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Abstract

In the paper a linear combination of both the standard mixed formulation

and the displacement one of the Reissner-Mindlin plate theory is used to enhance

stability of the former and to remove “locking” of the later. For this new stabilitized

formulation, a unified approach to convergence analysis is presented for a wide

spectrum of finite element spaces. As long as the rotation space is appropriately

enriched, the formulation is convergent for the finite element spaces of sufficiently

high order. Optimal-order error estimates with constants independent of the plate

thickness are proved for the various lower order methods of this kind.

1. Introduction

It is well known that the standard finite element discretizations of the Reissner-

Mindlin plate problem produce poor approximations when the thickness is too small

in comparison with the diameter of the region occupied by the midsection of the plate.

The root is the so-called “locking” phenomenon which is by now well understood.

Among several approaches to avoiding locking is a modification of the standard finite

element schemes by interpolating or projecting the discrete transverse shear force into

a lower-order finite element space. This kind of method has recently attracted strong

research interest due to convenience of implementation and theoretical, experientical

evidence.For the details, see [1], [3-5], [9-14] and the papers refered therein.

Both the projection method[1][11][12] and the interpolation method[3−5] are based

on the introduction of the shear strain as a new variable. The benefit is that the

nonuniform boundedness of the original Reissner-Mindlin variational functional changes

into the uniform boundedness of the corresponding Lagrange energy functional with

respect to the thickness. As is well known, the nonuniform boundedness of the original

formulation leads to locking. But the strong point, i.e. the uniform boundedness of

the Lagrange functional is obtained at the expense of the loss of the quadric term of

∗ Received December 22, 1994.
1) This research was sponsored by State Major Key Project for Basic Research.



The Partial Projection Method in the Finite Element Discretization of ...... 173

primitive shear strain. Therefore it also leads to lack of coerciveness of the resulting

discrete formulation which then turns into the difficulty of constructing stable finite

element spaces. Based on this analysis, a further modification is considered in the paper.

The method here is to divide the discrete shear force into two parts and to project only

one of both into a lower-order finite element space. From the point of view of the

generalized variational principle, the method can be interpreted as a discretization

based on the combination of the original Reissner-Mindlin and the mixed variational

principles. To distinguish this from the method in which the whole shear force is

projected, the new method is refered to as the partial projection method. For this, a

detailed discussion is given in the second section of the paper.

It will be shown that this formulation can be regarded as a reduction of the Hughes-

Franca’s stabilization technique[11]. More precisely, neglecting one of the two addtional

stability terms in the Franca-Hughes’s formulation, i.e. removing the least-square resid-

ual form of the moment equilibrium equation from their formulation, and expanding

the remaining term give essentially the same terms that we get in a equivalent ex-

pression of the partial projection formulation. The difference is that the stabilization

parameter here appears as a weighted factor independent of the plate thickness and

finite element size, but the parameter in [11] is not so. In addition, this reduction

leads to a method of Petrov-Galerkin type turning into one of Galerkin type which has

foundation of variational principle.

For the case of the deflection interpolations of degree ≥ 2, the partial projection

formulation is less versatile than the Hughes-Franca method and the finite element

spaces can not be quite arbitrarily chosen, but additional convergence condition can

be satisfied much more easily than that required in other mixed methods. As long

as the rotation interpolation space is enriched with suitable bubble functions so that

a quite simple inf-sup condition holds, this reduced formulation is convergent for any

combination of the rotation, deflection and the shear force finite element spaces of suf-

ficiently high order. In particular, the present approach avoids the restrictive condition

∇Dh ⊂ Hh required in most mixed methods (where Dh,Hh denote the deflection and

the shear force finite element spaces respectively). This condition or its variants lead

to rather severe difficulty so that the convergence analysis in the papers [1] [9] [12]

can not be extended from the triangular plate elements to equally simple quadrilateral

counterparts.

The features mentioned above are confirmed by two general convergence theorems

established in section 3 and section 5. In the remaining sections, various applications

are discussed. In particular a family of triangular and quadrilateral,conforming and

nonconforming Reissner-Mindlin plate elements of order one is constructed, which in-

cludes the elements subjected to the discrete Kirchhoff constraint, and for every pair

of the triangular and quadrilateral elements, optimal error estimates are achieved in a

unified framework with constants independent of the plate thickness.

Following the paper [13], further modification of the methods of order one is con-
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sidered to cancel the degrees of freedom associated with the bubble functions in the

rotation finite element space. For the details, see the section 5 and 6.

2. New Variational Formulation of the Problem

We will use the standard notation for the Sobolev spaces and norms. Let Ω denote

the region in R2 occupied by the midsurface of the plate, and denote by w and β the

transverse displacement of Ω and the rotation of fibers normal to Ω respectively. The

original Reissner-Mindlin plate model determines w and β as the unique solution to

the following variational problem:

Find (w, β) ∈ H1
0 (Ω) × (H1

0 (Ω))2 such that:

B1(w, β; v, ξ) : = a(β, ξ) + λt−2(∇w − β,∇v − ξ)

= (g, v), ∀(v, ξ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 (2.1)

where

a(β, ξ) =
E

12(1 − v2)

∫

Ω

{

vdivβdivξ +
1 − v

4

2
∑

i,j=1

(∂βi
∂xj

+
∂βj
∂xi

)( ∂ξi
∂xj

+
∂ξj
∂xi

)

}

dΩ,

(·, ·) is the scalar product either in L2(Ω) or (L2(Ω))2, t is the plate thickness,

λ = Ek/2(1 + v) with E the Young’s modulus, v the Poisson ratio, and k the shear

correction factor, g is the transverse loading function scaled by a constant multiple of

the cube of the thickness so that the solution tends to a nonzero limit as t tends to

zero. For the details concerned with the original model, see[1][6].

