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Abstract

The boundary value problem for the nonlinear parabolic system is solved by

the finite difference method with nonuniform meshes. The existence and a priori

estemates of the discrete vector solutions for the general difference schemes with

unequal meshsteps are established by the fixed point technique. The absolute and

relative convergence of the discrete vector solution are justified by a series of a

priori estimates. The analysis of mentioned problems are based on the assumption

of heuristic character concerning the existence of the unique smooth solution for

the original problem of the nonlinear parabolic system.

1. Introduction

1. From the very beginning of sixties to the late eighties, there are many works

contributed to the studies of the boundary problems and initial value problems for the

ordinary differential equations by the method of difference schemes with nonuniform

meshes[1−4]. But it is extremely rare on the works concerning to the analysis of finite

difference schemes with nonuniform meshes for the problems of partial differential equa-

tions. By using of the difference schemes with nonuniform meshes approximation for

the problems of partial differential equations there are many unexpected phenomenon

and self-contradictive things both in computations and in analysis.

In this work, we are going to study the difference schemes with nonuniform meshes

approximated to the boundary problem for nonlinear parabolic systems of partial dif-

ferential equations under the assumption of the heuristic character for the existence

and uniqueness of the smooth solution of the mentioned problem.

Let us now consider the boundary problem of the nonlinear parabolic systems of

second order

ut = A(x, t, u, ux)uxx + f(x, t, u, ux), (1)
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where u = (u1, · · · , um) is the m-dimensional unknown vector function (m ≥ 1),

A(x, t, u, p) is a m × m matrix function, f(x, t, u, p) is a m-dimensional vector func-

tion and ut = ∂u
∂t

, ux = ∂u
∂x

and uxx = ∂2u
∂x2 are the corresponding m-dimensional vector

derivatives. The coefficient matrix A(x, t, u, p) is positive definite, hence the system is

parabolic. Let us consider in the rectangular domain QT = {0 ≤ x ≤ l, 0 ≤ t ≤ T}
with the given positive constants l > 0 and T > 0, the boundary problem for the

nonlinear parabolic system (1) of partial differential equations with the boundary con-

ditions

u(0, t) = ψ0(t),

u(l, t) = ψ1(t)
(2)

and the initial condition

u(x, 0) = φ(x), (3)

where ψ0(t), ψ1(t) and φ(x) are given m-dimensional vector functions of variables

t ∈ [0, T ] and x ∈ [0, l] respectively.

In this work the existence and the estimates of the discrete solutions for the finite dif-

ference schemes with nonuniform meshes are established by the fixed point technique[5].

The absolute and relative convergence of the discrete solutions of difference schemes

with unequal meshsteps are justified by means of a series of a priori estimates. It is

notice that in the present, the existence of the unique smooth solution for original prob-

lem of the nonlinear parabolic system is assumed to be valid. This is the fundamental

assumption of heurustic character in the present study.

In the present investigation for the difference schemes with nonuniform meshes we

are repeatedly using the methods and treatments similar to the study of analogous

problems for the cases of difference schemes with equal meshstep.

2. Now suppose that for the boundary problem (2) and (3) of the nonlinear

parabolic system (1) of second order, the following conditions are fulfilled.

(I) The boundary problem (2) and (3) for the nonlinear parabolic system (1) has a

unique smooth m-dimensional vector solution u(x, t) ∈ C
(4,2)
x,t (QT ).

(II) The coefficient matrix A(x, t, u, p) is positively definite, that is, there is a

positive constant σ0 > 0, such that for any ξ ∈ Rm,

(ξ, A(x, t, u, p)ξ) ≥ σ0|ξ|2, (4)

where (x, t) ∈ QT and u, p ∈ Rm.

(III) The m-dimensional vector function f(x, t, u, p) and the m ×m matrix func-

tion A(x, t, u, p) are continuous with respect to variables (x, t) ∈ QT and continuously

differentiable with respect to m -dimensional vector variables u, p ∈ Rm.

(IV) The boundary vector functions ψ0(t) and ψ1(t) are continuously differentiable

with respect to t ∈ [0, T ]. The initial vector function φ(x) is continuously differentiable
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with respect to x ∈ [0, l]. Furthermore, the equalities

ψ0(0) = φ(0),

ψ1(0) = φ(l)
(5)

hold at the corners of the bottom of the rectangular domain QT .

2. Difference Schemes

3. Let us divide the rectangular domain QT = {0 ≤ x ≤ l, 0 ≤ t ≤ T}
into the small rectangular grids Q∆ = {Qn+ 1

2

j+ 1
2

=
(

xj ≤ x ≤ xj+1; tn ≤ t ≤ tn+1
)∣

∣ j =

0, 1, · · · , J − 1; n = 0, 1, · · · , N − 1} by the parallel lines x = xj (j = 0, 1, · · · , J) and

t = tn (n = 0, 1, · · · , N) with the integers J and N , where

0 = x0 < x1 < · · · < xJ−1 < xJ = l,

0 = t0 < t1 < · · · < tN−1 < tN = T.

The meshsteps h = {hj+ 1
2

= xj+1 − xj > 0|j = 0, 1, · · · , J − 1} and τ = {τn+ 1
2 =

tn+1 − tn > 0|n = 0, 1, · · · , N − 1} are in general assumed to be unequal.

