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PRECONDITIONING OF THE STIFFNESS MATRIX OF LOCAL
REFINED TRIANGULATION" | -

Zhang Sheng
(Computing Center, Academia Sinica, Beijing, China)

; A preconditioning method for the finite element stiffness matrix is given in this .
; paper. The triangillla.tion is refined in a subregiqn; the preconditioning prncesﬁ
is composed of resolution of two regular subproblems; the condition number of

f:_ the preconditioned matrix is O(1 + log ), where H and h are mesh sizes of the

;“ unrefined and local refined triangulations respectively. o

1. Introduction

.
In practical computation, the triangulation is often refined in a subregion. In this
~ case, the condition number of the stiffness matrix , determined by the mesh size of the

" local refined triangulation, will be increased seriously.
Let £ C R? be a polygonal region, and
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be an elliptic operator defined on it, where (@i j)ij=1,2 is symmetric positive definite
and bounded from above and below on £, ¢ 2 0. S |

a(u,v) = (f, v), ©vE H&(ﬂ)l s ,
I (1.1)
u € H{(R) ,
is the variational form of the boundary value problem, with the_})i]jnear form
2 .
| Su Ov _
a(u, v) = j{; [.-2-;1 a‘j 9z -3?3 - cuv] ;

For convenience we discuss only the homogeneous Dirichlet boundary value problem
E‘ here. The norm in H§(2) introduced by a(:, ") is equivalent to the ongfna.l one. H}(2)
. will be treated as a Hilbert space with inner product a(-,-) in the following. |
: (1.1) is discretized by the finite element method. Triangulation and the linear con-
E tinuous element will be discussed. 5 8 ey |
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QpCNisa polygonal subregion, and 7 is a triangulation on §l, quasi-uniform and 4
locally regular, the mesh size of which is O(H). The boundary of {2 coincides with
this triangulation. The triangulation is refined on g, and we ggt a trian’gula;i;ion ’Iﬁ"
on §lg, where 7g 18 quasi-uniform and locally regular on {lo, the mesh size of which is
O(k). T and Ty compose the finite element triangulation.

SH(Q) C H1(RQ) is the finite element space corresponding to T on §, SF{) C :-f
H1(Qo) is the finite element space corresponding to Tg on g, and 5 = SaT (2} + SH () 4
: the finite element space. (2 is the set of finite element node points in §¥ corresponding E
to T, Q, is the set of finite element: node points in {2g corresponding to To, and QU
amounts to the set of finite element node pﬂints.' {¢i)i € 1} is the usual finite element_f
basis functions of S§' (), and {42, € S0} is the usual finite element basis functions of §

53(99) Let™ | % o e S " ' 55
_ W ( i=¢: i€ Q- &

The discrete fq;:m of (1.1) will be
ﬂ'(ui .!p‘)__._f(f, "pi): 1 € ﬁ'U ﬁo,
" (1.2) 4
4 u € 5. |
The matrix form is _ 9
where A = a('l,bg,i,bj) i ety 1818 well known that Cond (4) = O(h™?).
An iterative method is often used to solve (1.3). Preconditioning 1s an efficient
technique to accelerate various iterations. A good preconditioner Q should satisfy the
following two conditions: 1) Cond (Q~1A) is small; 2) Qz = b can be solved easily. T%
Domain decomposition is an important approach of the construction of a precon-
ditioner. In the following, €p will be decomposed from 2, and the preconditioning %

process is composed of resolution of two regular subproblems (discrete problems on j
quasi-uniform triangulation). E
9. Construction of the Preconditioner

: ﬂ'(ﬂt Cﬁ;) g (f! ¢i)1 t € ﬁ:

_ . | (2.1)

_  \ues? f
T (lalu, 8)) = (f,¢5), 1€ Qo, B =

are two discrete problems on §2 and {2 respectively. e w 5
" We use AH and AP to represent the coefficient matrices of (2.1) and (2.2). (2-1) and
(2.2) are regular problems on uniform triangulations. If triangulations' 7 and Tp are
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only quasi-uniform, we can use regular problems on uniform tna.ngula.tmne to replace
(2.1) and (2.2} in preconditioning.
- For any finite element function u € 5, we use u to represent the vector in RISl
corresponding to the restriction of u on the finite element node points. For ‘any finite
element function u € S¥ or u € S", we use u to represent the vector in RIY or Rl
corresponding to the reetnetlen of u on §l or Qg

CH is a restriction operator from RIfQ0! t5 BRI defined by

(CH'u.)(e) = Z d:(Hu(4), i€ d, ues. (2.3)
| ;,-eﬁuﬁu
Chisa restnctxen -eperater frem _R‘m"g‘.‘-i'l to R defined by
(CPu)(i) = u(i), icfo, uecs. (2.4)
EH is an extension operator from R to RVl defined by
: (EHu)(z) — Z u(y)qb_.,)(t) ieftuflo,ue ST, (2.5)
jef .

