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Abstract

The line search subproblem in unconstrained optimization is concerned with

finding an acceptable steplength satisfying certain standard conditions. The con-

ditions proposed in the early work of Armijo and Goldstein are sometimes replaced

by those recommended by Wolfe because these latter conditions automatically al-

low positive definiteness of some popular quasi-Newton updates to be maintained.

It is shown that a slightly modified form of quasi-Newton update allows positive

definiteness to be maintained even if line searches based on the Armijo–Goldstein

conditions are used.

1. Introduction

A line search method for minimizing a real function f generates a sequence x1, x2, . . .

of points by applying the iteration

xk+1 = xk + αkpk, k = 1, 2, . . . . (1)

In a quasi-Newton method the search direction pk is chosen so that Bkpk = −gk, where

Bk is (usually) a positive definite matrix and gk denotes ∇f(xk). For the BFGS update,

(see [?], for example), the matrices Bk are defined by the formula

Bk+1 =

[

B −
BssTB

sT Bs
+

yyT

sTy

]

k

, (2)

where sk = xk+1−xk and yk = gk+1−gk. It is well known that if B1 is positive definite

and

sT

k yk > 0 (3)

then all matrices Bk+1, k=1, 2, . . . generated by (??) are positive definite. Thus pk is

a direction of descent provided only that gk 6= 0. The choice of steplength, αk, in (??)

is crucial if the line search algorithm is to have good convergence properties. One of
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the early recommendations, due to Armijo[?] and Goldstein[?], is to choose αk > 0 at

each iteration to satisfy the conditions

σ2αkp
T

k gk ≤ f(xk+1) − f(xk) ≤ σ1αkp
T

k gk, (4)

where 0 < σ1 < 1

2
< σ2 < 1, (often σ2 = 1 − σ1 and σ1 = .1 are recommended). These

conditions ensure that the steplength is neither too small nor too large, and under some

extra (mild) assumptions on f and the descent direction pk the limit

lim
k→∞

∇f(xk) = 0 (5)

is guaranteed. Thus any limit points of the sequence {xk} are necessarily stationary

points of f . Unfortunately, satisfaction of the Armijo/Goldstein conditions (??) does

not automatically imply that condition (??) is also satisfied so that the BFGS update

(??) may not maintain positive definiteness. In such cases, the updating of Bk could

be omitted, or the line search could be continued with extra function and gradient

evaluations being made until both (??) and (??) are satisfied.

An alternative to (??) is to use the line search conditions of Wolfe[?, ?] which

require the steplength αk > 0 to satisfy the inequalities

f(xk+1) − f(xk) ≤ ρ1αkp
T

k gk,

pT

k gk+1 ≥ ρ2p
T

k gk, (6)

where 0 < ρ1 < 1

2
and ρ1 < ρ2 < 1. Note that if ρ1 =σ1 then (??) is the same as the

right hand inequality of (??). Again the purpose of these conditions is to ensure that

the steplength is neither too large nor too small. However, condition (??) implies that

sT

k yk ≥ (ρ2 − 1)sT

k gk > 0 (7)

so that inequality (??) is automatically satisfied and the BFGS updating formula can

be applied with positive definiteness being maintained automatically. A disadvantage

is that to test condition (??) requires an extra gradient evaluation at each trial value

for αk.

2. The Modified Updating Formula

The line search conditions (??) do allow positive definiteness to be maintained if

the updating formula (??) is adjusted slightly. Note first that an estimate of the second

directional derivative, pT

k
[∇2f(xk)]pk, is available from the quadratic polynomial, qk(α),

interpolating the data qk(0) = f(xk), qk(αk) = f(xk+1), and q′
k
(0) = pT

k
gk. Thus

qk(α) = f(xk) + αpT

k gk + 1

2
α2Dk (8)

where

Dk = 2[(f(xk+1) − f(xk))/αk − pT

k gk]/αk = q′′k(α). (9)
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Clearly, if the steplength αk satisfies the conditions (??) then

Dk ≥ 2(σ2 − 1)
pT

k
gk

αk

> 0,

which is consistent with a convex quadratic function along the ray xk + αpk. If f(x)

were a quadratic function then Dk ≡ sT

k
yk/α

2
k

would hold and in this case the Armijo-

Goldstein conditions (??) would be equivalent to the Wolfe conditions (??, ??) if

ρ1 = σ1, ρ2 = 2σ2 − 1. (10)