Let us denote by τ∗ or simply by τ the maximum of the meshsteps τ = {τn+ 1
2

∣

∣

∣n =

0, 1, · · · , N − 1}, that is,

τ = max
n=0,1,···,N−1

τn+ 1
2 .

Also let us denote for the unequal meshsteps h = {hj+ 1
2

∣

∣

∣ j = 0, 1, · · · , J − 1} by h∗ or

simply by h and by h∗ the maximum and minimum of the meshsteps respectively

h = max
j=0,1,···,J−1

hj+ 1
2
,

h∗ = min
j=0,1,···,J−1

hj+ 1
2
.

And also denote the ratio constant

M∗
h =

h

h∗
.

Denote by v∆ = vτ
h = {vn

j

∣

∣

∣ j = 0, 1, · · · , J ; n = 0, 1, · · · , N} the m-dimensional dis-

crete vector function defined on the discrete rectangular domain Q∆ = {(xj , tn)| j =

0, 1, · · · , J ; n = 0, 1, · · · , N} of the grid points. The difference quotient

δvτ
h = {δvn

j+ 1
2

=
vn

j+1−vn
j

h
j+ 1

2

|j = 0, 1, · · · , J − 1; n = 0, 1, · · · , N} of first order for the

discrete vector function v∆ = vτ
h = {vn

j |j = 0, 1, · · · , J ; n = 0, 1, · · · , N} is a dis-

crete vector function defined on the grid points {(x(1)

j+ 1
2

, tn)|j = 0, 1, · · · , J − 1; n =
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0, 1, · · · , N}, where x
(1)

j+ 1
2

= 1
2 (xj+1 + xj) (j = 0, 1, · · · , J − 1). The difference quo-

tient δ2vτ
h = {δ2vn

j =
δvn

j+ 1
2

−δvn

j− 1
2

h
(2)
j

|j = 1, 2, · · · J − 1; n = 0, 1, · · · , N} of sec-

ond order can be regarded as a discrete vector function defined on the grid points

{(x(2)
j , tn)|j = 0, 1, · · · , J − 1; n = 0, 1, · · · , N}, where x

(2)
j = 1

2(x
(1)

j+ 1
2

+ x
(1)

j− 1
2

) and

h
(2)
j = 1

2(hj+ 1
2

+ hj− 1
2
), (j = 0, 1, · · · , J − 1).

Let us now construct the general difference schemes with nonuniform meshes for

the above mentioned nonlinear parabolic system (1) of second order as follows:

vn+1
j

−vn
j

τ
n+ 1

2
= An+α

j δ2vn+α
j + fn+α

j ,

(j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1),
(1)∆

where

δ2vn+α
j = 1

h
(2)
j

[

vn+α
j+1 −vn+α

j

h
j+ 1

2

− vn+α
j

−vn+α
j−1

h
j− 1

2

]

,

An+α
j = A

(

xj, t
n+α, δ

0
vn+α
j , δ

1
vn+α
j

)

,

fn+α
j = f

(

xj, t
n+α, δ̃0vn+α

j , δ̃1vn+α
j

)

(6)

and

δ
0
vn+α
j = α

[

β
n+1
1j vn+1

j+1 + β
n+1
2j vn+1

j + β
n+1
3j vn+1

j−1

]

+
[

β
n
4jv

n
j+1 + β

n
5jv

n
j + β

n
6jv

n
j−1

]

,

δ
1
vn+α
j = α

[

γn+1
1j δvn+1

j+ 1
2

+ γn+1
2j δvn+1

j− 1
2

]

+

[

γn
3jδv

n
j+ 1

2

+ γn
4jδv

n
j− 1

2

]

,

δ̃0vn+α
j = α

[

β̃n+1
1j vn+1

j+1 + β̃n+1
2j vn+1

j + β̃n+1
3j vn+1

j−1

]

+
[

β̃n
4jv

n
j+1 + β̃n

5jv
n
j + β̃n

6jv
n
j−1

]

,

δ̃1vn+α
j = α

[

γ̃n+1
1j δvn+1

j+ 1
2

+ γ̃n+1
2j δvn+1

j− 1
2

]

+

[

γ̃n
3jδv

n
j+ 1

2

+ γ̃n
4jδv

n
j− 1

2

]

(7)
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with

α
[

β
n+1
1j + β

n+1
2j + β

n+1
3j

]

+
[

β
n
4j + β

n
5j + β

n
6j

]

= 1 ,

α
[

γn+1
1j + γn+1

2j

]

+
[

γn
3j + γn

4j

]

= 1 ,

α
[

β̃n+1
1j + β̃n+1

2j + β̃n+1
3j

]

+
[

β̃n
4j + β̃n

5j + β̃n
6j

]

= 1 ,

α
[

γ̃n+1
1j + γ̃n+1

2j

]

+
[

γ̃n
3j + γ̃n

4j

]

= 1

(8)

and

α
[∣

∣

∣β
n+1
1j

∣

∣

∣+
∣

∣

∣β
n+1
2j

∣

∣

∣+
∣

∣

∣β
n+1
3j

∣

∣

∣

]

