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Abstract

In this paper the problems to determine an inconsistent system of linear inequal-
ities and to correct its right-hand side vector are solved by using the isometric plane
method for linear programming. As an example, the suitable perturbation quan-
tity of the perturbed inequalities of ill-conditioned linear equations is determined
in the numerical experiments.

1. Introduction

In mathematical models of some practical problems, such as constraint conditions
of linear programming problems, the systems of linear inequalities which should be
consistent may be inconsistent due to incorrect input data. It is sometimes difficult or
even impossible to obtain better data. So the problems to determine and correct an
inconsistent system of linear inequalities become significant.

In 1988, R.L. Mogilevskaya and P.A. Shvartsman published an algorithm to correct
the right-hand side vector of inconsistent system in such a way that the new system is
consistent system and is not too far from the model. The algorithm is mathematically
simple and give the user the possibility to choose a correction suitable with respect to
the corresponding practical problem[1].

Consider the following system of linear inequalities

AX > B, (1.1)

where A = (ai,j) is an m × n matrix (m ≥ 1, n ≥ 2), X = (x1, x2, · · · , xn)T and B =
(b1, · · · , bm)T are n− and m− dimensional vectors respectively, (·)T denotes transpose of
(·). Note that no equality is contained within (1.1) by means of appropriate treatment.
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The system (1.1) is said to be nonreducibly inconsistent if it is inconsistent but each
of its proper subsystems is consistent . In [1], the main idea to correct an inconsistent
system is to select nonreducibly inconsistent subsystems of the given system to perform
corrections on these subsystems. For each nonreducibly inconsistent system, the set of
corrections of its right- hand side vector making the system consistent may be described
by a unique formula. In order to select a nonreducibly inconsistent subsystem from (1.1)
the following series of LP problems must be solved

−ε → max, AkX > Bk, ak+1X + ε > bk+1 ≥ 0, (1.2)

where AkX > Bk is a consistent subsystem of (1.1) and ak+1X > bk+1 is an inequality,
which does not belong to AkX > Bk, but belongs to (1.1).

There is a more suitable method to determine the inconsistent system (1.1) and
to correct its right-hand side vector, in authors’ opinion, that is the isometric plane
method for linear programming[2] which has been presented in 1988.

In the isometric plane method so-called general LP problem,

CT X → max, AX > B (1.3)

is considered, here the constraint set is the same with (1.1) formally. The constraint
set of (1.3) can form arbitrary convex polyhedron in n−dimensional space, specially it
can be empty set that is equivalent to inconsistent of (1.1) or no solution of (1.3). In [2]
a way to determine the consistence of (1.1) without considering the selection of nonre-
ducibly inconsistent subsystems are provided. However, the isometric plane method
for linear programming is also suitable to select nonreducibly inconsistent subsystems
with an inconsistent system in an alternative way which will be discussed in section 2.

2. Selection of Nonreducibly Inconsistent Subsystems

In the system (1.1) an initial consistent subsystem is easy found, for example, the
first inequality

a1X = (a11, a12, · · · , a1n)




x1

x2

...
xn




> b1, n ≥ 2, a1 6= 0

is clearly consistent and there are innumerable points, which are called interior points,
to satisfy

a1X > b1.

Without loss of generality , assume that

AkX =




a1

...
ak


 X > Bk =




b1

...
bk


 , 1 ≤ k < m (2.1)
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is an initial consistent subsystem of (1.1) and X0 is an initial interior point of (2.1) ,
namely

AkX
0 > Bk.

(2.1) form a convex polyhedron ΩK in Rn. The boundary DΩK of ΩK consists of all
or portion of hyperplane

P1 = {X ∈ Rn|a1X = b1, 1 ≤ i ≤ k}.
To be different from (1.2) the LP problem

ak+1X → max, AkX > Bk (2.2)

is considered here. If max ak+1X > bk+1 , then

Ak+1X =




a1

...
ak+1


 X > Bk+1 =




b1

...
bk+1


 (2.3)

is the consistent subsystem of (1.1), otherwise at least there exists one nonreducibly
inconsistent subsystem of (1.1) in (2.3).

