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Abstract | ot

In this paper, the problem of finding the intersection of a triangular Bézier patch

and a plane is studied. For the degree that one frequently encounters in practice,
ie. n = 2,3, an efficient and reliable algorithm is obtained, and computational

steps are presented.
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1. Introduction

In this paper, the problem of finding the intersection of a triangular Bézier pa.tch
and a plane is considered. Such a problem quite frequently comes up in practical CAGD
computations. Of course, in practice one has to work with pp-surface rather than with
a single patch. However, the basic algorithm has to deal with a single patch on 1its
own. Valuable information from the neighbouring patches can be available only in tha ;
simplest case, i.e. when a plane intersects the boundary of the patch. b

The intersection problem in a particular form arises often when one works w1th "
algebraically rather than parametrically represented planar curves. ‘ 1]

Similar problems were considered in [1] and [4], where the intersection of a blcublc I:.

Bézier patch and a plane was considered.
Let T be a given triangle. The most natural way to express the parametric Bezmr}

surface S on T is to write it in the barycentric form 4

S := S(F):= S"(F):= Z Fiix Bl ' (1.1)_;
i+j+k=n £

e
where
F'ijk == (mijk:yijkw z’tjk)
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> given control points. The Bernstein basic functions Bj;, are defined as

ol Geaa o
1_11:(‘:?) 5 B:jk(u'rﬂ: T.U) o t'J'kTutqﬂw

with (H,U,’lﬂ),
{ 0<u,v,w<l, v+v+w=1

being the barycentric coordinates of a point ¢ € T. Let p be a plane, given by the
equation -
| p: ax+by+cz+d=0. (1.2)

_' ot us denote S, := S()p. Take (1.1) componentwise into (1.2). This shows that
5*(F)(q) = S™(F)(u,v,w) € S, iff the Bernstein polynomial

Bn(f) == Z ftjkB;Jk

i+7 -I-.k—ﬂ.

has a zero at ¢ = (u,v,w). Here the coefficients f;;x are given as
o |

k< fijk = axijk + byijk + czijk + d.

There is a very natural way of searching for zeros of a Bernstein polynomial defined on
~ a triangle. Let 'Tl,Tz, T3 denote the vertices of T', and Ty = (1 — 8)13 + s73 for some

fixed s, 0 < s < 1. Let us denote
Q'! = ﬂ(-f)‘T]_T;; ,

" Then by [2] Q, is a Bernstein polynomial of one variable, with coefficients being poly-
nomials in s. To be precise, recall B*(t) := (7) t'(1 — t)»*. Then

Qs(t) = ai(s)BI(t) (1.3)
. 1=0
. with '
a;(s) := Z fn~i,£—j,j3;(3). - (1.4)
3=0

The idea of a general algorithm is quite clear. Move s from 0 to 1, and at each step find
.~ the zeros of Q,. The information from the previous step can be taken as good starting
. approximation. Of course, at each step some zeros might disappear, and some others
. might be introduced. | ~
F If one is looking for an efficient and reliable algorithm, it is of c:ruclal nnportance to
. know in advance if S, is actually not empty. If it is not, some information on positions
- of zeros is also necessary. .
" It is easy to verify numerically the following sufficient condition: S is not empty
- if B,(f) has a zero on the border of T'.. This condition is also necessary fur n'= 1.The
- main result of this paper gives necessary and sufficient conditions also for n = 2,3:
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Theorem 1. Let Ba(f) be positive on the boundary of T. Sp s not empty iff the
polynomaal i

Ails) = 2(3)—-ﬂ0(3)ﬂ2(3)

ha as zero s* € (0 1), and at this zero a;(s*) < 0.
As will be pointed out in the next section, the algorithm for this case has to dea.l
with constants rather than with the polynomial itself.

Theorem 2. Let B3(f) be positive on the boundary of T. Sy 1s not empty 1ﬂ' the
polynomial |

A1(s) :=a3(s)a3(s) + 4ao(s)a3(s) + 4as(s)ay(s) — 3a3 (s)as(s)
—6ao(s)a1(s)az(s)as(s) .
has at least one zero s* € (0,1), and at this zero

Ag(JS ) "—mm(u.l(s ) ﬂ,z(s*)) <& ﬂ

The properties of A, A2 will be used to produce an efficient and reliable a.lgﬂnthm
for this particular n. Restricting Ty to the line T,T5 is quite arbitrary. One can ea.sﬂy
find the other two fnrmula.tmns of Theorems 1 and 2, as well as translate them into the
case of negative Ba(f) or B3( f) along the boundary.

l'

-

It is quite obvious that for n = 4 the same approach would work since the values ,;
of the zeros can be still exactly formulated in terms of coefficients, but higher degree
algebraic equations admit no radical solutions. However, the work of [3] suggests that
an algorithm could be found also in the general case and gives a good starting pomt
for the future research work.