On quadratic functions the difference in slopes in moving from xk to xk+1 along the

direction pk is q′
k
(αk) − q′(0) = αkDk = ∆k where

∆k = 2[(f(xk+1) − f(xk))/αk − pT

k gk] (11)

and this difference is also given by ∆k ≡ pT

k
yk on quadratics. However, because pT

k
yk

may be non-positive on more general functions the following modification to the stan-

dard BFGS formula may be used when the Armijo-Goldstein line search conditions are

used. Let

zk =

[

y +

(

∆ − pT y

pT p

)

p

]

k

, (12)

so that pT

k
zk = ∆k. Then apply the standard BFGS update with zk replacing yk:

Bk+1 =

[

B −
BssTB

sTBs
+

zzT

sT z

]

k

. (13)

Positive definiteness is now maintained because sT

k
zk = αkp

T

k
zk = αk∆k = α2

k
Dk > 0.

Moreover, the updating formula (??) is equivalent to (??) when the objective function

is a strictly convex quadratic function.

3. Discussion

Inspection of the formula (??) for zk reveals that zk = [I − (ppT /pT p)k]yk +

(∆/pT p)kpk. Thus the difference in gradients that may be inconsistent with convexity

is ‘projected out’ and replaced by information consistent with positive curvature along

the direction pk. Clearly, this modification need not be made if sT

k
yk > 0. Moreover, on

strictly convex quadratic functions, if the parameters ρ and σ are related through (??)

then in exact arithmetic there will be no difference in algorithms using formula (??) in

place of (??) provided that the same sequence of trial values is used in each line search.

On more general functions differences will occur and it should be expected that these

will be most apparent in the early iterations at points remote from the solution. Close

to the solution f can be approximated well by a positive definite quadratic function so

that there should be little difference in the two sets of line search conditions.

Limited numerical trials were performed using the following algorithm:
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1. Initialization. k = 1. Bk = I.

2. Calculate pk = −B−1

k
gk.

3. Perform the line search, xk+1 = xk + αkpk, and then update Bk.

4. If the stopping conditions are not met, increment k and go to 2.

For the Wolfe conditions, the line search used was that given on pp. 34-35 of [?]

with f = −∞, τ1 = 4, and τ2 = τ3 = 0.5. For the Armijo-Goldstein conditions, the

sequence f(xk + αnpk) is calculated for αn = 4n using n = 0, 1, 2, . . . until either (??)

is satisfied, or a value αm violating the right hand inequality in (??) is found. In the

latter case an α value satisfying (??) was then found using bisection on the interval

[αm−1, αm]. The general theorem on descent methods for unconstrained optimization

of general functions (see theorem 2.5.1 of [?] for example) is applicable provided each

Bk is positive definite, irrespective of which update is used at each iteration.

The performance of the algorithm using the Wolfe line search conditions (??), (??),

with formula (??) and the Armijo-Goldstein conditions (??) with formula (??) were

very similar. In the trials the parameter values σ1 = 1 − σ2 = .1 and ρ1 = .1, ρ2 = .8

were chosen so that the conditions (??) were satisfied. This ensured that both algo-

rithms would behave identically on quadratics. On non-quadratics there were distinct

differences. Sometimes one algorithm performed better and sometimes the other, but

generally there was very little to choose between the two with perhaps a slight pref-

erence in favour of the Wolfe conditions. Thus it seems better to use the unmodified

form of the BFGS update unless there are pressing reasons for preferring otherwise.

One such situation when the Armijo-Goldstein conditions may be preferred is when

gradient information has to be estimated by finite differences. Then the second Wolfe

condition (??) is very expensive to test if more than one trial point is required in the

line search. In this situation a line search based on parabolic interpolation (see [?],

for example) combined with the Armijo-Goldstein conditions becomes much more at-

tractive. If sT

k
yk > 0 then the unmodified update can be used, otherwise it may be

preferable to use the modified update (??), (??) rather than having to abandon the

update altogether.

The modified BFGS formula in this paper automatically satisfies the “weak quasi-

Newton condition”

sT

k Bk+1sk = 2[f(xk+1) − f(xk) − sT

k ∇f(xk)],

and it is particularly convenient when using a line search based on Goldstein/Armijo

conditions because no extra precautions need to be taken to maintain positive definite-

ness. Other ways of modifying the BFGS formula have been considered, for example, by

Yuan[?]. In his approach the updated matrix satisfies the weak quasi-Newton condition

sT

k Bk+1sk = 2[f(xk) − f(xk+1) + sT

k ∇f(xk+1)],
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and he includes some numerical evidence which favours the use of a modified BFGS

formula when Wolfe condition line searches are used. Thus the present paper both

supports and complements the work of Yuan.
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