) 2.20(-3)

640 3.29(-2) 2.50(-2) 7.57(-3) 2.17(-3) 7.35(-4) 5.89(-4)

ε

40 1 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3)

0.5 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 8.61(-3)

2−2 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3)

2−3 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3)

2−4 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3)

2−5 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3)

2−6 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3)

2−7 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2)

2−8 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2)

2−9 2.98(-5) 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2)

In this table E0.2(N, N0, ε) = max(x,t)∈Gh,x≥0.2 |e(x, t;N, N0, ε)|,
e(x, t;N, N0, ε) = z(x, t)− w0(x, t) with h = 2/N and τ = 1/N0.
The solution w0 is as defined in (2.5) with p1 = 1.

the model problem with

φ(x, t) = w0(x, t) , (x, t)∈G\S? , (4.30)

as we did for the classical scheme. This initial function w0(x, t) is a representative
example from the class of initial functions with a discontinuity. For problem (4.23,4.30)
we have the solution

u(x, t) = w0(x, t), (x, t)∈G\S? . (4.31)

Then, considering the smooth part of the solution in the expression (4.29) we study
problem (4.23) with

φ(x, t) = u2(x, t) = −(x + 0.5)2 − 2ε2t , (x, t)∈G . (4.32)
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For problem (4.23,4.32), we have the solution

u(x, t) = u2(x, t), (x, t)∈G . (4.33)

The results of these numerical experiments are given in Tables 3 and 4.

Table 3. Table of errors E(N, N0, ε) for the new scheme.

N0 N

8 16 32 64 128 256

10 ε = 1 2.26(-2) 1.96(-2) 1.89(-2) 1.87(-2) 1.87(-2) 1.87(- 2)

40 1.27(-2) 1.06(-2) 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2)

160 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3)

640 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3)

10 ε = 1/8 5.46(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3)

40 5.56(-3) 2.30(-3) 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-4)

160 5.57(-3) 2.12(-3) 7.00(-4) 2.64(-4) 1.44(-4) 1.12(-4)

640 5.58(-3) 2.07(-3) 6.36(-4) 1.92(-4) 6.90(-5) 3.66(-5)

ε

40 1 1.27(-2) 1.07(-2) 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2)

0.5 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3)

2−2 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3)

2−3 5.56(-3) 2.30(-3) 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-3)

2−4 4.48(-3) 1.70(-3) 6.56(-4) 2.60(-4) 1.44(-4) 1.12(-4)

2−5 1.23(-3) 6.55(-4) 3.69(-4) 1.46(-4) 5.90(-5) 3.27(-5)

2−6 3.08(-4) 1.79(-4) 8.37(-5) 5.67(-5) 2.63(-5) 1.12(-5)

2−7 7.71(-5) 4.47(-5) 2.28(-5) 1.05(-5) 7.77(-6) 4.25(-6)

2−8 1.93(-5) 1.12(-5) 5.71(-6) 2.86(-6) 1.34(-6) 1.15(-6)

2−9 4.82(-6) 2.80(-6) 1.43(-6) 7.15(-7) 3.58(-7) 2.09(-7)

In this table the scheme (3.12) is used to solve a problem (4.23,4.30) with an
interior layer. E(N, N0, ε) = max(x,t)∈Gh

|e(x, t;N, N0, ε)|, e(x, t;N, N0, ε) =
z(x, t)− w0(x, t) with h = 2/N and τ = 1/N0; the solution w0 is as defined in
(2.5) with p0 = 1.

From the results in Tables 3 and 4 we see that the errors for singular and regular
parts, w0(x, t) and u2(x, t) respectively, decrease for N , N0 large enough, and a fixed
value of the parameter ε = 2−K , K = 0, 1, . . .. Also the errors decrease with increasing
N uniformly in ε. The relative error is less than 1% for N ≥ 8, N0 ≥ 160, ε = 2−K ,
K ≥ 0 when u(x, t) = w0(x, t). The relative error is also less than 1% for the same
parameters when u(x, t) = u2(x, t).
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Table 4. Table of errors E(N, N0, ε).