The proofs will be given in the next section; the algorithm for the case n = 3 and
numerical examples will be given in Section 3. |

2. The Proofs

In order to prove the theorems, we need the following lemmas.
Lemma 1. Let

3
P = Z {I.;'B?
i=0 r 8
be a cubic polynomial with ag > 0,a3 > 0, and let itk

D= agag + 4&9&% 4@3&? — 3@%&% — b6agajazas.

Then 0
1) p has two different zeros in the interval (0,1) iff min(ay,a2) < 0 and A <0,
' 2) p has two equal zeros in the interval (0, 1) iff min(a1,a2) <0 and A=0, g
3) p has no zero in the interval (0,1) iff min(ay,a2) >0 or A > 0. B
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Proof. The transformation z := ;% carries (0, 1) over to (0,00). Put
f(z) := (1 = t)ap(t) = ag + 3a1Z + 3{1.2;1:-2 -+ 33;3.

It is enough to study zeros of f. Since ag > 0,a3 > 0, it is obvious that f has two

different (equal) zeros in (0,00) iff f has three zeros in (—o00,c0) and min(ay,as) < 0
(one negative zero and one double zero as well as min(a;, az) < 0).
It is a well known fact how to tackle the cubic equation. Transformation y := z+ Ei
reduces it to canonical form |
2
a 1
asy”’ + 3('511 T —g)y +

= (2a5 — 3ajaza3 + apa3) = 0,
3

=
ag

" and the number of zeros depends on the sign of the discriminant

2
5 ﬂrz 3 r 1 3 ) 2 =4 &

. and our conclusions follow.

'_ Lemma 2. Let B3(f) have no zero on the boundary of T'. Let there exist s € (0,1)
. such that Q, has a zero in (0,1). Then there must exist § € (0,1) such that Q; has a
double zero in (0,1).

Proof. Singe Q4(t) has no zero at the boundary, without loss of generality, assume
that Qs(0) > 0 for any s. If @z has no zero in (0,1), then there exists ¢ > 0 such that
for arbitrary s € (8 —¢,5+ €), Qs(t) > 0, t € (0,1). In fact, Q,(t) is always positive
for (s,t) € (8§ —¢,8+€) x [0,1].

A similar argument reveals that, if Q; has two different zeros in (0, 1), then there
exists € > 0 such that for arbitrary s € (8§ —¢,8 + €), Qs also has two different zeros.

Put

§ :=sup Ay := sup{s’|Q,(t) has no zero for any s € [0, '] }.

We proceed to show that @Q; has a double zero in (0,1). Note that Q; has at least
one zero in (—oo, {}) since it is a cubic polynomial, positive at 0. Hence 5 has no zero
or two zeros in (0,1). If it has none, by the previous argument one can find € > 0
such that Q4(t) has no zero in (0,1) for s € (§ — ¢,5 + €). This implies s + 5 € Ay, a
contradiction. Similar argument works to prove that zeros are not different.

4 Proof of Theorem 2. By Lemma 1 the sufficiency is obvious. Now if S, # 0, Qs has
a zero for some s € (0,1). But then, by Lemma 2, there exists § such that QQ; has a
. double zero. Lemma 1 then implies necessity.

4 Proof of Theorem 1. Note that Q, from (1.3) is now a quadratic polynomial, and
. standard arguments can be used to pin the zero down to (0,1).

. Since A; and a; of Theorem 1 are now polynomials of degree two and one respec-
_ tively, Theorem 1 can be stated in a computationally simpler'farm:

Bs(f) being positive on the boundary of 7" is equivalent to

f'ZﬂU > 0: fﬂﬁﬂ > 0: f002 > 0#
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f110 + v/ Fa00foz0 > 0, fio1 + v/Faoofooz > 0, for1 + v fozo fooz > 0. (2.5)

k

If (2.5) holds, S, # 0 if and only if F
1) Of fi10, f101, fo11 at least two are negative (without loosing generality assume

fi10, fi1 < 0),
2) fiio0f101 > f200fo11;
3) (fi10f101 — Faoofo11)? > (fo — f200f020)(fion — f200fooz)-

To conclude this section, we add two cubic examples.
Example 1. Let

T = {(z,y),0 L z,y <z +y < 1},
p:z=0,

1 4 1
S:z=—-2;:::3—|—3:£:2(1-—a:-—y)+-3:1:(1—:n—y)2——2-(1-—:1:-—y)3+3:1:2y

_18z(1—z—y)y+31—z—y)y-30-z-y)y’ +2v.
Then :
T300 » 1 3
T210 T201 #4 % %
(i) = &Y it ;
120 Ti111 L102 3 '3 .3
To30 L0211 <ZLo12 003 g0, 070
Y300 0
1
Y210 Y201 = 0
(yijk) - — E 1 0 :
: Y120 Yiir Y102 T o
Yoo Yo21 Yo12 Y003 e S
2300 2
2210 2201 -1 0 ;'
figk) = (Zijk) = = .
( i ) ( < ) 2120 2111 <102 1 - 1 ‘
Zo30 2021 2012 2003 -1 1 1 -1

It is straightforward to compute

a(s) =2, ai(s)=s—1, ‘as)=(1-23)"—6(1-3)s+5,

1 3

as(s) = "—(1 o, 3)3 + 3(1 — 3)23 +3(1 — 3)3 - 2 s, |
~i
Ay(s) = 2 — T25 + 930s% — 51308% +11481s* — 111065° + 3904s°, - ;,3

Ag(s) = mm(a1(s) az(s)) < ay(s ) =5—-1<0.

