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Abstract

A spectral scheme is considered for solving the barotropic vorticity equation.
The error estimates are proved strictly. The technique used in this paper is also
useful for other nonlinear problems defined on a spherical surface.

. 1. Introduction

The barotropic vorticity equation plays an impﬂrtaﬁt role in the research of weather
predlctlon see [1-5]. Many efforts have been made to solve this equation numerically.

The early works were mainly concerned with finite-difference methods. In particular,
' the conservative schemes were applied successfully; see [3,4]. Since 1970s, global nu-

merical weather prediction has developed rapidly, so it seems more natural to adopt

a spectral method, see [5-8]. Because of the high accuracy of spectral approximation,

- this method becomes more and more attractive for long-time weather prediction. On

the other hand, although strict error estimations of spectral schemes for atmospheric
equations have been set up (see [7-10]), they are valid only for problems in Descartes

coordinates. Indeed, as pointed out in [11], no rigorous approximation theory is avail-
able for the spectral method in spherical polar coordinates. Thus it is significant to
develop the spectral method and its error analysis of the corresponding partial differ-
ential equations defined on a spherical surface for numerical weather prediction and

~other related problems.

In this paper, we present a spectral scheme for the barotropic vorticity equation

_defined on the spherical surface. In Section 2, we construct the spectral scheme by
using spherical harmonic functions. In Section 3, we list a series of lemmas which play
a fundamental role in the theoretical analysis. Finally we prove strictly the generalized
stability and the convergence of this method in Section 4 and Section 5 respectively.
- The technique used in this paper is also applicable to other nonlinear problems in

I'

- spherical polar coordinates.

* Received July 19, 1993.
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2. The Spectral Scheme

Let S be the unit spherical surface,

S = {(,\,9)/0 < A-é o, —g <0< -g}

where A and @ are the longitude and the latitude. Let £(A,0,t),4(A,0,t) and 2 > 9
be the vorticity, the stream function and the angular velocity of the earth respectwely
The gradient, the Jacobi operator and the Laplace operator are as follows: |

O Ot M B0 OE By
v§=(c;95§-,5-§-)1 J(€,9) = (5 v a‘b)

cos@\OX 00 80N/
1@ ¢ 1 8%
A& = —556(055) * cosgon

The barotropic vorticity equation on S is as follows:

s, 8 |

X raEw) -5 =0, (\O)eSteT)

Ay =&, (A,0) € S,t € [0,T],

(X, 0,0) = &o(A, 0), (A,0) € S,
where the initial value &g(A, #) is given. For fixed 9, we require |

u(p(®) = [ #(\0,0ds =0 23)

We shall consider the weak representation of (2.1). Let, D(S) be the set of all
infinitely differentiable functions which are regular at 6 = _5 and have the period 21 g

for the variable . The duality of D(S) is denoted by D'(S). We define the genera.hzeﬂ,g
function u € D’'(S) and its derivatives in the usual way as in [12]. Furthermore, wei
can define the generalized gradient, the generalized Jacobi operator and the genera.hzed ;i

Laplace operator. For instance, if

[[ ulAvdS = j] vudS, Vv € D(S),

o W BSDRRGS sid s S

then the mapping A such that @ = Au is called the generalized Laplace operator. Fm'

4

simplicity, we denote A by A, etc..

]
5"

1

i

Now, let ﬂ
4

_ L3(S) = {u € D/(S)/|lull < oo}
be equipped with the inner product a.ndthenorm as follows:
(4, ) = ffs wdS, = 6, 9%
Furthermore, .