For the problem (2.1), the mixed method is based on the introduction of the shear

force:

σ = λt−2(∇w − β)

as a new variable. In this way, the problem (2.1) takes the equivalent form:

Find (w, β, σ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 × V , such that

B2(w, β, σ; v, ξ, τ) : = a(β, ξ) + (σ,∇v − ξ) − (τ,∇w − β) + λ−1t2(σ, τ)

= (g, v), ∀(v, ξ, τ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 × V (2.2)

where V is a suitable space satisfying

H0(rot; Ω) ⊂ V ⊂ (L2(Ω))2

H0(rot; Ω) : = {τ ∈ (L2(Ω))2 : rotτ ∈ L2(Ω) and τ · s = 0 on ∂Ω}

rotτ : =
∂τ1
∂x2

− ∂τ2
∂x1

,

s is the unit tangent to boundary ∂Ω of the domain Ω.
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For simplicity of notation, we shall henceforth assume λ = 1. In what follows we

denote by C( or Ci) a constant independent of t and h (the characteristic parameter

of finite element subdivision), but not necessarily the same at each occurrence.

The theorem which asserts the problem (2.2) (and consequently also the problem

(2.1)) to be well posed was proven in [1][6]. For convenience, it can be written as

follows:

Theorem 2.1 Let Ω be a convex polygon or smoothly bounded domain in the

plane. For any t ∈ (0, 1] and any g ∈ H−1, there exists a unique triple (w, β, σ) ∈
H1

0 (Ω) × (H1
0 (Ω))2 × V solving problem (2.2). Moreover, there exists a constant C

independent of t and g, such that:

||w||1 + ||β||2 + ||σ||0 ≤ C||g||−1.

If g ∈ L2(Ω) and the Helmholtz decomposition to the transverse shear force is σ =

∇r + curlp,

||β||2 + ||w||2 + ||r||2 + ||p||1 + t||p||2 ≤ C||g||0 ,

and if g ∈ H1(Ω) and Ω is smoothly bounded,

||r||3 + ||w||3 ≤ C||g||1 .

Let H1
0 (Ω) × (H1

0 (Ω))2 × V be equipped with the norm

||(v, ξ, τ)||B2 := (||(v, ξ)||2B1
+ t2||τ ||20)

1
2 , ∀(v, ξ, τ) ∈ H1

0 (Ω) × (H1
0 (Ω))2 × V

where

||(v, ξ)||B1 := (||ξ||21 + ||∇v − ξ||10)
1
2 .

By virtue of the Korn’s inequality, we have

C||(v, ξ)||2B1
≤ B1(v, ξ; v, ξ) ≤ Ct−2||(v, ξ)||2B1

and

C(||(v, ξ, τ)||2B2
− ||∇v − ξ||20 ≤ a(ξ, ξ) + t2(τ, τ) = B2(v, ξ, τ ; v, ξ, τ)

≤ C||(v, ξ, τ)||2B2
.

In other words the quadric functional B1 is coercive but not thickness-independently

bounded, B2(v, ξ, τ ; v, ξ, τ) is thickness-independently bounded but not coercive. For

the “saddle-point” problem (2.2), though a weak coerciveness condition is sufficient,

the following inf-sup condition of well-posedness

C||τ ||u ≤ Sup(v,ξ)∈H
(τ,∇v − ξ)

||(v, ξ)||B1

, H = (H1
0 (Ω)) × (H1

0 (Ω))2

(where U is the dual space of H0(rot; Ω)), can be derived by using a technique in

the paper[6]. However, its discrete analogue can not be generally established due to

the discrete version of the Helmholtz decomposition theorem being untrue in general

for the practically interesting finite element spaces. On the other hand, in order to

fulfil the K-elliplicity condition in the mixed method theory, the assumption∇Dh ⊂ Hh
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is required in all papers ([1][5][9][10][11]), where Dh and Hh denote the transverse

displacement and shear strain finite element subspace respectively. The satisfaction of

the condition implies that the number of degree of freedom of Hh is more than enough.

But enrichment of the space Hh complicates the implementation and satisfaction of

other convergence conditions. The root of these problems is the lack of the coerciveness

of B2 at the discrete level.

As an improvement, we consider another equivalent mixed variational formulation

as follows:

Find (w, β, σ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 × V such that:

B3(w, β, σ; v, ξ, τ) : = αt2B1(w, β; v, ξ) + (1 − αt2)B2(w, β, σ; v, ξ, τ)

= (g, v), ∀(v, ξ, τ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 × V (2.3)

where α is a weighted factor and α > 0.

Since

B3 = a(β, ξ) + α

∫

Ω
(∇w − β)(∇v − ξ)dΩ

+ (1 − αt2)[(σ,∇v − ξ) − (τ,∇w − β)] + (1 − αt2)t2(σ, τ),

in contrast with B2 , the coerciveness is enhanced by the additional term

α

∫

Ω
(∇w − β)(∇v − ξ)dΩ.

This type of the stabilized method was referred to as the mixed method based on the

homology family of variational principles in the paper[15]. Clearly the weighted factor

α can be considered as a stabilizing parameter. In view of

B2(w, β, σ; v, ξ, τ) = B1(w, β; v, ξ) − t−2(t2σ −∇w + β,−t2τ −∇v + ξ),

we get

B3 = B2 + α(t2σ −∇w + β,−t2τ −∇v + ξ).

Seting α = α̃h−2 and τ = −τ̃ in the above expression and relating both the formulation

(2.3) and the Hughes-Franca’s Petrov-Galerkin method [11] to each other, we can see

that the former is essentially a reduction of the later. In other words, a further mod-

ification of the Galerkin variational equation (2.3) by including least square residual

form of the moment equilibrium equation leads to the Hughes-Franca’s Galerkin least

squares method [11] in which two stabilizing parameters are used. In addition, the pa-

rameter α in [11] seems to be considered as a penalty factor which must take the form

of α̃h−2, and the previous analysis shows that as a weighted factor, α in (2.3) may take

other forms. In the discussion bellow, we will take α = α̃[max(h, t)]−2 and α = const.

respectively for two cases of higher and low order displacement interpolations.

3. Finite Element Approximations and Convergence Analysis
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For simplicity we assume henceforth that Ω is a convex polygon. Let {Γh}0<h<1 be

a regular family [7] of finite element subdivisions of Ω, and Rh,Dh and Hh be finite

element spaces associated with Γh such that

Dh ⊂ H1
0 (Ω), Rh ⊂ (H1

0 (Ω))2, Hh ⊂ (L2(Ω))2.

