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(Computing Center, Academia Sinica, Beijing, China)

Abstract

In this paper, we construct a three-stage difference scheme of 4th order for
ordinary differential equations by the method of composing 2nd order schemes
symmetrically.

1. Introduction

We know that the difference scheme Zk+1 = Zk+ h
2 (f(Zk)+f(Zk+1)) with h the step

length, is of order two for ordinary differential equations Z ′ = f(Z), where Z = Z(t).
We hope that the three-stage method of the form





Z1 = Z0 + c1h(f(Z0) + f(Z1))

Z2 = Z1 + c2h(f(Z1) + f(Z2))

Z3 = Z2 + c3h(f(Z2) + f(Z3))

(1)

would be of order 4 (i.e., Z3−Z(t + h) = O(h5), Z(t + h) is the exact solution at t + h

and Z3 the numerical one) when the parameters c1, c2 and c3 are chosen properly.
We will use the method of Taylor expansion to deal with the simple case when

there is only one ordinary differential equation(ODE). When we deal with the case of
systems of ODE’s, the Taylor expansions become very complex, although it surely can
be applied and the same conclusion as in the former case can be got. We introduce
another method[2] known as “trees and elementary differentials” to deal with the latter
case. In fact, the essence of the two methods are the same, they are just two different
ways of expression.

2. Construction for Single Equation

In this section, without specific statements, the values of all functions are calculated
at Z0, and we consider only the terms up to o(h4) in the following calculations, the
higher order terms of h are omitted.

First we calculate the Taylor expansion of the exact solution. Since

Ż = f, Z̈ = f ′Ż = f ′f, Z(3) = f ′′f2 + f ′2f, Z(4) = f ′′′f3 + 4f ′′f ′f2 + f ′3f, (2)
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we have, with Z0 = Z(t),

Z(t+h) = Z0+hf +
h2

2!
f ′f +

h3

3!
(f ′′f2+f ′2f)+

h4

4!
(f ′′′f3+4f ′′f ′f2+f ′3f)+O(h5). (3)

Now we turn to the Taylor expansion of the numerical solution. We can rewrite (3)
as

Z3 = Z0 + h[c1f + (c1 + c2)f1 + (c2 + c3)f2 + c3f3], (4)

where for simplicity, we denote fi = f(Zi), i = 1, 2, 3. We need figure out the Taylor
expansions of f1, f2, f3. Noticing (4), we just have to expand them up to the terms of
order 3 of h.

fi = f + f ′(Zi − Z0) +
f ′′

2!
(Zi − Z0)2 +

f ′′′

3!
(Zi − Z0)3 + O(h4). (5)

Since Z1 = Z0 + c1h(f1 + f), we then have

f1 =f + (c1h)2f ′f + (c1h)2(2f ′2f + 2f ′′f2)

+ (c1h)3(2f ′3f + 6f ′′f ′f2 + 4/3f ′′′f3) + O(h4).
(6)

We use the same technique to expand the Taylor expansions of f2, f3. Since Z2−Z0 =
c1h(f1 + f) + c2h(f2 + f1) = c1hf + (c1 + c2)hf1 + c2hf2, we have

f2 =f + h[2(c1 + c2)f ′f ] + h2[(c1 + c2)2[2f ′2f + 2f ′′f2]]

+ h3[(c1 + c2)(c2
1 + c1c2 + c2

2)2f ′3f + [(c1 + c2)2c2
1

+ 2c2(c1 + c2)2 + 4(c1 + c2)3]f ′′f ′f2 + 4/3(c1 + c2)3f ′′′f3] + O(h4).