T
%t L 0

H'(S) = {ulu,
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+h the following semi-norm and norm:

= (| 2l + [2a17)?. s = el + i

'_.;;.::r positive integer r, we can define the space H ™(S) with the norm || - || similarly. In
_rticular, the norm of H%(S) is equivalent to (see [12])

l‘. "

Jof
x

1
: (lull? + lAu]?)2.
" or feal r > 0, the space H"(S) is defined by the complex interpolation between spaces
' {l(S) and HIT+1(8), [r] being the integral part of r. Clearly, H°(S) = L?(8) and

Yullo = llull. Besides, let |[ulirc0 = lullcr(sy and ||ufloo = llulio,co-
" The weak representation of (2.1) is to find (¢,%) € H'(S) x H'(S) such that for all

e 11(S),
(L) + TED, 900 - GO0 =0, teOT]
(V(t), V) = (€(2),v), - telo,T],

£(0) = &o.
We now cohstruct the spectral scheme for (2.3). Firstly, let Ln(z) be the Legendre

i_pﬂlynﬂmia.l of order n, namely

(2.3)

1 d*

R 2 _1\n
Lty = 2nn! dz"(z o
' The normalized associated Legendre polynomial is defined as
| (2n1+ 1)(n — m)! o . d™ |
= - 282 — > 0,n > |ml,
Lmr“(z) 2(71- o m)! (]‘ Z ) d.ﬁm ﬂ(z)‘! m-=un- |m|

Linn(2) = Lemn(2), m<0,n2>|m|

| ;__ Furthermore, the spherical harmonic function Ym n (A,0) is
1

¥l A 0) = _ﬁ_—e*m*Lm,n(sm ), n>|m|
1 T
:fIt can be verified that (see [13])
| _AYia(2,0) = n(n +1)Yma(),6), (2.4)

i 1 S5
- and

-rI
-

1, if m=m/n=n,

2% s ' -
j{; f 2# Yo (2 0) Yowit (X, 0) cos 0dOd\ = {

set, i wvith 7o 5

Psba 06 gl Ind / / 2 w(X,0)Y.% (X, 6) cos 0dBdA.
e , , : PRSI 1y —_—— _

&= ' s g 2

0, otherwise.
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Ve = span {Yimn/|lm| < M, |m| < n < N(m)}. T

where N(m) determines the structure of spectral approximation. Usually we
N(m) = M or N(m) = M 4 [m|. For simplicity, suppose N(m) = M. Let Vi be
subset of Vs containing all real-valued functions. | i1
Let Py be the orthogonal projection from L#(S) onto Vs such that for any _ﬂ
L2(S), .
(Pyu—u,v) =0, Yve Vy,

or equivalently

Pru=- > ) Dt engnYonn (A, 0):

Im|<M n>|m|

Let 7 be the mesh size in the variable ¢, and

R={t=kr/1<k<[2] R = R0}

Define
uf,0,t) = 1(u.(.)a 6,t + 1) — u(A,0,1)).

Let (1, ¢) € Varx Vs be the approximation to (£,1). 6 is a parameter and 0 < ) < 1 5

!r

The spectral scheme for (2.3) is as follows: v b

(m(t),v) + (J(n(t) + Tme(t), @(2)),v) — m( (t) ) <0, Vo € Vig it e Rl l-

—(Ap(t),v) = (n(t),v), Vv € Vyy,t € R, 8
u(ep(t)) =0, * Vt € R,,
??(U) PM&l

(2.5) -

Clearly, if § = o = 0, then (2.5) is an explmlt scheme. Otherwise, it is implicit a.nd n
an iteration is needed for evaluating n(t) at each t € R,.

3. Some Lemmas

To analyze the errors, we need some fundamental estimations. In this sectmn
we list several lemmas. Throughout this paper, we denote by ¢ a positive constan t
independent of M, 7 and any function, which may be different in different cases. T €

notation “C” means the embedding of spaces.
Lemma 1. HP(S) c H"(S) for0<r < and Hl"'ﬁ(S)CC(S) for B > 0. |
Proof. The first conclusion follows from the definition directly. We now prove he

second one. Let B be the unit ball in the three-dimensional Euclidean space, and f*f
a function defined on B. We denote by *y(w) the restriction of w on S. We can te _F.J

I
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171+P(S) as the trace space of H21P (B) equipped with the norm

lull gr+8s) = i;lf lwl| 3 18 +ﬁ(3)
wEH§+ﬂ(B) |

Y(w)=u

?