Employing these spaces for the discretization of the problem (2.3), we obtain the

following approximation scheme:

Find (wh, βh, σh) ∈ Dh ×Rh ×Hh such that

B3(wh, βh, σh; v, ξ, τ) = (g, v), ∀(v, ξ, τ) ∈ Dh ×Rh ×Hh (3.1)

or equivalently

a(βh, ξ) + α(∇wh − βh,∇v − ξ)+(1 − αt2)(σh,∇v − ξ) = (g, v),

∀(v, ξ) ∈ Dh ×Rh,

−(τ,∇wh − βh) + t2(σh, τ) = 0, ∀τ ∈ Hh

Let P be the orthogonal projection from L2(Ωe) to Hh(Ωe) where Ωe ∈ Γh is a

finite element subdomain. It is easy to show that the last two relations can be jointly

rewritten as follows:

a(βh, ξ) + α(∇wh − βh,∇v − ξ) +
(1 − αt2)

t2
(P∇wh − Pβh,∇v − ξ)

= (g, v), ∀(v, ξ) ∈ Dh ×Rh. (3.2)

If α > 0, this is different from the Arnold & Falk method which is to project also

the shear strain of α(∇wh−βh,∇v− ξ) into Hh. Based on this, the discretization (3.2)

will be refered to as the partial projection method.

The existence and uniqueness of the finite element solution can be easily derived

from the coerciveness of B3(·, ·). As the convergence conditions we assume that

H1) there exist the operators:

Π1 : H1
0 (Ω) → Dh(Ω)

Π2 : (H1
0 (Ω))2 → Rh(Ω)

Π3 : (L2(Ω))2 → Hh

such that for m > 0,

||(w − Π1w, β − Π2β, σ − Π3σ)||(1.1) ≤ Chm,

where

||(v, ξ, τ)||2(q,r) :=(||ξ||21 + h−2q
t ||∇v − ξ||20 + (t2 + h2r)||τ ||20)

ht := max(h, t).

H2) The space Rh is large enough so that

sup
ξ∈Rh

(τ, ξ)

||ξ||0
≥ C||τ ||0, ∀τ ∈ Hh.

The following theorem is the main result of this section.
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Theorem 3.1. Let the spaces Rh ⊂ (H1
0 (Ω))2, Dh ⊂ H1

0 (Ω) and Hh ⊂
(L2(Ω))2 be such that the hypotheses H1 and H2 hold, and α in (3.2) takes the form

of α̃ht−2. If 0 < α̃ < 1, then for any h > 0 and t ≥ 0,

||(w − wh, β − βh, σ − σh)||(1,0) ≤ C
hm

min(α̃, 1 − α̃)
.

Remark 3.1. Following the idea in [11] [12], the parameter α can be as well

assumed to be piecewise constant, i.e. α takes the form of α̃(max(he, t))
−2 where he

denotes the diameter of Ωe ∈ Γh. For this choice, the theorem still remain valid if the

nature energy norm || · ||(q,r) is considered as mesh-dependent norm.

Remark 3.2. The interpolation error conditoin (H1) is the same as used in the

paper [11]. In comparision with the Hughes-Franca’s method [11], the condition (H2)

is additionally required, but in comparision with other mixed formulations, it is simple

and easy to satisfy.

Proof. First we prove that there exists (Π1w,Π2∗β,Π3σ) ∈ Dh × Rh ×Hh such

that

||(w − Π1w, β − Π2∗β, σ − Π3σ||(1,1) ≤ Chm (3.3)

and

|(τ,∇w −∇Π1w − β + Π2∗β)|

≤ t||τ ||0
( ||∇w −∇Π1w − β + Π2∗β||0

ht

)

, ∀τ ∈ Hh. (3.4)

In order to find Π2∗β, we introduce a linear operator

Π4 : (L2(Ω))2 → Rh,

such that for τ ∈ (L2(Ω))2,

(Π4τ, β) = (τ, β), ∀β ∈ Rh. (3.5)

By virtue of the assumption (H2), we get

C0||τ ||0 ≤ ||Π4τ ||0 ≤ ||τ ||0, ∀τ ∈ Hh.

By the Lax-Milgram theorem, Hh−ellipticity:

(Π4τ,Π4τ) ≥ C2
0 ||τ ||20, ∀τ ∈ Hh

implies that there exists a unique τ∗ ∈ Hh such that

(Π4τ
∗,Π4τ) = (∇w −∇Π1w − β + Π2β, τ), ∀τ ∈ Hh (3.6)

and

||Π4τ
∗||20 ≤ ||τ∗||0 · ||∇w −∇Π1w − β + Π2β||0

≤ C1
0 ||Π4τ

∗||0 · ||∇w −∇Π1w − β + Π2β||0
hence

||Π4τ
∗||0 ≤ C−1

0 ||∇w −∇Π1w − β + Π2β||0 . (3.7)



The Partial Projection Method in the Finite Element Discretization of ...... 179

Now let us show that

Π2∗β =

{

Π2β − Π4τ
∗, if h ≥ t,

Π2β, if h < t.

In fact, if h ≥ t, combining the assumption (H1) with the relation (3.7) yields

||Π4τ
∗||0 ≤ C1

0 (||∇w −∇Π1w||1 + ||β − Π2β||0)
≤ C(hth

m + hm+1) ≤ Chm+1.

Then, by the inverse inequality, we have

||β − Π2∗β||1 ≤ ||β − Π2β||1 + ||Π4τ
∗||1 ≤ Chm.

Which together with the assumption (H1) give the estimates (3.3).

By the definition of Π4, (Π4τ
∗,Π4τ) = (Π4τ

∗, τ), therefore (3.6) is equivalent to

(∇w −∇Π1w − β + Π2β − Π4τ
∗, τ) = 0, ∀τ ∈ Hh

i.e., the estimate (3.4) holds.