(8)

Similarly, we can get

f3 =f + h[2(c1 + c2 + c3)f ′f ] + h2[(c1 + c2 + c3)22f ′2f + (c1 + c2 + c3)22f ′′f2]

+ h3[[(c1 + c2)c2
1 + (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2]2f ′3f

+ [(c1 + c2)c2
1 + (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2 + 2(c1 + c2 + c3)3]2f ′′f ′f2

+ 4/3(c2 + c2 + c3)3f ′′′f3] + O(h4).
(9)

Inserting the Taylor expansions of fi(i = 1, 2, 3) into (4), we get the Taylor expansion
of the numerical solution

Z3 =Z0 + [c1 + (c1 + c2) + (c2 + c3) + c3]hf

+ [(c1 + c2)2c1 + (c2 + c3)2(c1 + c2) + c32(c1 + c2 + c3)]h2f ′f

+ [(c1 + c2)2c2
1 + (c2 + c3)2(c1 + c2)2 + c32(c1 + c2 + c3)2]h3(f ′′f2 + f ′2f)

+ [(c1 + c2)4/3c3
1 + (c2 + c3)4/3(c1 + c2)3 + c34/3(c1 + c2 + c3)3]h4f ′′′f3

+ [(c1 + c2)2c3
1 + (c1 + c2)2(c2

1 + c2
2 + c1c2)(c2 + c3)

+ c32[(c1 + c2)c2
1 + (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2]]h4f ′3f

+ [(c1 + c2)6c3
1 + (c2 + c3)[4(c1 + c2)3 + 2c2

1(c1 + c2) + 2c2(c1 + c2)2) + c32(c2
1(c1 + c2)

+ (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2 + 2(c1 + c2 + c3)3]]h4f ′′f ′f2 + O(h5).
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Let c1 = c3 = w1/2, c2 = w0/2 and compare the Taylor expansion (3) of the exact
solution with the above one, we get the following equations

hf : c1 + (c1 + c2) + (c2 + c3) + c3 = 1 ⇐⇒ 2w1 + w0 = 1 (10)

h2f ′f : (c1 + c2)2c1 + (c2 + c3)2(c1 + c2) + c32(c1 + c2 + c3) = 1/2 (11)

h3f ′′f2, h3f ′2f : (c1 + c2)2c2
1 + (c2 + c3)2(c1 + c2)2 + c32(c1 + c2 + c3)2 = 1/6 (12)

h4f ′′′f3 : (c1 + c2)4/3c3
1 + (c2 + c3)4/3(c1 + c2)3 + c34/3(c1 + c2 + c3)3 = 1/24

(13)

h4f ′3f : (c1 + c2)2c3
1 + (c1 + c2)2(c2

1 + c2
2 + c1c2)(c2 + c3) + c32[(c1 + c2)c2

1

+ (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2] = 1/24 (14)

h4f ′′f ′f2 : (c1 + c2)6c3
1 + (c2 + c3)[4(c1 + c2)3 + 2c2

1(c1 + c2) + 2c2(c1 + c2)2]

+ c32[c2
1(c1 + c2) + (c2 + c3)(c1 + c2)2 + c3(c1 + c2 + c3)2 + 2(c1 + c2 + c3)3] = 1/24 .

(15)

When 2w1 + w0 = 1 holds, the equation (11) becomes identity, and the equations
(12),(13), (14) and (15) become the same, that is 6w3

1 − 12w2
1 + 6w1− 1 = 0. So we get

the conditions for the difference scheme (3) to be of order 4

2w1 + w0 = 1, 6w3
1 − 12w2

1 + 6w1 − 1 = 0.

Thus we get w0 = −21/3/(2 − 21/3), w1 = 1/(2 − 21/3). So the scheme (1) with c1 =
c3 = w1/2, c2 = w0/2 is the 4th order scheme.

3. Construction for Systems of ODE’s

In this section, we use the method of “trees and elementary differentials” given in
[2]. We first rewrite the scheme (3) in the form of Runge-Kutta methods.





g1 = Z0

g2 = Z0 + c1hf(g1) + c1hf(g2)

g3 = Z0 + c1hf(g1) + (c1 + c2)hf(g2) + c2hf(g3)

g4 = Z0 + c1hf(g1) + (c1 + c2)hf(g2) + (c2 + c3)hf(g3) + c3hf(g4)

Z = Z0 + h(c1f(g1) + (c1 + c2)f(g2) + (c2 + c3)f(g3) + c3f(g4))