%
Since A1(0) = 2, A1(3) = —45 < 0, A;(s) has at least one zero in (0, 1) Theorem 2 :
implies S, # 0. ' | ':
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Example 2. Let (z;1), (yijk) be the same as in Example 1, and

1

1 R ¢ i
(figx) = (zijk) = I =1 n

2 4

T e | S |

- Then

(10(5) = 1, 01(5) 20

az(s) = %(1 T 20 Sl eV O on ks

1
Ax(s) = (1 - 9)° + ) + 51— 8)°(1 - 2)%,
| 1
0, 0<s< o
Aaley =444 1
(1—s)(1— 2s) 55351.
Since, for 0 < s < %, As(s) = 0, Theorem 2 implies S, = (. For % < 8§ <1, one has
| 1
» U((l—s)(23—1)<15
hence 1
A > 7 3 3\2 6 0
((5) 2 (1~ )° + 5% = 55° >

and S, = 0 also for this part of the interval.

3. The algorithm for finding S,

We shall consider only the case n = 3. The idea of the algorithm is quite simple.
The number of zeros of Q, can change only if B3(f) has a zero on the boundary for
that s or Qs has a double zero. Thus one has to determine the zeros at the boundary
T5T3, 1.e, the set

Mi = {s| Qu(1) = as(s) = 0, 0 < s < 1}.

Since aj is a cubic polynomial, Lemma 1 can be a.pphed here also. A necessary condition
for Qs having a double zero is As < 0. Put

M; :={s| Az(s) <0, 0<s < 1}. (3.6)
and

M; = {s | Ai(s) =0, 5 € M,}. * (3.7)

' (3.6) requires finding a minimum of the linear and quaﬂratic functions, and (3.7) the
~ solution of a polynomial equation of degree 6. In order to take care of the zeros at 717> .
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and 773 we add also 0,1 to produce finally
M={0=g<a<... = fa=1}= M UM3U{U,1}.

For each ¢ now the number of zeros in (s;, s;;1) is constant. Also, the change of the J
number of zeros at s; is at most 3. Actual computation of the zeros in (s;,8;41) is as .
follows: |

1) Determine the number and the positions of zeros at

Si + Si+1
8.,1 =

by some reliable method such as the Sturm sequence combined with the bisection (nr |

reliable polynomial solver). This gives the ¢t parameter starting values t, +1,5

2) If positive, follow up each curve, starting at

| (Si-[-% , ti+-;-j,j)

and proceeding in both directions in small steps (hs, h¢), using Newton iteration.

Fig.1. Positive and negative part of B, (f)

0.4 0.6

-0.4}

-0.6]

-0. 8f S5

Fig.2. Plot of Ay(s), As(s)

l; I.

- Recall Example 1 of the previous section. Plot of the positive and negative part njf
n(f ) (Fig. 1) clearly indicates the intersection curves. ol inlon
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The (s,t) form is given as

Q,(t) = 2(1 — )% + 3(s — i)(l — )%t + 3((1 — 8)* — 6(1 = 8)s + s%)(1 — ¢)t°

1 1
+ (— 5(1 —8)® +3(1 —s)%s+3(1—s)s* — 533)t3.

4 he first step of the algorithm reveals two boundary zeros

M; = {0.12732200375003, 0.87267799624996}.

-Since M, = (0,1) one has to search for zeros of A;(s) on the whole interval (Fig. 2).

This produces four double zeros

M; = { 0.081174734178281, 0.083790254377921,
0.121559890757154, 0.823024808975617 },

and finally |M| = 8. The computation of zeros of Q5 for middle points s = s, 1

{ 0.0405873670891405, 0.082482494278101, 0.102675072567537,
0.7244409472535945. 0.475173406362826, 0.847851402612791,

0.9363389981249820 |,

gives the following intersection point values of the parameter ¢ (Table 1).

Table 1. The starting intersection values £;, 1 ;
# of z. ‘ 1 2 3

1 1 0.826789814115618
! 2 3 0.597944879897707 | 0.70188818752868 | 0.78176733854285
3 3 1 0.502083652673187
E 4 3 0.465220805263716 | 0.88354066065651 | 0.96898115127681

5 2 0.384761306229087 | 0.83784538244413
E 6 0

7 1 0.872379230723569

" The final computation is shown in Fig. 3. The dashed lines represent the coordinate
lines s € M. Note that the first two are actually very close. Of course, putting T; at
- {0,0} would be in this example numerically better. But a robust algorithm must make
its way out also in chosen circumstances.

Note that the spacing steps hs, hs for each of the regions has to take account of how
: fast the curves are changing in £, not only in s. A difference between two neighbouring
elements in M can be taken as a measure for h,, and the Hausdorf distance between

{t£+%’j} as a measure of h;.
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