In order to examine whether

max ak+1X > bk+1 (2.4)

holds, we use the isometric plane algorithm[2] to solve step by step and to check (2.4)
in each step.

We present the theoretical background for selection of nonreducibly inconsistent
subsystems in the following.

Theorem 1. Let j1, · · · , jk be a permutation of 1, · · · , k, and Y ∗ satisfies

aiY
∗ = bi, (i = j1, · · · , js, 1 ≤ s ≤ n,

s∑
r=1

αra
T
jr
6= 0, ∀α1, · · · , αs ∈ R1,

s∑
r=1

α2
r 6= 0),

aiY
∗ > bi, (i = js+1, · · · , jk).

(2.5)

Assume that

aT
k+1 =

s∑
i=1

λia
T
ji
, (λi ≤ 0, i = 1, · · · , s, 1 ≤ s ≤ n, s ≤ k) (2.6)

and

ak+1Y
∗ ≤ bk+1. (2.7)

Without loss of generality suppose

λi < 0, (i = 1, · · · , q, 1 ≤ q ≤ s) (2.8)

in (2.6). Then the system of linear inequalities
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ajiX > bji , (i = 1, · · · , q), (2.9)

ak+1X > bk+1

is a nonreducibly inconsistent subsystem of (2.3) and

λ = (−λ1, · · · ,−λq, 1)T (2.10)

is the informative vector of (2.3)[1].
Proof. Let

Āq =




aj1
...

ajq

ak+1




, B̄q =




bj1
...

bjq

bk+1




, (2.11)

then, by (2.5) and (2.6),
rankĀq = q

and
λT Āq = 0, (λ > 0).

Using (2.5) — (2.7) we obtain that

λT B̄q ≥ λT ĀqY
∗ = 0. (2.12)

So (2.9) is a nonreducible inconsistent subsystem of (2.3) and λ is the informative
vector[1].

3. Correction of Right-hand Side Vector of an Inconsistent System

Suppose (1.1) is inconsistent now. First we consider (2.1) is consistent but (2.3) is
not. Using the isometric plane algorithm method, we find a nonreducibly inconsistent
subsystem in the form (2.9), the informative vector (2.10), an interior point Xi of (2.1),
and a boundary point Y ∗ satisfying (2.5). According to the notations of (2.11), (2.9)
is written

ĀqX > B̄q, (1 ≤ q ≤ n). (3.1)

The basic theorem to correct the right-hand side vector B̄q of (3.1) is as follows[1]:
Theorem 2. Assume that (3.1) is a nonreducibly inconsistent system of linear

inequalities and λ is the informative vector. Then system

ĀqX > B̄q +4B̄q

is consistent if and only if
λT (B̄q +4B̄q) < 0.
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The vector
4B̄q = (4bj1 , , · · · ,4bjq ,4bk+1)T

is called correction vector of (3.1). Let, for instance

4B̄q = (0, · · · , 0,−λT B̄q − ε)T = (0, · · · , 0,−(bk+1 − ak+1Y
∗ − ε)T (3.2)

where ε is the precision prescribed for numerical calculation. The correction vector
(3.2) can make (2.9) and (2.3) consistent simultaneously.

4. Numerical Experiments

The system of linear equations formed by Hilbert matrix

AX = B, aij = 1/(i + j), bi =
n∑

j=1
aij (4.1)

has the exact solution
en = (1, · · · , 1)T .