(16)

where g2 = Z1, g3 = Z2, g4 = Z3, and Z = Z3. So the Butcher tableau is

c A

bT =

0 0 0 0 0
2c1 c1 c1 0 0

2(c1 + c2) c1 c1 + c2 c2 0
2(c1 + c2 + c3) c1 c1 + c2 c2 + c3 c3

c1 c1 + c2 c2 + c3 c3
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Using the order conditions for the scheme (16) of order 4, we get




4∑

j=1

bj = 1
4∑

j=1

bj

4∑

k,l,m=1

ajkajlajm =
1
4

4∑

j=1

bj

4∑

k=1

ajk =
1
2

4∑

j=1

bj

4∑

k,l,m=1

ajkaklajm =
1
8

4∑

j=1

bj

4∑

k,l=1

ajkajl =
1
3

4∑

j=1

bj

4∑

k,l,m=1

ajkaklakm =
1
12

4∑

j=1

bj

4∑

k,l=1

ajkakl =
1
6

4∑

j=1

bj

4∑

k,l,m=1

ajkaklalm =
1
24

.

(17)

Where bj , aij are the elements of the vector bT and the matrix A, respectively. As in
section 1, let c1 = c3 = w1/2, c2 = w0/2, from the first two equations of (17), we get an
equivalent condition 2w1 +w0 = 1. Using this condition, we can simplify the remaining
equations of (17) and get a single equivalent condition 2w3

1 + w3
0 = 0. These conditions

are just the same as we got in section 1. (For details of Runge-Kutta methods and
their order conditions, see [2] [3]).

4. Some Notes On The Construction

From [1], we know that the centered Euler scheme is symplectic and the scheme
(18) is non-symplectic.

Zk+1 − Zk =
h

2
(f(Zk) + f(Zk+1)). (18)

However, in this section we will see that through a non-linear transformation, ξk =
ρ(Zk) = Zk + h/2f(Zk), ξk+1 = ρ(Zk+1) = Zk+1 + h/2f(Zk+1). we can change (18)
into the centered Euler scheme. So

ξk + ξk+1 = Zk + Zk+1 + h/2(f(Zk) + f(Zk+1)).

Replace the last term by the right side of (18) hence ξk+ξk+1 = Zk+Zk+1+Zk+1−Zk =

2Zk+1, then Zk+1 =
ξk + ξk+1

2
. Noticing the second equation of transformation, we get

ξk+1 =
ξk + ξk+1

2
+

h

2
f(

ξk + ξk+1

2
) =⇒ ξk+1 = ξk + hf(

ξk + ξk+1

2
) and this is just the

centered Euler scheme.
We can apply the “composing” method used in sections 1 and 2 to the centered

Euler scheme since the scheme is equivalent to the RK method which has the Butcher-
tableau

d1/2 d1/2 0 0
d1 + d2/2 d1 d2/2 0

d1 + d2 + d3/2 d1 d2 d3/2
d1 d2 d3
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Using the same method as in section 2, we can prove



Z1 = Z0 + 1/(2− 21/3)hf((Z0 + Z1)/2)

Z2 = Z1 +−21/3/(2− 21/3)hf((Z1 + Z2)/2)

Z3 = Z2 + 1/(2− 21/3)hf((Z2 + Z3)/2)

(19)

is a three-stage scheme of order 4.
In [5], schemes like (19) are got with the coefficients d1 = d2 = 1/(2− 21/3), d3 =

−21/3/(2 − 21/3). However, their schemes are of order 3. J.M. Sanz-Serna pointed
out in [6] that, if the coefficients d1, d2, d3 are symmetrically ordered with: d1 = d3 =
1/(2 − 21/3), d2 = −21/3/(2 − 21/3), the scheme can be of order 4, and we get the
same conclusion here.

We have proved a general theorem on the construction of higher order schemes by
composing lower order ones in [7]. The conclusion here serves as an example in that
paper. At last, we should mention that our work is motivated by Haruo Yosida[4], he
used the “composing” method to construct explicit symplectic integrators of higher
order.
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