+
[∣

∣

∣β
n
4j

∣

∣

∣+
∣

∣

∣β
n
5j

∣

∣

∣+
∣

∣

∣β
n
6j

∣

∣

∣

]

≤ δ0 ,

α
[∣

∣

∣γn+1
1j

∣

∣

∣+
∣

∣

∣γn+1
2j

∣

∣

∣

]

+
[∣

∣

∣γn
3j

∣

∣

∣+
∣

∣

∣γn
4j

∣

∣

∣

]

≤ δ1 ,

α
[∣

∣

∣β̃n+1
1j

∣

∣

∣+
∣

∣

∣β̃n+1
2j

∣

∣

∣+
∣

∣

∣β̃n+1
3j

∣

∣

∣

]

+
[∣

∣

∣β̃n
4j

∣

∣

∣+
∣

∣

∣β̃n
5j

∣

∣

∣+
∣

∣

∣β̃n
6j

∣

∣

∣

]

≤ δ̃0 ,

α
[∣

∣

∣γ̃n+1
1j

∣

∣

∣+
∣

∣

∣γ̃n+1
2j

∣

∣

∣

]

+
[∣

∣

∣γ̃n
3j

∣

∣

∣+
∣

∣

∣γ̃n
4j

∣

∣

∣

]

≤ δ̃1

(9)

and here β, γ, β̃, γ̃′s with indices are constants and δ0, δ1, δ̃0, δ̃1 ≥ 1 and

0 ≤ α ≤ 1 are also constants. Here we also have

δ2vn+α
j = αδ2vn+1

j + (1 − α)δ2vn
j ,

(j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1).

The finite difference boundary conditions are

vn
0 = ψn

0 ,

vn
J = ψn

1 , (n = 0, 1, · · · , N) ,
(2)∆

where ψn
0 = ψ0 (tn) and ψn

1 = ψ1 (tn) (n = 0, 1, · · · , N). The finite difference initial

condition is

v0
j = φj , (j = 0, 1, · · · , J) , (3)∆

where φj = φ (xj) , (j = 0, 1, · · · , J).

4. Let us state some lemmas as follows, which are useful in later discussion. Some

lemmas can be obtained by direct calculations and some can be found in [9-11].

Lemma 1. For any uh = {uj | j = 0, 1, · · · , J} and vh = {vj | j = 0, 1, · · · , J}, there
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are
J−1
∑

j=0
uj (vj+1 − vj)

= −
J
∑

j=1
vj (uj − uj−1) − u0v0 + uJvJ .

J−1
∑

j=1
uj

(

δvj+ 1
2
− δvj− 1

2

)

= −
J−1
∑

j=0
δuj+ 1

2
δvj+ 1

2
hj+ 1

2
− u0δv 1

2
+ uJδvJ− 1

2
.

Lemma 2. For any wh = {wj | j = 0, 1, · · · , J} defined on the grid points {xj | j =

0, 1, · · · , J} with unequal meshsteps h = {hj+ 1
2

∣

∣

∣ j = 0, 1, · · · , J − 1} , there are relations

‖wh‖∞ ≤ h
− 1

2∗ ‖wh‖2 ,

‖δwh‖∞ ≤ h
− 1

2∗ ‖δwh‖2 .

Proof. For the first estimatate, we have

‖wh‖∞ = max
j=0,1,···,J

|wj| = |wj0|

≤ |wj0 |√
h∗

√

1
2

(

hj0+ 1
2

+ hj0− 1
2

)

≤ 1√
h∗

‖wh‖2 ,

where

‖wh‖2
2 =

J−1
∑

j=1

|wj|2
1

2

(

hj+ 1
2

+ hj− 1
2

)

.

The second estimate follows from

‖δwh‖∞ = max
j=0,1,···,J

∣

∣

∣δwj+ 1
2

∣

∣

∣ =
∣

∣

∣wj0+ 1
2

∣

∣

∣

≤
∣

∣

∣δwj0+ 1
2

∣

∣

∣

√

h
j0+1

2√
h∗

≤ 1√
h∗

‖δwh‖2 ,

where δwj+ 1
2

=
wj+1−wj

h
j+1

2

(j = 0, 1, · · · , J − 1) and

‖δwh‖2
2 =

J−1
∑

j=0

∣

∣

∣δwj+ 1
2

∣

∣

∣

2
hj+ 1

2
.

Lemma 3. For any uh = {uj | j = 0, 1, · · · , J} defined on the grid points {xj | j =

0, 1, · · · , J} with unequal meshsteps h = {hj+ 1
2

∣

∣

∣ j = 0, 1, · · · , J − 1} , there are relations

‖uh‖2
2 ≤ l2 ‖δuh‖2

2 + 2l |u0|2 ,

where 0 = x0 < x1 < · · · < xJ−1 < xJ = l.
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Proof. For any m = 0, 1, · · · , J , there is

um − u0 =
m−1
∑

j=0
δuj+ 1

2
hj+ 1

2
,

|um| ≤ |u0| +
√
xm ‖δuh‖2 ,

then

‖uh‖2
2 =

J−1
∑

j=0

1
2

(

|uj |2 + |uj+1|2
)

hj+ 1
2

≤ 1
2

J−1
∑

j=0
4 |u0|2 hj+ 1

2
+ 2

J−1
∑

j=0
(xj + xj+1)hj+ 1

2
‖δuh‖2

2

≤ l2 ‖δuh‖2
2 + 2l |u0|2 .