In the experiments the right-hand side vector of (4.1) is perturbed with the perturbation
quantity δ[3], hence (4.1) is replaced by

B − δen < AX < B + δen. (4.2)

The experiments correcting (4.2) are completed on Micro VAX II by double-precision
operation for different n and δ . The precision prescribed for numerical calculation and
correction

ε ≥ ε0 ≈ 10−16,

here ε0 depends on the double-length of floating-point number of the computer. Clearly
δ should also be no less than ε0 for practical consistence of (4.2). In the program δ is
first set with zero and (4.2) is corrected according to the formula (3.2) with ε = 10−8.
Since computation is affected by roundoff error, the objective point Xi of the isometric
plane algorithm is probably moved outside the polyhedron ΩK . If this phenomenon
once occurs to some k < 2n, δ is automatically modified into some multiple of ε and the
iteration begins again at k = 1. The experimental results show that the perturbation
quantity δ needs to modify repeatedly. We thus obtain an estimate value of δ which
makes (4.2) solvable.

The experimental results about correction of inconsistency and estimation of δ are
listed in Table 1, where

i: order of the system (4.1),
‖4B‖∗ : maximum norm of the correction vector when δ = 0 in (4.2),
δm : estimate value of the perturbation quantity
tm : time (sec.) added up by the basic internal clocking function.

Sometimes the phenomenon of wrongly moving objective point occurs earlier than the
correction of inconsistency, therefore it is possible that ‖4B‖∗ = 0.
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Table 1

n 10 20 30 40 50

‖4B‖∗ 10−8 0 10−8 10−8 10−8

δm 0.8× 10−7 0.128× 10−5 0.256× 10−5 0.64× 10−6 0.64× 10−6

tm 3.02 16.92 48.98 67.04 133.57

n 60 70 80 90 100

‖4B‖∗ 10−8 0 10−8 10−8 10−8

δ 0.128× 10−5 0.64× 10−6 0.1024× 10−4 0.2048× 10−4 0.128× 10−5

tm 182.53 272.75 496.63 755.04 770.93

In order to solve (4.2) we choose a proper δ with the aid of Table 1 and then
again use the isometric plane algorithm to solve the following problem[2]

−ξ → max,

AX + (B − δen −AXt + µen)ξ > B − δen,

−AX + (−B − δen + AXt + µen)ξ > −B − δen,

ξ ≥ 0,

(4.3)

where Xt is a given point in Rn and

µ = max
i
|

n∑

j=1

aijX
t − bi|+ δ + θ3, (θ3 > 0).

If (4.3) has solution and the solution is

[
X∗

0

]
, then X∗ is clearly a solution of (4.2).

For the ill-conditioned matrix A, the isometric plane algorithm probably comes to the
conclusion that the constraint polyhedron of (4.3) is not closed in the hyperplane ξ = 0.
Even if this mistake occurs, the isometric plane algorithm can usually record a better
solution before the mistaken conclusion.

The experiments for solving (4.3) are also completed on Micro VAX II with different
δ and

Xt = 0, θ3 = 1.

The results are listed in Table 2, where
n : order of the system (4.1),
δ : perturbation quantity of right-hand side vector,
ε : error bound solving (4.3)
‖X∗−en‖∗ : maximum norm of the error vector between perturbation solution and

exact solution,
nc : the number of iterative circles,
nr : the total number of iterations,
tm : time (sec.) added up by the basic internal clocking function.
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Table 2

n 10 20 30 40 50

δ 0.8× 10−7 0.64× 10−6 0.64× 10−6 0.64× 10−6 0.64× 10−6

ε 10−8 10−8 10−8 10−8 10−8

‖x∗ − en‖∗ 0.002095 0.008634 0.007226 0.009641 0.003814

nc 15 13 13 15 9

nr 56 50 51 66 36

tm 3.54 7.63 14.77 34.46 24.98

n 60 70 80 90 100

δ 0.64× 10−6 0.64× 10−6 0.64× 10−6 0.64× 10−6 0.64× 10−6

ε 0.5× 10−8 10−8 10−8 10−8 10−8

‖x∗ − en‖∗ 0.000950 0.004476 0.007408 0.000917 0.000773

nc 14 5 9 10 5

nr 61 25 43 39 22

tm 57.79 36.44 72.76 78.39 59.39
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