For the case of h < t, owing to Π2∗β = Π2β, (3.3) is the very assumption (H1). By

the Cauchy-Schwartz inequality and ht = t, we get

|(τ,∇w −∇Π1w−β + Π2∗β| ≤ ||τ ||||∇w −∇Π1w − β + Π2∗β||0

≤ t||τ ||∇w −∇Π1w − β + Π2∗β||0
ht

.

Then the proof of (3.3) and (3.4) is completed.

Now we are ready for proving the theorem itself.

Let us set (v, ξ, τ) = (Π1w−wh,Π2∗β−βh,Π3σ−σh) := (δw, δξ, δσ) From the error

equation:

B3(w − wh, β − βh, σ − σh; v, ξ, τ) = 0

we obtion

B3(v, ξ, τ ; v, ξ, τ) = −B3(w − Π1w, β − Π2∗β, σ − Π3σ; v, ξ, τ)

whose right hand side term is equal to

Σ1 := a(δβ, δβ) + α||∇δw − δβ||20 + (1 − αt2)t2||δσ||20.
Expanding the left hand side term, we have

Σ1 = a(Π2∗β − β, δβ) + (1 − αt2)t2(Π3σ − σ, δσ)

+ α(∇Π1w −∇w − Π2∗β + β,∇δw − δβ)

+ (1 − αt2)[(Π3σ − σ,∇δw − δβ) − (δσ,∇Π1w −∇w − Π2∗β − β)].

Recalling α = α̃h−2
t , t ≤ ht and 0 < (1 − αt2) ≤ 1, the following estimate can be

derived by using the generalized Schwartz inequality:

Σ1 ≤ C||(Π1w −w,Π2∗β − β,Π3σ − σ)||(1,0) · ||(δw, δβ, δσ)||(1,0)
+ (1 − αt2)[ht||Π3σ − σ||0 · ||∇δw − δβ||0 · h−1

t

+ |(δσ,∇Π1w −∇w − Π∗
2β + β)|] . (3.8)
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Applying (3.4) to the last term (3.8), we have

Σ1 ≤C[(||(Π1w − w,Π2∗β − β,Π3σ − σ)||2(1,0)
+ h2

t ||Π3σ − σ||20)]
1
2 ·

√
2||(δw, δβ, δσ)||(1,0)

+ t||δσ||0 ·
||∇Π1w −∇w − Π2∗β + β||0

ht
≤C||(Π1w − w,Π2∗β − β,Π3σ − σ)||(1,1) · ||(δw, δβ, δσ||(1,0)

+ t||δσ||0 ·
||∇Π1w −∇w − Π2∗β + β||0

ht
≤C||(Π1w − w,Π2∗β − β,Π3σ − σ)||(1,1) · ||(δw, δβ, δσ)||(1,0) . (3.9)

By the Korn inequality, we have

||(δw, δβ, δσ)||2(1,0) ≤ C(min(α̃, 1 − α̃))−1
∑

1

.

Combining this with (3.9) and using the estimate (3.3), we obtain

||(δw, δβ, δσ)||(1,0) ≤ C

min(α̃, 1 − α̃)
· ||(Π1w − w,Π2∗β − β,Π3σ − σ)||(1,1)

≤ C

min(α̃, 1 − α̃)
hm .

By the triangle inquality, this estimate together with (3.3) yields the desired uniform

convergence error estimates.

Based on this theorem, checking the inf-sup condition (H2) is thus a important point

of constructing various uniform convergent finite elements for the Reissner-Mindlin

plate problem. The main task of remaining part of this section is to present a localized

criterion for verification of the condition (H2).

By the element patch M (or a macroelement), we now mean the union of a fixed

number of adjacent elements along any one of several well defined patterns. As well

known, there exists 1-1 correspondence between these patterns and the so-called ref-

erence macroelements {M̂} . Any element patch that is equivalent to M̂ through a

proper change variables will be classified into a set M̂p of element patches. Because

the subdivision Γh is regular, we can assume that for every subdivision Γh(0 < h ≤ 1),

there is a fixed number R of the patch sets, {M̂p}(p = 1, 2, · · ·R0), such that

Ω =
R0
⋃

p=1

⋃

Ωe⊆M̂p
Ωe∈Γh

Ωe

and each Ωe ∈ Γh is contained in not more than L element patches, L is independent

of h.

Theorem 3.2. Assume that for every set M̂p and any M ∈ M̂p,

{τi|M : τ ∈ Hh and (ξi, τi)(M) = 0, ∀ξ ∈ Rh
⋂

(H1
0 (M))2} = {0}. (3.10)
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or alternatively, for ξ ∈ (H1
0 ((M))2, there exists

∏

ξ ∈ Rh such that

(ξ −
∏

ξ, τ) = 0, ∀τ ∈ Hh (3.11)

and

||
∏

ξ||0 ≤ C||ξ||0,

then the condition (H2) holds.

This theorem is essentially an application of the general theory [18] [19] of localized

criteria for checking the Babuska-Brezzi condition to a particular inequality of inf-sup

form. It can be proved through the same steps and by using the same techniques as in

[18]. For abbreviation of the space, the proof is omitted.

According to [18], the condition (3.10) can be referred to as rank-nondeficiency

criterion, the condition (3.11) as interpolation criterion. (3.10) is a localized criterion

but (3.11) is not in general unlessHh has simple construction such as piecewise constant

spaces. For other references relative to the localized criteria, see [20] [21] in which

divergence stability of inf-sup form was considered for the stokes problem and the

identical approach was named macroelement technique.

Based on these theorems, the family of the Reissner-Mindlin plate elements of higher

order can be constructed. This problem will be leaved for the forthcoming paper. In

the remaining sections, only the elements of lower order are concerned.

Remarck 3.3. It is clear that the theory here can be as well applied to the so-called

mixed interpolation methods [3-5] [14] due to permitting Hh ⊂ H0(rot; Ω).

4. The Lower Order Conforming Elements

In this section we present two new pairs of uniformly accurate conforming elements

for which ∇Dh ⊂ Hh does not hold. For the sake of simplicity , we denote the two

pairs of elements by the notations PPM-I and PPM-II.