Lemma 4. Suppose that the discrete function wτ = {wn|n = 0, 1, · · · , N} defined

on the grid points {tn|n = 0, 1, · · · , N} with unequal meshsteps τ = {τn+ 1
2 = tn+1 − tn

> 0|n = 0, 1, · · · , N − 1} satisfies the recurring relation

wn+1 − wn ≤ Aτn+ 1
2

(

wn+1 +wn
)

+ Cτn+ 1
2 .

then there is

wn ≤ e3Atnw0 + 2Ctne3Atn ,

where the meshsteps 0 = t0 < t1 < · · · < tN−1 < tN = T are sufficiently small that

2Aτ∗ < 1 and A, C are constants.

Proof. From the recurring formula, there is

wn+1 ≤
(

1 +Aτn+ 1
2

1 −Aτn+ 1
2

)

wn +
Cτn+ 1

2

1 −Aτn+ 1
2

.

Then we have

wn+1 ≤
[

n
∏

k=0

(

1+Aτ
k+ 1

2

1−Aτ
k+ 1

2

)]

w0

+
n
∑

k=0

Cτ
k+ 1

2

1−Aτ
k+ 1

2

n
∏

j=k+1

(

1+Aτ
j+ 1

2

1−Aτ
j+ 1

2

)

.

We take the meshsteps τ = {τn+ 1
2

∣

∣

∣n = 0, 1, · · · , N − 1} so small that Aτ∗ < 1
2 . Thus

we have
n
∏

k=0

(

1 +Aτk+ 1
2

1 −Aτk+ 1
2

)

≤ e3Atn+1

and
n
∑

k=0

Cτk+ 1
2

1 −Aτk+ 1
2

n
∏

j=k+1

(

1 +Aτ j+ 1
2

1 −Aτ j+ 1
2

)

≤ 2Ctn+1e3Atn+1
.
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Hence the lemma is proved.

Lemma 5. For any vh = {vj | j = 0, 1, · · · , J} defined on the grid points {xj | j =

0, 1, · · · , J} with unequal meshsteps h = {hj+ 1
2

= xj+1 − xj > 0
∣

∣

∣ j = 0, 1, · · · , J − 1}
and for any ǫ > 0, there exists a constant K(ǫ, n) dependent on ǫ and n, such that

∥

∥

∥δkvh

∥

∥

∥

2
≤ ǫ ‖δnvh‖2 +K(ǫ, n) ‖vh‖2

and
∥

∥

∥δkvh

∥

∥

∥

∞
≤ ǫ ‖δnvh‖2 +K(ǫ, n) ‖vh‖2 ,

where 0 ≤ k < n and K(ǫ, n) is independent of vh and the unequal meshsteps, but

dependent on the ratio constant M∗
h .

3. Existence

5. We are going now to prove the existence of the discrete solutions for the finite

difference system (1)∆, (2)∆ and (3)∆.

Since u(x, t) ∈ C
(4,2)
x,t (QT ) is the unique smooth vector solution of the original

boundary problem (2) and (3) for the nonlinear parabolic system (1) of second order,

then for the discrete vector function u∆ = {un
j = u (xj, t

n)
∣

∣

∣ j = 0, 1, · · · , J ; n =

0, 1, · · · , N}, we have the difference system

un+1
j

−un
j

τ
n+1

2
= A

n+α
j δ2un+α

j + f
n+α
j +Rn+α

j ,

(j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1),
(1̄)∆

where

A
n+α
j = A(xj , t

n+α, δ
0
un+α

j , δ
1
un+α

j ),

f
n+α
j = f(xj, t

n+α, δ̃0un+α
j , δ̃1un+α

j )
(6̄)

δ
0
un+α

j = α
[

β
n+1
1j un+1

j+1 + β
n+1
2j un+1

j + β
n+1
3j un+1

j−1

] [

β
n
4ju

n
j+1 + β

n
5ju

n
j + β

n
6ju

n
j−1

]

,

δ
1
un+α

j = α

[

γn+1
1j δun+1

j+ 1
2

+ γn+1
2j δun+1

j− 1
2

] [

γn
3jδu

n
j+ 1

2

+ γn
4jδu

n
j− 1

2

]

,

δ̃0un+α
j = α

[

β̃n+1
1j un+1

j+1 + β̃n+1
2j un+1

j + β̃n+1
3j un+1

j−1

] [

β̃n
4ju

n
j+1 + β̃n

5ju
n
j + β̃n

6ju
n
j−1

]

,

δ̃1un+α
j = α

[

γ̃n+1
1j δun+1

j+ 1
2

+ γ̃n+1
2j δun+1

j− 1
2

] [

γ̃n
3jδu

n
j+ 1

2

+ γ̃n
4jδu

n
j− 1

2

]

.