] 3 3
By the embedding theory, H2%?(B) C C(B) and so for any w € H21?(B)

lwlles) < cllw|| 3
(B) I T,

On the other hand, for any w € H'*P(S), there exists W € H 2+h (B) such that
( w) = u and

lu]| 1465y 2 —HWIl 3
.( b H2YP(B)

Therefore

Iellocs) = supu(a)| = supl(e)] < sup @@ < el s, < 2eulrencs

‘which implies the second conclusion.
- Lemma 2. There ezists a positive constant ¢ such that |ul? < clul?, for all u €

L H'(S) with p(u) = 0.
- Proof. By the Poincare inequality, we have
lull* < e(p(u) + |uff)

“and so the conclusion follows.
Lemma 3. Ifu € L?*(S),v € H*P(S) and > 0, then

luv]] < llullliv]li+s-
Proof. By Lemma 1,
luv|l? < [lul?flvllz < cllull?llvlys.
Lemma 4. Ifu € V) and 0 < r < 3, then
lullg < eMP~"||ul|,.
Proof. Let

Z E %nYm,n(A 9).

m=—M n=|m)|

By (2.4), Yinn(A,0) is the eigenfunction of the operator —A on S, with the eigenvalue
n(n + 1). Thus for any v € H"(S), the norm ||v||, is eqmva.lent to (see [12])

( Z E r("+1)rl”mn|2) | (3.1)

m=—00 n}lml
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Thcrefare 2SS & I

lullz < ¢ E E nP(n 4 1)P|itmpnl? < M~ Z Z ﬁ" (n+1) l‘u»m.-,l2 9

m=—M n=|m| m=—M n=|m|

< cM¥# 7 |ull?.

Lemma 5. If u € HP(S) and r < 3, then .

lu— Paully < cM™Pllullg, |Paullr < cllull-

B
--' = ..
FIL 3 i

Proof. By (3'1)1 | |

k% i
4 J.r: b I
o L

M o0 :
lu— Puul2<c Y x n"(n+ 1) |imal?+c Y }: n"(n+1) |u,,,,,u,,;|2

m=—M n=M+1 |m|>M n=|m|

m=—M n=M+1 |m|}M n=M+1

M 2o - | p
<e: Y e (n o+ ) el i e - 30 0" (n+1)"|dmal*

0o o0 :
< cM¥ % Z Z nP (n + l)ﬂlﬁm,nF

m=—0oon=M+1

< eM* 2| lull;.

Lemma 6. If u,v € H1#(S),3 > 0 and w € H'(S), then

(u, J(v,w)) + (v, J(u,w)) = 0. >3
Proof. We have
2 Bv 2 Sudw  Oudw .
{w, dim )} f / S “(3,\ o0 aa A\ )dﬂ‘”‘ [ f = ”(aA 80 86 O\ )‘md’}
= 5 3w
-f u(A, E)v()t w)aw (A, E)dl-{—f u(A, —_E)u(l ﬂ) ()\ ——)d
0

By the rﬂgu.la.nty of w, we know that w approaches the hn:uts independent of A, as

H — :I:E (see p.314 of [13]). It means that aat—:- =0at 0 = :I:E, and so the mnclusmn

follows. |
Lemma 7. For any u € C(0,T; L*(S)), : g
2(ue(t), u(t)) = llu@)|F = 7lla®)I*

Lemma 814, Assume that
- (i) E(t) is a nonnegative function defined on Rr,
(ii) p,b1,b2,d; and dy are nonnegative constants,
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(iii) for t € R,

i~—T | .
E(t) < p+7 Y (diE(t') + doaM™ E®T (1)),
=
b1
L (i) B(0) < p and pel@rtaais < M .
Then for allt € R, andt < 14,

E(t) < pelditalt,
If dz = 0 in addition, then for all p and t < T,

E(t) < pe™"

4. The Generalized Stability of the Scheme

- As we know, nonlinear schemes are usually not stable in the sense of Lax, but
might be of generalized stability (see [14,15]). We now analyze the generalized stability
~ of scheme (2.5). Suppose that 7(0) has the error 7jo, while the right sides of the first
" and the second equations of (2.5) have the errors f1 and fo respectively. They induce
- the errors of 7 and g, denoted by 77 and ¢. Then