We use the standard notation for the spaces of polynomials, that is, Pk is the space

of polynomials of degree less than or equal to k and Qk is the space of polynomials of

degree less than or equal to k in each variable.

For the triangular element T of PPM-I, We define the finite element subspaces as

follows:

Hk = {τ ∈ (L2(Ω))2 : τ |T ∈ P̄0, ∀T ∈ Γh}, (4.1)

Dh = {v ∈ H1
0 (Ω) : v|T ∈ P2,∀T ∈ Γh}, (4.2)

Rh = {ξ ∈ (H1
0 (Ω))2 : ξ|T ∈ P̄1 ⊕ P̄0bT , ∀T ∈ Γh} (4.3)

where bT is a bubble function of degree 3, namely bT ∈ P3 and bT = 0 on ∂T . Another

alternative for bT is a piecewise linear function with respect to three microelements

determined by barycentric node of T (see [16]).
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For the quadrilateral element Q of PPM-I, we define

Hh = {τ ∈ (L2(Ω))2 : τ |Q ∈ Q̄0, ∀Q ∈ Γh}, (4.4)

Dh = {v ∈ H1
0 (Ω) : v|Q ∈ Q̄

′

2, ∀Q ∈ Γh}, (4.5)

Rh = {ξ ∈ (H1
0 (Ω))2 : ξ|Q ∈ Q̄

′

1 ⊕ Q̄0bQ, ∀Q ∈ Γh} (4.6)

where Q
′

1, Q
′

2 indicate respectively the 4-node isoparametric and 8-node subparametric

‘serendipity’ set; bQ is a bubble function on Q, which can be defined as previously.

For this choice of finite element spaces, we have:

σh = t−2(meas(Ωe))
−1

∫

Ωe

(∇wh − βh)dΩ, on ωe ∈ Γh . (4.7)

Inserting this in (3.2) and seting α = 1
2h2

t

, the partial projection method can be

formulated as follows:

Find (wh, βh) ∈ Dh ×Rh such that:

a(βh, ξ) + (2h2
t )

−1(∇wh − βh,∇v − ξ)

+(1 − t2

2h2
t

)t−2
∑

Ωe∈Γk

(meas(Ωe))
−1

∫

Ωe

(∇wh − βh)dΩ ·
∫

Ωe

(∇v − ξ)dΩ

= (g, v), ∀(v, ξ) ∈ Dh ×Rh . (4.8)

It is easy to see that by virtue of Theorem 3.2, employing the bubble function for Rh
leads to satisfication of the condition (H2). Since the condition (H1) is also satisfied

by virtue of the well known interpolation error estimates, by Theorem 3.1 and 2.1, we

obtain the following optimal error estimate:

Proposition 4.1. For the element pair PPM-I based on the formulation (4.7)

(4.8), we have

||β − βh||1 + h−1
t |w −wh|1 + t||σ − σh||0 ≤ Ch(||g||0 + ||w||3)

and if t ≤ ch , i.e. the plate is so called “ numerical thin ”,

|w − wh|1 ≤ Ch2(||g||0 + ||w||3) .

Remark 4.1. In the paper [12] ,the corresponding error estimate for wh takes

the form of α̃ 1
h2 |w−wh|21 ≤ Ch2. For the case of t ≥ h, the requirement of 1

2
h2

t2
≤ α̃ ≤ h2

t2

in [12] implies that the result in [12] is essentially the same as Proposition 4.1 .

It is easy to see that the PPM-I elements have degrees of freedom 12 and 16 respec-

tively after the internal degrees of freedom of the rotation interpolations are eliminated

by using static condensation. But as far as elements of order one, three degree of free-

dom at every vertice leads to optimal computational efficiency. Because of this, the

remaining discussion of this section is focussed on the elements with discrete Kirchhoff

constraint imposed at all the vertices, which will be named the PPM-II elements. The

trianguler element of this kind was analyzed in [12] based on the standard mixed for-

mulation. Our aim is to extend the analysis from the triangle to the quadrilateral in

the unified framework introduced in the above section.
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Let us denote the finite element spaces of PPM-II by Hh∗,Dh∗ , Rh∗ respectively.

For the triangular element, these spaces are the same as those considered in [12]. That

is:

H∗
h = Hh (4.9)

D∗
h ×R∗

h = {(v, ξ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 : (v, ξ)|T ∈ Z(T ) ×Rh(T )

and ∇v(ai) = ξ(ai) i = 1, 2, 3 ∀T ∈ Γh} (4.10)

where Hh, Rh denote the spaces (4.1) (4.3) respectively, ai denote the vertices of Ωe.

Z(T ) is the Zienkiewicz triangle (see [12] or [7]). Then Z(T ) ⊃ P2.

To define its quadrilateral counterpart, we need the following spaces:

H∗
h = Hh (4.11)

D∗
h ×R∗

h = {(v, ξ) ∈ H1
0 (Ω) × (H1

0 (Ω))2 : (v, ξ)|Q ∈ A(Q) ×Rh(Q)

and ∇v(ai) = ξ(ai) i = 1, 2, 3, 4 ∀Q ∈ Γh} (4.12)

where Hh, Rh denote the spaces (4.4) and (4.6) respectively,

A(Q) := {FQ̄1 v̄ : ∀v̄ ∈ Â(Q̂)}
FQ is the geometric biliner mapping from the referential square Q̂ = [−1, 1]× [−1, 1] to

the quadriilateral Q and FQ̄1 denotes its inverse. Â(Q̂) denotes the Adini square (see

[7]).

Remark 4.2. Instead of Z(T ) or A(Q), other C0-continuous thin plate element

can be chosen. For this replacement, the following conclusion still remains valid.

Now we check that all the assumptions of Theorem 3.1 are satisfied with the choises

of finite element spaces (4.9)-(4.12). Since the rotation and shear force spaces of both

PPM-I and PPM-II are the same, it is trival that the condition (H2) holds for PPM-II.

For the condition (H1), it is sufficient to prove that there exist a pair of interpolation

operators (Π1,Π2) such that

(Π1w,Π2β) ∈ D∗
h ×R∗

h

and

||β − Π2β||1 + h−1
t ||∇w −∇Π1w||0 ≤ Ch(||ϕ||0 + ||w||3) .