(7̄)

It is clear that the trunction error Rn+α
j is of order τ + h, that is,

Rn+α
j = O(τ + h) .
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In fact we can easy see that

un+1
j

−un
j

τ
n+ 1

2
= ut (xj, t

n+α) +O(τ)

= ut

(

xj , t
n+ 1

2

)

+O(τ2) ,

δ2un+α
j = uxx (xj, t

n+α) +O(τ + h)

= uxx

(

x
(2)
j , tn+α

)

+O(τ + h2) ,

δ̄0un+α
j = u (xj , t

n+α) +O(τ + h) ,

δ̄1un+α
j = ux (xj , t

n+α) +O(τ + h) ,

δ̃0un+α
j = u (xj , t

n+α) +O(τ + h) ,

δ̃1un+α
j = ux (xj , t

n+α) +O(τ + h) ,

then

A
n+α
j = A (x, t, u, ux)|

x = xj

t = tn+α

+O(h+ τ) ,

f
n+α
j = f (x, t, u, ux)|

x = xj

t = tn+α

+O(h+ τ) .

The discrete boundary conditions are

un
0 = ψn

0 ,

un
J = ψn

1 , (n = 0, 1, · · · , N)
(2̄)∆

and the initial condition is

u0
j = φj , (j = 0, 1, · · · , J) . (3̄)∆

Let w∆ = u∆ − v∆ = {wn
j = un

j − vn
j

∣

∣

∣ j = 0, 1, · · · , J ; n = 0, 1, · · · , N}. Then from
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(1)∆, (2)∆, (3)∆ and (1̄)∆, (2̄)∆, (3̄)∆, we get

wn+1
j

−wn
j

τ
n+ 1

2
= A(v)n+α

j δ2wn+α
j

+B(u, v)n+α
j δ

0
wn+α

j + C(u, v)n+α
j δ

1
wn+α

j

+D(u, v)n+α
j δ̃0wn+α

j + E(u, v)n+α
j δ̃1wn+α

j

+Rn+α
j ,

(j = 1, · · · , J − 1; n = 0, 1, · · · , N − 1)

(10)

and

wn
0 = wn

J = 0 , (n = 0, 1, · · · , N) ,

w0
j = 0 , (j = 0, 1, · · · , J) ,

(11)

where

A(v)n+α
j = An+α

j ,

B(u, v)n+α
j =

(

Ãu

)n+α

j
δ2un+α

j ,

C(u, v)n+α
j =

(

Ãp

)n+α

j
δ2un+α

j ,

D(u, v)n+α
j =

(

f̃u

)n+α

j
,

E(u, v)n+α
j =

(

f̃p

)n+α

j
,

(12)

and
(

Ãu

)n+α

j
=
∫ 1
0 Au(xj , t

n+α, λδ
0
un+α

j + (1 − λ)δ
0
vn+α
j ,

λδ
1
un+α

j + (1 − λ)δ
1
vn+α
j )dλ ,

(

Ãp

)n+α

j
=
∫ 1
0 Ap(xj, t

n+α, λδ
0
un+α

j + (1 − λ)δ
0
vn+α
j ,

λδ
1
un+α

j + (1 − λ)δ
1
vn+α
j )dλ ,

(

f̃u

)n+α

j
=
∫ 1
0 fu(xj , t

n+α, λδ̃0un+α
j + (1 − λ)δ̃0vn+α

j ,

λδ̃1un+α
j + (1 − λ)δ̃1vn+α

j )dλ ,

(

f̃p

)n+α

j
=
∫ 1
0 fp(xj , t

n+α, λδ̃0un+α
j + (1 − λ)δ̃0vn+α

j ,

λδ̃1un+α
j + (1 − λ)δ̃1vn+α

j )dλ .

(12)′
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6. Let us construct a mapping Φ : R∗ → R∗ of m(J+1)(N+1)-dimensional Euclidean

space R∗ = Rm(J+1)(N+1) into itself as follows:

For any z∆ ∈ R∗, the corresponding image w∆ = Φ(z∆) is the solution of the linear

system
wn+1

j
−wn

j

τ
n+ 1

2
= A(u− z)n+α

j δ2wn+α
j

+B(u, u− z)n+α
j δ

0
wn+α

j

+C(u, u− z)n+α
j δ

1
wn+α

j

+D(u, u− z)n+α
j δ̃0wn+α

j

+E(u, u− z)n+α
j δ̃1wn+α

j +Rn+α
j

(j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1)

(13)

with homogeneous boundary and initial conditions (11). The solution w∆ = Φ(z∆) ∈
R∗ exists and is unique for any z∆ ∈ R∗.

Let G be a positive constant, which dominantes the maximum modulo of the unique

vector solution u(x, t) of the original boundary problem (2) and (3) for the nonlinear

parabolic system (1) and its vector derivatives ux(x, t), uxx(x, t) and ut(x, t), that is,

|u(x, t)| , |ux(x, t)| , |uxx(x, t)|, |ut(x, t)| ≤ G, for (x, t) ∈ QT .

Let Ω ⊂ R∗ be a bounded closed set, given by

Ω =

{

z∆

∣

∣

∣

∣

max
0 ≤ j ≤ J

0 ≤ n ≤ N

∣

∣

∣zn
j

∣

∣

∣ , max
0 ≤ j ≤ J − 1

0 ≤ n ≤ N

∣

∣

∣

∣

δzn
j+ 1

2

∣

∣

∣

∣

≤ G

}

. (14)

It is clear that Ω is a convex set of R∗. Hence Φ : Ω → R∗ maps Ω into R∗.