N0 ε N

8 16 32 64 128 256

10 ε = 1 5.10(-2) 8.72(-2) 1.16(-1) 1.36(-1) 1.47(-1) 1.53(-1)

40 1.46(-2) 2.27(-2) 3.15(-2) 3.89(-2) 4.50(-2) 4.87(-2)

160 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2)

640 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)

10 ε = 1/8 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)

40 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4)

160 7.46(-3) 2.94(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4)

640 7.46(-3) 2.89(-3) 1.15(-3) 4.63(-4) 2.09(-4) 2.55(-4)

ε

40 1 1.46(-2) 2.27(-2) 3.14(-2) 3.89(-2) 4.50(-2) 4.87(-2)

0.5 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2)

2−2 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3)

2−3 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4)

2−4 5.98(-3) 2.39(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4)

2−5 1.64(-3) 1.75(-3) 1.00(-3) 4.59(-4) 2.09(-4) 1.26(-4)

2−6 4.11(-4) 4.77(-4) 4.47(-4) 3.04(-4) 1.47(-4) 6.90(-5)

2−7 1.03(-4) 1.19(-4) 1.22(-4) 1.12(-4) 8.30(-5) 4.45(-5)

2−8 2.57(-5) 2.98(-5) 3.04(-5) 3.05(-5) 2.80(-5) 2.17(-5)

2−9 6.42(-6) 7.45(-6) 7.61(-6) 7.63(-6) 7.63(-6) 7.01(-6)

In this table the scheme (3.12) is used to solve a problem (4.23,4.32) with a
smooth solution. In this table E(N, N0, ε) = max(x,t)∈Gh

|e(x, t;N, N0, ε)|,
e(x, t;N, N0, ε) = z(x, t) − u2(x, t) with h = 2/N and τ = 1/N0; the solution
u1 is as defined in (4.31).

The functions 5
2w0(x, t) and u2(x, t) are components of the solution of the problem

(4.23), (4.25). Thus we have: (i) for the model problem (4.23), (4.25) the numerical
scheme converges for a fixed ε in the discrete `∞-norm on Gh; (ii) we observe ε-uniform
convergence for the model problem (4.23, 4.25); (iii) the relative error for the model
problem is less than 2% for N, N0 sufficiently large.

4.4. The error analysis for the fitted difference scheme

To determine the quality of the convergence, using the data from the Tables 3 and
4 we can examine the experimental order of convergence of the fitted scheme.

When we use the classical scheme (3.11) for problem (4.23,4.33) then, according to
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the classical theory, we typically find an estimate of the form

max
Gh\S?

|u2(x, t)− z(3.11)(x, t)| ≤ Q(ε)(h2 + τ), (x, t)∈Gh. (4.34)

This estimate means that the function z(3.11)(x, t) converges to the function u2(x, t) for
each fixed value of ε. The constant Q(ε) tends to infinity for ε → 0.

From theory we know that the solution of the fitted difference scheme (3.12, 3.18)
z(x, t) converges ε-uniformly to the solution of problem (4.23,4.33). To investigate the
ε-uniform convergence of a function z(x, t) = z(x, t; ε, h, τ), it is natural to express an
error estimate in the form

max
ε

max
Gh\S?

|u(x, t, ε)− z(x, t; ε, h, τ)| ≤ M(h2 + τ)ν , (4.35)

where ν does not depend on the parameters ε, h or τ . To compute ν we shall use an
inequality of the form

max
Gh\S?

|u(x, t, ε)− z(x, t; ε, h, τ)| ≤ M(h2 + τ)ν(ε) . (4.36)

We call ν(ε) in expression (4.36) the generalised order of convergence for a fixed
value of the parameter ε, and ν in expression (4.35) the generalised order of ε-uniform
convergence.

We determine the experimental generalised order at the point (N, N0) by

ν(N, N0, ε) = (lnE(N, N0, ε)− lnE(2N, 4N0, ε))/ ln 4 , (4.37)

where E(N, N0, ε) = maxGh\S? |u(x, t, ε) − z(x, t; ε, h, τ)|, hN = 2 and τN0 = 1. We
introduce the experimental generalised order of convergence for fixed ε as

ν(ε) = min
N,N0

ν(N, N0, ε) , (4.38)

and the experimental generalised order of ε-uniform convergence as

ν = min
ε

ν(ε) . (4.39)

Similarly the the experimental ε-uniform generalised order at the point (N, N0) is

ν(N, N0) = min
ε

ν(N, N0, ε) . (4.40)

The results are given in the Tables 6 and 5.
From the results in the Tables 5 and 6 we see: (i) for w0(x, t) and u2(x, t) the

experimental generalised order of ε-uniform convergence for the fitted scheme is ap-
proximately 0.413 and 0.450 respectively; (ii) for N ≥ 16 and N0 ≥ 40 the generalised
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Table 5. Experimental generalised order of convergence ν(N, N0, ε).