In fact, let Π2β ∈ R∗
h be ordinary linear (or bilinear) interpolation of β and (Π∗

1w,Π1w) ∈
(D∗

h)
2 be defined by

Π1w(ai) = w(ai) = Π∗
1w(ai), ∇Π1w(ai) = Π2β(ai) = β(ai),

and

∇Π∗
1w(ai) = ∇w(ai).

It is clear that ||β − Π2β||1 ≤ Ch||ϕ||0. Since the relation ||Π2(∇w − β)||0 = 0 implies

that ||∇(Π∗
1 − Π1)w||0 = 0, it can be proved by using the scaling technique (see [18]

[20]) that there exists a constant independent of h such that

||∇(Π∗
1 − Π1)w||0,Ωe ≤ C||Π2(∇w − β)||0,Ωe , ∀Ωe ∈ Γh.
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Then we have

||∇w −∇Π1w||0 ≤ ||∇w −∇Π∗
1w||0 + ||∇(Π∗

1 − Π1)w||0
≤ Ch2||w||3 + C||Π2(∇w − β)||0
≤ Ch2||w||3 + C||∇w − β||0
≤ C(h2||w||3 + t2||σ||0)

which implies that the condition (H1) holds at least for t ≤ Ch, i.e. the “numerical

thin” case.

Proposition 4.2. For the PPM-II elements based on the fomulation (4.7) and

(4.8), if t ≤ Ch, the following error estimate holds:

||β − βh||1 + h−1||∇w −∇wh||0 + t||σ − σh||0 ≤ Ch(||ϕ||0 + ||w||3).

5. Modification of the Lower Order PPM-Methods

The assumption (H1) implies that Theorem 3.1 is not suitable to the plate elements

with the displacement interpolations of order < 2. In this section we extend the error

analysis of section 3, and a unified approach to convergence analysis of the various

nonconforming method including the Arnold & Falk’s triangular element [1][9] and its

Franca & Stenberg modification [13] is proposed without using the descrete Helmholtz

decomposition [1] of the shear strain. Secondly, a low-order quadrilateral element which

can couple with the nonconforming triangular element is constructed in section 6.

Let ∇hv ∈ (L2(Ω))2 be the piecewise gradient of nonconforming interpolant v whose

restriction to each element, T or Q, is equal to ∇v. For the nonconforming element,

the PPM-finite element approximation corresponding to the Franca & Stenberg method

[13] can be formulated as follows:

Find (wh, βh, σh) ∈ Dh ×Rh ×Hh such that:

a(βh, ξ) + α(∇hwh − βh,∇hv − ξ)

+ (1 − αt2)(t2 + α∗h2)−1(P (∇hwh − βh),∇hv − ξ) = (g, v), (5.1)

σh = (t2 + α∗h2)−1P (∇hwh − βh), ∀(v, ξ) ∈ Dh ×Rh

or equivalently

B∗
3(wh, βh, σh; v, ξ, τ) :=B3(wh, βh, σh; v, ξ, τ) + (1 − αt2)α∗h2(σh, τ)

=(g, v), ∀(v, ξ, τ) ∈ Dh ×Rh ×Hh. (5.2)

Where α∗ > 0 is another stabilizing parameter.

Theorem 5.1. Let the space Rh ⊂ (H1
0 (Ω))2,Dh ⊂ L2(Ω) and Hh ⊂ (L2(Ω))2

satisfy the assumptions:
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H1′) there exist the interpolation operators:

Π1 : H1
0 (Ω) → Dh, Π2 : (H1

0 (Ω))2 → Rh, Π4 : (L2(Ω))2 → Hh

such that

(∇w −∇hΠ1w, τ) = 0, ∀τ ∈ Hh,

(t+ h)||σ − Π4σ||0 + ||β − Π2β||1 + ||∇w −∇hΠ1w||0 ≤ Ch||g||0 .

H2′) there exist a finite element space Eh ⊂ H1(Ω) and another interpolation

operator Π3 : H1(Ω) → Eh such that

CurlEh := {curlv : ∀v ∈ Eh} ⊂ Hh

and

||p − Π3p||i ≤ Ch||p||i+1 (i = 0, 1) ∀p ∈ H i+1(Ω),

then there exists a unique solution (wh, βh, σh) of the problem (5.1) or (5.2)

such that for 0 < α < 1 and C ≥ α∗ > 0,

||β − βh||1 + ||∇w −∇hwh||0 + (t+ h)||σ − σh||0 ≤ Ch||ϕ||0.

Remark 5.1. If there exists the discrete Holmholtz decomposition τ = ∇hr̄

+ curlp̄ (see [1]) for τ ∈ Hh, the assumption associated with Π1 is equivalent to that

supv∈Dh

(τ,∇hv)
||∇hv||0

≥ C||∇hr̄||0 holds for τ ∈ Hh.

Proof. Let us set

(δw, δβ, δσ) := (Π1w − wh,Π2β − βh,Π
∗
3σ − σh) ,

where Π∗
3σ = Π4∇r + CurlΠ3p and σ = ∇r + Curlp is the Helmholtz decomposition.

By (H1′) and (H2′), we get

||β − Π2β||1 + ||∇w −∇Π1w||0 + (t2 + α∗h2)
1
2 ||σ − Π∗

3σ||0 ≤ Ch||g||0 . (5.3)

Owing to Dh 6⊂ H1
0 (Ω), the error equation now includes consistency terms and it can

be written as follows:

B∗
3(w − wh, β − βh, σ − σh; v, ξ, τ)

=
∑

Ωe∈Γh

∮

∂Ωe

[α(∇w − β) + (1 − αt2)σ] · nvds+ (1 − αt2)α∗h2(σ, τ),

∀(v, ξ, τ) ∈ Dh ×Rh ×Hh

where n is the unit vector normal to the element boundary ∂Ωe.