7. Making the scalar product of the vector δ2wn+α
j h

(2)
j τn+ 1

2 with the vector finite

difference equation (13) and summing up the resulting products for j = 1, 2, · · · , J − 1,

we have

J−1
∑

j=1

(

δ2wn+α
j , wn+1

j − wn
j

)

h
(2)
j

= τn+ 1
2

J−1
∑

j=1

(

δ2wn+α
j , A(u− z)n+α

j δ2wn+α
j

)

h
(2)
j

+τn+ 1
2

J−1
∑

j=1

(

δ2wn+α
j , B(u, u− z)n+α

j δ
0
wn+α

j

+C(u, u− z)n+α
j δ

1
wn+α

j +D(u, u− z)n+α
j δ̃0wn+α

j

+E(u, u− z)n+α
j δ̃1wn+α

j +Rn+α
j

)

h
(2)
j .

(15)
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For the first term on the right hand part of the equality (15), there is

τn+ 1
2

J−1
∑

j=1

(

δ2wn+α
j , A(u − z)n+α

j δ2wn+α
j

)

h
(2)
j

≥ σ0τ
n+ 1

2

∥

∥

∥δ2wn+α
h

∥

∥

∥

2

2
,

(16)

since by the assumption (II), the m×m matrix A and then A(u− z)n+α
j are positively

definite with constant σ0 > 0 given in (4).

For the left part of the equality (15), we have

−
J−1
∑

j=1

(

δ2wn+α
j , wn+1

j − wn
j

)

h
(2)
j

= 1
2

∥

∥

∥δwn+1
h

∥

∥

∥

2

2
− 1

2 ‖δwn
h‖2

2 −
(

1
2 − α

) ∥

∥

∥δ
(

wn+1
h − wn

h

)∥

∥

∥

2

2
.

(17)

For the last term of the above equality (17), we have

∥

∥

∥δ
(

wn+1
h − wn

h

)∥

∥

∥

2

2

=
J−1
∑

j=1

∣

∣

∣

∣

(wn+1
j+1 −wn

j+1)−(wn+1
j

−wn
j )

h
j+ 1

2

∣

∣

∣

∣

2

hj+ 1
2

≤
(

2τ
n+ 1

2

h∗

)2 J−1
∑

j=1

∣

∣

∣

∣

wn+1
j

−wn
j

τ
n+ 1

2

∣

∣

∣

∣

2

h
(2)
j .

Substituting (13) into the right sum of thr above inequality, we get

∥

∥

∥δ
(

wn+1
h − wn

h

)∥

∥

∥

2

2

≤
(

2τ
n+ 1

2

h∗

)2 J−1
∑

j=1

∣

∣

∣A(u− z)n+α
j δ2wn+α

j

+Bn+α
j δ

0
wn+α

j + Cn+α
j δ

1
wn+α

j

+Dn+α
j δ̃0wn+α

j + En+α
j δ̃1wn+α

j + Rn+α
j

∣

∣

∣

2
h

(2)
j

≤
(

2τ
n+ 1

2

h∗

)2
{

(1 + ǫ1)
J−1
∑

j=1

∣

∣

∣A(u− z)n+α
j δ2wn+α

j

∣

∣

∣

2
h

(2)
j

+
(

1 + 1
ǫ1

) J−1
∑

j=1

∣

∣

∣Bn+α
j δ

0
wn+α

j + Cn+α
j δ

1
wn+α

j

+Dn+α
j δ̃0wn+α

j + En+α
j δ̃1wn+α

j +Rn+α
j

∣

∣

∣

2
h

(2)
j

}

,

where ǫ1 > 0 is a small constant to be determined.

Hence we have

J−1
∑

j=1

∣

∣

∣A(u− z)n+α
j δ2wn+α

j

∣

∣

∣

2
h

(2)
j

≤
J−1
∑

j=1

ρ2(A(u−z)n+α
j )

σ(A(u−z)n+α
j )

(

δ2wn+α
j , A(u− z)n+α

j δ2wn+α
j

)

h
(2)
j ,
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where the symbols ρ
(

A(u− z)n+α
j

)

and σ
(

A(u− z)n+α
j

)

are defined by

ρ (A) = sup
ξ∈Rm

|Aξ|
|ξ| ,

σ (A) = inf
ξ∈Rm

(ξ,Aξ)
|ξ|2

(18)

respectively, that is, ρ (A) is the radius of spectrum or the norm of the matrix A with

respect to Euclidean metric and σ (A) measures the positive definitness of the matrix

A. Here we have

ρ (A) ≥ σ (A) ≥ σ0 > 0 .

(V) Suppose that the unequal meshsteps

h = {hj+ 1
2

∣

∣

∣ j = 0, 1, · · · , J − 1}
and

τ = {τn+ 1
2

∣

∣

∣n = 0, 1, · · · , N − 1}
are so chosen that there is the restriction

(

1

2
− α

)

4τ

h2∗
max

(x, t) ∈ QT ,

|u| ≤ δ̄0G ,

|p| ≤ δ̄1G

ρ2 (A(x, t, u, p))

τ (A(x, t, u, p))
≤ 1 − ǫ , (19)

where ǫ = 1 for 1
2 ≤ α ≤ 1 and 0 < ǫ < 1 for 0 ≤ α < 1

2 .