N0 N

8 16 32 64 128

10 ε = 1 0.544 0.479 0.454 0.450 0.450

40 0.631 0.653 0.640 0.650 0.651

160 0.681 0.782 0.792 0.818 0.818

10 ε = 1/8 0.625 0.834 0.882 0.891 0.892

40 0.696 0.858 0.922 0.938 0.945

160 0.714 0.868 0.932 0.967 0.987

ε

40 1 0.631 0.653 0.640 0.650 0.651

0.5 0.681 0.782 0.792 0.818 0.818

2−2 0.708 0.834 0.882 0.891 0.892

2−3 0.854 0.904 0.934 0.939 0.946

2−4 1.387 1.104 1.084 1.070 1.067

2−5 1.391 1.484 1.351 1.237 1.195

2−6 1.392 1.485 1.498 1.433 1.314

2−7 1.393 1.485 1.498 1.486 1.378

2−8 1.393 1.485 1.498 1.500 1.340

The fitted scheme (3.12,3.18) for the problem (4.23,4.30), applied to the solu-
tion u(x, t) = w0(x, t) with the interior layer. ν(N, N0, ε) = (lnE(N, N0, ε) −
lnE(2N, 4N0, ε))/ ln 4,
E(N, N0, ε) from Table 3.

orders of ε-uniform convergence for w0(x, t) and u2(x, t) are apparently not less than
0.50. This means that in practice

max
Gh

|u(x, t)− z(x, t)| ≤ M(h + τ1/2)

for N ≥ 16 and N0 ≥ 40, 0 < ε ≤ 1, for each value of the parameter ε. In ac-
cordance with the theory, for each value of ε, the experimental generalised order of
convergence tends to 1 for decreasing h and τ . Thus, the experimental generalised
order of convergence for the fitted scheme (3.12, 3.18) for the full model problem
(4.23, 4.25) is not less than predicted by the theory. The behaviour of the errors
e(x, t;N, N0, ε) = z(x, t)−u(x, t) for the fitted scheme (3.12, 3.18) and for the classical
scheme (3.11) are shown in the Figures 2 and 3. We can see that the largest errors
are in the neighbourhood of the set S? and that the errors for the classical scheme are
significantly larger than for the fitted scheme.
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Table 6. Experimental generalised order of convergence ν(N, N0, ε).
N0 ε N

8 16 32 64 128

10 ε = 1 0.583 0.736 0.789 0.795 0.798

40 0.656 0.850 0.949 0.992 1.016

160 0.413 0.551 0.828 1.012 1.041

10 ε = 1/8 0.604 0.652 0.702 0.691 0.687

40 0.668 0.669 0.719 0.733 0.744

160 0.685 0.676 0.718 0.769 0.276

ε N

40 1 0.656 0.850 0.949 0.992 1.016

0.5 0.413 0.551 0.828 1.012 1.041

0.25 0.603 0.652 0.702 0.691 0.687

0.125 0.820 0.669 0.719 0.733 0.744

2−4 0.887 0.627 0.724 0.769 0.783

2−5 0.891 0.984 0.859 0.820 0.799

2−6 0.892 0.985 0.998 0.938 0.863

2−7 0.893 0.985 0.998 0.999 0.966

2−8 0.893 0.985 0.998 1.000 1.000

ν(N, N0, ε) = (lnE(N, N0, ε)− lnE(2N, 4N0, ε))/ ln 4,
E(N, N0, ε) from Table 4.
Computation with the new scheme (3.12,3.18) for the smooth solution u(x, t) =
u2(x, t).

Figure 3. Discretisation error the fitted scheme.
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Scheme (3.12,3.18) is used for the same problem as used in Figure 1.

Figure 4. Discretisation error the classical scheme.

Scheme (3.11) is used for the same problem as used for Figure 1.

5. Conclusion

For a singularly perturbed boundary value problem of parabolic type with discon-
tinuous initial condition (2.1), we have constructed a specially fitted difference scheme
that converges in G\S? ε-uniformly in the `∞-norm.

Numerical experiments for a model boundary value problem with discontinuous
boundary function show that a classical difference scheme does not converge ε-uniformly.
Moreover, for a fixed value of ε this scheme doesn’t converge in the `∞-norm in the
neighbourhood of the discontinuity, and away from the discontinuity it does not con-
verge ε-uniformly in the neighbourhood of the interior layer. In the case of the constant
coefficient problem and a simple discontinuity, for which the error-function is the solu-
tion, an error of less than 6% on G, t ≥ t0 = 0.2, and less than 12% on G\S? can not
be guaranteed for arbitrarily small h or τ .

Theoretically and numerically it is also shown, that the fitted difference scheme
converges ε-uniformly in the `∞-norm on Gh. Moreover in the case of the fitted scheme,
for a model problem, an experimental generalised order of convergence of not less than
0.5 is observed if h ≤ 1/8 and τ ≤ 0.025 e.g. ν(ε,N,N0) ≥ 0.5 at N ≥ 16, N0 ≥ 40. The
experimental generalised order of convergence is substantially larger than the bound
guaranteed by the theory. Both for the singular and for the regular part of the solution
an error less than 1% is guaranteed for N ≥ 8, N0 > 40 and for any ε∈(0, 1].
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