Proceeding as in theorem 3.1 and using (5.3), we obtain the analogue of (3.8):
∑

1

= a(δβ, δβ) + α||∇hδw − δβ||20 + (1 − αt2)(t2 + α∗h2)||δσ||20

≤ Ch||g||0||(δw, δβ, δσ)||(0,1)
+ α

∣

∣

∣

∑

Ωe∈Γh

∮

∂Ωe

(∇w − β) · nδwds
∣

∣

∣ + (1 − αt2)|
∑

2

| (5.4)
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where
∑

2

:= (Π∗
3σ − σ,∇hδw − δβ) − (δσ,∇hΠ1w −∇w − Π2β + β) +

∑

Ωe∈Γ

∮

∂Ωe

σ · nδwds

and the norm || · ||(0.1) should be considered as the nonconforming analogue of || · ||(0,1),
i.e. ∇δw within is replaced by ∇hδw.

Because h−1||∇w − β||0 does not appear in the norm || · ||(0,1) and t||σ||1 is uni-

formly bounded by theorem 2.1 but ||σ||1 is not, a treatment different from the proof of

theorem 3.1 is needed for estimating (Π∗
3σ − σ,∇hδw − δβ) in

∑

2.

Since Π∗
3σ = Π4∇r + curlΠ3p

and (curl(Π3p− p),∇hδw) =
∑

Ωe∈Γh

∮

∂Ωe
curl(Π3p− p) · nδwds,

we get:

(Π∗
3σ − σ,∇hδw − δβ) = (Π4∇r −∇r,∇hδw − δβ)

−
∑

Ωe∈Γh

∮

∂Ωe

curlp · nδwds + (p− Π3p, rotδβ)

+
∑

Ωe∈Γh

∑

l∈∂Ωe

∮

l
curlΠ3p · nδwds . (5.5)

Since ∂Π3p
∂s

|l = (curlΠ3p ·n)|l = const. and
∮

l(δw|R− δw|L)ds = 0 where δw|R and δw|L
denote the right and left hand side value of δw on l respectively, the fourth term of

(5.5) is zero and by (H1′) (H2′), we have:
∣

∣

∣

∑

2

∣

∣

∣ =
∣

∣

∣(Π4∇r −∇r,∇hδw − δβ) + (p− Π3p, rotδβ)

− (δσ,−Π2β + β) +
∑

Ωe∈Γh

∮

∂Ωe

(σ − curlp) · nδwds
∣

∣

∣

≤Ch(||r||2 + ||p||1 + ||β||2)(||rotδβ||20 + (t2 + h2)||δσ|| + ||∇hδw − δβ||20)
1
2

+ |
∑

Ωe∈Γh

∮

∂Ωe

∇r · nδwds|. (5.6)

In order to estimate the last term on the right side of (5.6) and the second-last term

of (5.4), we use the following lemma (for the proof see [8] , or lemma 2.3 in [17]):

Lemma 5.1. Let ψ ∈ (H1(Ω))2 and v ∈ Dh then:

|
∑

Ωe∈Γh

∮

∂Ωe

(ψ · n)vds| ≤ Ch||ψ||1||∇hv||0 .

It is easy to see that a direct application of both this lemma and Theorem 2.1 give

an estimate for
∑

2 and consequently for
∑

1, namely
∑

1

≤ Ch||g||0||(δw, δβ, δσ)||(0.1) .

The same argument as in the proof of theorem 3.1 yields the desired conclusion. The

theorem is proved.
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Since the natural energy norm now includes (t+ h)||σ||0, by the argument used in

Theorem 3.1 (see (3.8) and (3.9)), it is easy to see that the following conclusion holds:

Theorem 5.2. If there exists (Π1w,Π2β,Π3σ) ∈ Dh × Rh × Hh ⊂ H1
0 (Ω) ×

(H1
0 (Ω))2 × V such that

h−1||∇w −∇Π1w||0 + ||β − Π2β||1 + (t+ h)||σ − Π3σ||0 ≤ Ch||ϕ||0,

then for the solution (wh, βh, σh) of the problem (5.1) with α = α̃h−2(0 < α̃ < 1) and

0 < α∗ ≤ C,

h−1||∇w −∇wh||0 + ||β − βh||l + (t+ h)||σ − σh||0

≤ Ch||ϕ||0
min(α̃, (1 − α̃t2), α∗)

.

Based on this theorem, it can be proved that a pair of elements, corresponding to

PPM-I without the ‘bubble’ degree of freedom in Rh, is uniformly convergent.

6. The Lower-order Nonconforming Elements

Now we check that the assumptions of Theorem 5.1 are satisfied by a pair of the

nonconforming elements. The triangular element of this pair was considered in [13]. As

a modification of the Arnold & Falk element [1], the element is possessed of the simplest

construction due to Hh, Rh being piecewise constant and C0-linear interpolation space

respectively as well as

Dh ={v ∈ L2(Ω) : v|T ∈ P1,∀T ∈ Γh, and v is continuous at

midpoints of element edges and vanishes at midpoints

of boundary edges}. (6.1)

Corresponding to this, for the quadrilateral element, we define

Dh ={v ∈ L2(Ω) : v|Q ∈ Q∗
1,∀Q ∈ Γh, and

∮

l
(vR − vL)ds = 0

for common edge l of any element pair(QR, QL)adjacent

to each other, wherevR = v|QR
, vL = v|QL

and

∮

l
dds = 0

for any boundary edge l}. (6.2)

where Q∗
1 = Q̂∗

1(F
−1
Q (x1, x2)), and Q̂∗

1 = Span{1, y1, y2, y
2
1 − y2

2}.

Rh = {ξ ∈ (H1
0 (Ω))2 : ξ|Q ∈ Q̂′

1,∀Q ∈ Γh}
Hh = {τ ∈ (L2(Ω))2 : τ |Q ∈ Q̂∗

0,∀Q ∈ Γh}

where

Q∗
0 =

{[

c1

c2

]

⊕ c3curlψ0 : ∀c1, c2, c3 ∈ R

}

,
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ψ0 = ψ̂0(F
−1
Q (x1, x2)), ψ̂0(y1, y2) = 4−1(1 + y1)(1 + y2),X = (x1, x2)

T = FQ(y1, y2)

is the geometric bilinear mapping from the referential square [−1, 1] × [−1, 1] to the

quadrilateral Q and F−1
Q denotes its inverse, MT denotes the transposed matrix of M .