It is clear that when 1
2 ≤ α ≤ 1, there are no any restriction on the choice of the

meshsteps h = {hj+ 1
2

∣

∣

∣ j = 0, 1, · · · , J − 1} and τ = {τn+ 1
2

∣

∣

∣n = 0, 1, · · · , N − 1} .

Under the restriction (V), we have

(1
2 − α)‖δ(wn+1

h − wn
h)‖2

2

≤ (1 + ǫ1)(1 − ǫτn+ 1
2

J−1
∑

j=1
(δ2wn+α

j , A(u− z)n+α
j δ2wn+α

j h
(2)
j

+(1 + 1
ǫ 1

)(1 − ǫ) τ
n+ 1

2

σ0

J−1
∑

j=1
|Bn+α

j δ̄0wn+α
j

+Cn+α
j δ̄1wn+α

j +Dn+α
j δ̃0wn+α

j

+En+α
j δ̃1wn+α

j +Rn+α
j |2h(2)

j

(20)

and

τn+ 1
2

J−1
∑

j=1

(

δ2wn+α
j , Bn+α

j δ̄0wn+α
j + Cn+α

j δ̄1wn+α
j

+Dn+α
j δ̃0wn+α

j +En+α
j δ̃1wn+α

j +Rn+α
j

)

h
(2)
j

≤ ǫ2σ0
2 τn+ 1

2 ‖δ2wn+α
h ‖2

2 + 2
ǫ2σ0

τn+ 1
2

J−1
∑

j=1

∣

∣

∣Bn+α
j δ̄0wn+α

j

+Cn+α
j δ̄1wn+α

j +Dn+α
j δ̃0wn+α

j

+En+α
j δ̃1wn+α

j +Rn+α
j

∣

∣

∣

2
h

(2)
j .
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Let ǫ1 = ǫ, then the equality (15) can be replaced by the following inequality:

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + ǫ2σ0τ
n+ 1

2‖δ2wn+α
h ‖2

2

≤ 10
[

(1 − ǫ)
(

1 + 1
ǫ

)

+ 2
ǫ2

]

τ
n+1

2

σ0

{

J−1
∑

j=1

∣

∣

∣Bn+α
j δ̄0wn+α

j

∣

∣

∣

2
h

(2)
j

+
J−1
∑

j=1

∣

∣

∣Cn+α
j δ̄1wn+α

j

∣

∣

∣

2
h

(2)
j +

J−1
∑

j=1

∣

∣

∣Dn+α
j δ̃0wn+α

j

∣

∣

∣

2
h

(2)
j

+
J−1
∑

j=1

∣

∣

∣En+α
j δ̃1wn+α

j

∣

∣

∣

2
h

(2)
j +

J−1
∑

j=1

∣

∣

∣Rn+α
j

∣

∣

∣

2
h

(2)
j

}

.

(21)

Since z∆ ∈ Ω, there are

J−1
∑

j=1

∣

∣

∣B(u, u− z)n+α
j δ̄0wn+α

j

∣

∣

∣

2
h

(2)
j

≤ C1

{

‖wn+1
h ‖2

2 + ‖wn
h‖2

2

}

,

J−1
∑

j=1

∣

∣

∣C(u, u− z)n+α
j δ̄1wn+α

j

∣

∣

∣

2
h

(2)
j

≤ C1

{

‖δwn+1
h ‖2

2 + ‖δwn
h‖2

2

}

,

J−1
∑

j=1

∣

∣

∣D(u, u− z)n+α
j δ̃0wn+α

j

∣

∣

∣

2
h

(2)
j

≤ C1

{

‖wn+1
h ‖2

2 + ‖wn
h‖2

2

}

,

J−1
∑

j=1

∣

∣

∣E(u, u− z)n+α
j δ̃1wn+α

j

∣

∣

∣

2
h

(2)
j

≤ C1

{

‖δwn+1
h ‖2

2 + ‖δwn
h‖2

2

}

,

J−1
∑

j=1

∣

∣

∣Rn+α
j

∣

∣

∣

2
h

(2)
j ≤ C1(τ + h)2 ,

(22)

where C1 is a constant dependent on G and on the ratio constant M∗
h of meshsteps.

Then we have

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + ǫ2σ0τ
n+ 1

2 ‖δ2wn+α
h ‖2

2

≤ C2τ
n+ 1

2

{

‖δwn+1
h ‖2

2 + ‖δwn
h‖2

2 + ‖wn+1
h ‖2

2 + ‖wn
h‖2

2 + (τ + h)2
}

.

By means of the Lemma 3, we then have

‖wn
h‖2 ≤

√
2l‖δwn

h‖2 ,

‖wn+1
h ‖2 ≤

√
2l‖δwn+1

h ‖2 .
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Hence we get

‖δwn+1
h ‖2

2 − ‖δwn
h‖2

2 + ǫ2σ0τ
n+ 1

2 ‖δ2wn+α
h ‖2

2

≤ C3τ
n+ 1

2

{

‖δwn+1
h ‖2

2 + ‖δwn
h‖2

2 + (τ + h)2
}

.

(23)

Using the Lemma 4, we get

max
n=0,1,···,N

‖δwn
h‖2 ≤ C4(τ + h) , (24)

where C4 is a constant dependent on G and also on the ratio constant M∗
h of meshsteps.