E? is an extension operator from RISl o RIS deﬁned by

’ (E"u)(i)={ (?) tego & u € S*. (2.6)
& o 2 1 € T e

With the above preparations, we give the expression for the inverse of the precon-
ditioner Q: _ | ‘ -
Q! = EH(A®)-1¢¥ 4 EMAM)ICh. (2.7)

Remark 1. Q is symmetric positive definite.

Remark 2. In preconditioning iteration, we need only Q! but not Q in the
operation; the representation of Q is useless.
- Remark 3. The action of Q! is composed of parallelly solving two regular prob-
lems (2.1) and (2.2). If (2:1) and (2.2) are not regular, we may use regular problems
to replace them, and the condition number will remain unchanged.

3. Estimation of the Condition Nuniber

" Convergence rate of the ﬁfeeeﬁthmned iteration is determined by the condition
number of Q"1 A, Cond (Q~ lA) which is in turn determined by the ratio of the upper |

e.nd lewer bounds of the one Raylel,gh quotient
i (AQulAu! “‘) ﬁuﬁul |
G miae bR KR D70 B h{h *(Au iu) « € R! : - -(3"1)

1 We use P 7 and Ph to represent the orthogonal pre_]ectlene from S to S and S" under
the i inner preduct a(-,-) respecfiwiy,.; The following can be pmvedll]
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Lemma 3.1. AL T W - af - - | |
- (AQ ™' Au, - a{P%u + u,u) | -
(Au u) ﬂ,(u} ) ' | .(3‘2)

Cond(Q~1A4) can be estimated through the estimation of the lower and upper
bounds of the quotient (3 2). Since PH 3nd PM are orthogonal projections,

a(PH u + Ptu, u) = a(PHu, PPu) + o P'u, P"u) < 2a(u,u) (3.3)'
To estimate the lower bound, we need

from which we get the upper bound of (3.2).

the following lemma.
Lemma 3.2, If there exists a constant Co,

uf ¢ .SH,.uh c St u=ul + uf and
w2 + lu?||? < Collull®,

50 that for any v € 5, there exnisi

we have

ﬂ(“ﬂ u) < CDG(PH'I-‘ + Ph“: ).

21, We will get the lower bound estimate .

This result is a special case of Lions lemma
decomposition of the function T

of (3.2) by application of lemma 3.2. We need to find a

‘n S and the correspondifig constant Co.
For a.ny uw € S, we use u¥ to represent its mterpala.tmn in SH. It is obvious that

uP = u — ufl € S*; hence, u = +H + uP. This is the decomposition we need. In the

following, C will always be a constant independent of H and h.
Since uf is zero on 951, by the Poincare inequality,

¥ |2 < Cufa=CY_ W i '  (34)
TE'I' ;

On a fixed element T' of the unrefined triangulation 7, if T C 2 — (1o, then ufl = u,

and __
- - W 3 7= [l s (3.5)

i T C o, uH is a linear function on T and we have

_ | w2 1 < Clu™ |u o < Clulg corr (3.6)
by the discrete Sobolev inequa]itylg-] 14 we get |
1 H -
& Iﬂlg,mg‘ <C (fﬁ-"“”iﬂm + log T;‘“ﬁ,ﬂ")' (3.7)
Hence AR |
W tr <0 m||u1|L=(T, +10g - lullr)- (38)

By addmg an a.rbltrary constant on both sides of (3. 7) and using Poincare inequality |

weget . .
A _r_'_.' F .. J'-; g . & -z '.': M I-.

e < (1 log ol 9
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Summing (3.5) or (3.9) up with respect to all elements of the triangulation T, we

get .
w¥ilq < C(1+1og %)_Iulin-
1B < O (1 +1og 7 )lluliZa-
Therefore,

L I = P+l < 200 l?) < C(1-+log )l (3.10)
From (3.10) and Lemma 3.2:we get. -
a{u,u) < C-'(l + Iag-——)a(PH + Phu, u). ' (3.11)

/

I

By (3. 3) and (3.11), we have pr{wed
Theorem 3.1. Them e:mta e mmtant C’ mdependent of H cmd h sa that

Cond(Q‘lA) < C(l + log -—)

This result shows that the precondmmner constructed in the last sectlnn for the
local refined trjangulation stiffness matrix is almost optimal.
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