The definition (6.2) implies that |l|−1
∮

l vds, instead of the value on the midpoint of

the edge, is employed as a degree of freedom for the interpolated polynomial. For any

linear function v, |l|−1
∮

l vds = v on the midpoint of l.

Thus the same sort of degree of freedom is actually used for both the triangular

and the quadrilateral elements and there is no problem for their coupling. This pair of

nonconforming elements will be named the PPM-II.

Why Dh in (6.2) can be constructed by means of Q∗
1 is answered by the following

lemma:

Lemma 6.1. Any nonconforming function v in the space Dh in (6.2) is uniquely

determined by all possible edge integrals |l|−1
∮

l vds. Moreover, for w ∈ H1
0 (Ω)∩H2(Ω),

there exists Π1w ∈ Dh such that
∮

l
(w − Π1w)ds = 0

and

||w − Π1w||i ≤ Ch2−i||w||2, i = 0, 1.

Proof. For v ∈ Dh, v̂ = v(FQ(y1, y2)) ∈ Q∗
1 implies that there exist four constants

(a, b, d, e) such that:

v̂ = a+ by1 + dy2 + e(y2
1 − y2

2) .

Since

dsx =
∣

∣

∣

∂FQ
∂L

∣

∣

∣dsy = 2−1|l|dsy

and hence

|l|−1
∮

l
vdsx = 2−1

∮

l̂
v̂dsy

where l̂ indicates the inverse image of l through the one-to-one mapping X = FQ(Y ), it

is easy to prove that a = b = d = e = 0 is sufficient and necessary to ensure
∮

l v̂dsy = 0

for any edge l̂ of the square [−1, 1] × [−1, 1]. The first conclusion is proved.

By virtue of the general theory on interpolation approximation [7], it is well known

that the second conclusion is a straightforword consequence of the first.

As shown in [10], it is clear that the triangular element satisfies the assumptions

(H1′) (H2′).

For the quadrilateral counterpart, since

(τ,∇v −∇Π1v) =
∑

Q

[

∮

∂Q
(v − Π1v)(τ · n)ds−

∫

Q
(v − Π1v)(divτ)dΩ

]
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and for τ ∈ Hh, τ ·n =

[

c1

c2

]

·n+ c3
∂ψ0

∂s
is constant on every edge of Q ∈ Γh as well

as (divτ)|Q = 0, by Lemma 6.1 we get:

∑

Q

∫

Q
τ · (∇v −∇Π1v)dΩ = 0, ∀τ ∈ Hh .

Then the quadrilateral element satisfies H1′.

The hypothesis H2′ is guaranteed by the following lemma:

Lemma 6.2. Let Eh = {v ∈ H1
0 (Ω) : v|Q ∈ Q′

0, ∀Q ∈ Γh}, then

curlEh ⊂ Hh.

Proof. According to the definition of v ∈ Eh, we have

v(x1, x2) = v̂(F−1
Q (x1, x2)) on Q ∈ Γh

where the bilinear function

v̂(y1, y2) =
∑

(i,j)

v(i,j)ψ(i,j), ψ(i,j) = 4−1(1 + iy1)(1 + jy2),

(i, j) = (1, 1), (−1, 1), (−1,−1), (1,−1), v(i,j) = v|X(i,j)

and

X = FQ(y1, y2) =
∑

(i,j)

X(i,j)ψ(i,j) = [X(i,j)]
T
(i,j) · [ψ(i,j)]

T
(i,j),

X(i,j) are the geometric coordinate vector of the vertices of the quadrilateral Q corre-

sponding to vertices of the referential square.

Let us introduce the matrix-vector notations:

Gc =





x
(1,1)
1 · · · x

(1,−1)
1

x
(1,1)
2 · · · x

(1,−1)
2



 , Gj = ∇y[ψ(i,j)](i,j) :=





∂
∂y1
∂
∂y2



 [ψ(i,j)](i,j)

qTv = (v(1,1), v(−1,1), v(−1,−1), v(1,−1)), I2 =

[

1 1 1 1

1 0 0 0

]

:=

[

I1

I0

]

.

By some simple calculations, we get:

curlv =

[

0 −1

1 0

]

∇v =

[

0 −1

1 0

]

[

2
∑

t=1

∂v̂

∂yt

∂yt
∂xi

]

i=1,2

=

[

0 −1

1 0

]

(Gf ·GTc )−1∇y v̂

in which [ ∂yt

∂xi
]i,j = [

F
(i)
Q

∂yt
]−1
i,t = (Gc ·GTf )−1 is used.
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Since the 4 × 4 matrix [GTc , I
T
2 ] is rank-full due to the partition Γh being regular,

there exists a constant vector qc = (c1, c2, c3, c0)
T such that

qv = GTc

[

c1

c2

]

+ c3I
T
1 + c0I

T
0 ,

then we get

curlv =

[

0 −1

1 0

]

(Gf ·GTc )−1∇y(v̂ − c3)

and

∇y(v̂ − c3) = ∇y

∑

(i,j)

(v(i,j) − c3)
(1 + iy1)(1 + jy2)

4

= Gf (qv − c3I
T
1 ) = Gf

(

GTc

[

c1

c2

]

+ c0I
T
0

)

which implies that

curlv =

[

−c2
c1

]

+ c0

[

0 −1

1 0

]

(GfG
T
c )−1Gf I

T
0

=

[

−c2
c1

]

+ c0curlψ0 ∈ Hh(Ω) .

The lemma is proven.

Sumarizing these results, we have the following conclusion:

Proposition 6.1. For the PPM-III elements based on the formulation (5.1) with

the stabilizing parameters: 0 < α ≤ 1 and 0 < α∗ ≤ C,

||β − βh||1 + ||∇w −∇hwh||0 + (t+ h)||σ − σ
(α)
h ||0 ≤ Ch||g||0

min(α, 1 − αt2, α∗)
.
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