Then we have also the estimates

max
0≤n≤N

‖wn
h‖2 , max

0≤n≤N
‖wn

h‖∞ ,

(

N−1
∑

n=0
τn+ 1

2

∥

∥

∥δ2wn+α
h

∥

∥

∥

2

2

) 1
2

,

(

N−1
∑

n=0
τn+ 1

2

∥

∥

∥

∥

wn+1
h

−wn
h

τ
n+ 1

2

∥

∥

∥

∥

2

2

) 1
2

≤ C5(τ + h) ,

(25)

where C5 depends on G and M∗
h .

8. By the Lemma 2, there are estimates

max
0 ≤ j ≤ J

0 ≤ n ≤ N

|wn
j | ≤ C5(τ + h) ,

max
0 ≤ j ≤ J-1

0 ≤ n ≤ N

|δwn
j+ 1

2

| ≤ C5

(

τ

h
1
2
∗

+ h
1
2
√

M∗
h

)

.
(26)

Taking

τ, h ≤ min

(

G

2C5
,

(

G

2C5

)2 1

M∗
h

)

, τ ≤ G

2c3
h

1
2∗ , (27)

we have the estimate

max
0 ≤ j ≤ J

0 ≤ n ≤ N

|wn
j | , max

0 ≤ j ≤ J-1

0 ≤ n ≤ N

|δwn
j+ 1

2
| ≤ G . (28)

This shows that w∆ = Φ (z∆) ∈ Ω. Therefore Φ(Ω) ⊂ Ω. The mapping Φ : Ω → R∗

maps Ω into Ω ⊂ R∗ itself. By means of Brouwer theorem on fixed point, the mapping
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has at least one fixed point w∆, such that Φ (w∆) = w∆, that is w∆ is a solution of the

system
wn+1

j
−wn

j

τ
n+ 1

2
= A(u− w)n+α

j δ2wn+α
j

+B(u, u− w)n+α
j δ

0
wn+α

j

+C(u, u−w)n+α
j δ

1
wn+α

j

+D(u, u− w)n+α
j δ̃0wn+α

j

+E(u, u− w)n+α
j δ̃1wn+α

j +Rn+α
j

(j = 1, 1, · · · , J − 1; n = 0, 1, · · · , N − 1)

(13)0

and the homogeneoous discrete boundary and discrete initial conditions (11). Then

v∆ = u∆ − w∆ is the solution of the finite difference system (1)∆ , (2)∆ and (3)∆.

Theorem 1. Suppose that the conditions (I), (II), (III), (IV) and (V) are fulfilled

and the unique smooth vector solution u(x, t) of the boundary problem (2) and (3) for

the nonlinear parabolic system (1) of partial differential equations has the estimates

‖u‖C(QT ) , ‖ux‖C(QT ) , ‖uxx‖C(QT ) , ‖ut‖C(QT ) ≤ G .

and also

(VI) the meshsteps h and τ are so chosen such that τ√
h∗

is sufficiently small.

Then for sufficiently small unequal meshsteps h and τ , the general finite difference

scheme (1)∆ , (2)∆ and (3)∆ with nonuniform meshes corresponding to the original

problem (1), (2) and (3) has at least one solution v∆ =

{

vn
j

∣

∣

∣ j = 0, 1, · · · , J ; n =

0, 1, · · · , N
}

with estimates

{

max
0 ≤ j ≤ J

0 ≤ n ≤ N

|wn
j | , max

0 ≤ j ≤ J-1

0 ≤ n ≤ N

|δwn
j+ 1

2
|
}

≤ 2G . (29)

4. Convergence

9. As the consequence of the existence theorem, we have the following theorem of

absolute and relative convergence.

Theorem 2. Under of the conditions of Theorem 1, for the difference w∆ =
{

wn
j = un

j − vn
j

∣

∣

∣ j = 0, 1, · · · , J ; n = 0, 1, · · · , N
}

of the discrete vector function
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u∆ =

{

un
j = u (xj , t

n)
∣

∣

∣ j = 0, 1, · · · , J ; n = 0, 1, · · · , N
}

of the solution u(x, t) for

the boundary problem (2) and (3) of the nonlinear parabolic system (1) and the corre-

sponding discrete vector solution v∆ =

{

vn
j

∣

∣

∣ j = 0, 1, · · · , J ; n = 0, 1, · · · , N
}

for the

general finite difference system (1)∆, (2)∆ and (3)∆, there are estimates

max
0≤n≤N

‖wn
h‖2 , max

0≤n≤N
‖wn

h‖∞ , max
0≤n≤N

‖δwn
h‖2 ,

(

N−1
∑

n=0

∥

∥

∥δ2wn+α
h

∥

∥

∥

2

2
τn+ 1

2

) 1
2

,

(

N−1
∑

n=0

∥

∥

∥

∥

wn+1
h

−wn
h

τ
n+ 1

2

∥

∥

∥

∥

2

2
τn+ 1

2

) 1
2

,

= O(τ + h)

(30)

and

max
0≤n≤N

‖δwn
h‖∞ = O





τ

h
1
2∗
, h

1
2



 , (31)

where the ratio constant M∗
h keeps bounded.
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