(7ie(t), v) + (J(F(E) + 877 (2), o (t) + B(),v) + (J (@)
sTmu(t), B(t)), v)—zﬂ( (t) v) = (fi(t),v), Vv € Vas,t € Ry,

—(A@(t),v) = (7(t) + falt),v), Yo € Var,t € R, (41)
p(e(t)) =0, t e R,,
7(0) = 7o-

By taking v = 27 in the first formula of (4.1), from Lemmas 6 and 7 we have

|37 — TliTe @) — 267(T(7i(t), o (2) + (1)), 7e(t)) + Fi(t) — 49( (t) 7(t))

= 2(fu(t), 7(2)) (4.2)

where
| Fy(t) = 2(J (n(t) + 6Tme(t), £(2)), A(2))-

'- Next, let d be an undetermined constant. By taking v = dr1) in the same formula, we
get

dr |7 ()| + dr(J(A(t), ¢(t) + &(2)),7(t)) + Fa(t) — 2er( (t) 7t(t))

= dr(fi(t), (1)) (4.3)
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where
Fy(t) = dr(J(n(t) + rme(t), #(1)), Me(t))-

We put (4.2) and (4.3) together. Then

IHEIF + 7(d = Dllde@)* + Y F5(t) - 2ﬂ( (t) 7(t) + drie(t))

£
= (f1(2), 27i(t) + dTip(t)) (4.4j :_:
where :
F3(t) = 7(d — 26)(J(7(2), ©(2)), (),
Fu(t) = 7(d — 26)(J((8), $(0)), ().
Furthermore, we put v = ¢ in the second formula of (4.1), and obtain
BOR < 1B +elln®I? + | 2O

Thus, Lemma 2 leads to

. BOR < B + 1 @17): (45)

Moreover, by Lemma 2 and (4.5), %:
16013 < cUE@I? + 1AGDI) < el + 1 f20)I). (46)

We are going to estimate |Fjj(t)|. Let € > 0 and

el = o (Ol lllleo = o [u(®)lnco  cte

By (4.5), we know that for any g > 0,
IF ()] < elllnlli? U2 + 12@)1F) < ellinlllf oo (@I + 1 F2()11%)-

Similarly,

d? % 3
IFa(t)] < erll@I® + —lnlli} o (IO + [ F2(DI);
By Lemma 4,

T 2
(@20 i)

c'erz (d — 26)2
€

|F3(t)] < el +

< et ()| + ell1? AN

Furthermore, we have from Lemma 3 and (4.6) that for 8 > 0,
cr(d — 26)2
€

Fa(t)] < erll(®)]? + 1B, 4l ()2
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2B _ 95)\2 .
< erlftol? + ZEE B ) 21600018

erM?tP(d — 26)?

< erfliu(®)I? + DO + | O I1FON2).
Finally, we have

200(22 (1) ii(t) + drin(®)) | < erlliu(®)|* + (1 - O Wl + 15017)

oA

- 3 . 4 v rd®\ . ~
(Fut), () + driie@®)] € erl@I? + ela@)” + (1 + =) IAGI*
By substituting the above estimates into (4.4), we obtain

12 + (d — 1 = se)lR@I? < OIADI® + Qla@)II* + F(t)  (4.7)

~ with

.' Td* et M?(d — 26)*

Qu(t) = ¢+ et + ")l o + I
4 erM2+B(d — 26)2 . -

=27 Aoy,

: er M2+ (d — 26)3

;. Q2 e~ - '

-
-

-
-

F() = o1 + TONADIR +e(1 + ")l o + DIOI

Now, let d = pg + 1 + 5¢&,po > 0 and

B) = [0 + 07 S la@)I? o) = lioll? +7 3 ().
t/=0 ° =0

By summing up (4.7) for t € R,, we get

t—T

E(t) < p(t) + 7 Y (@)A1 + Q2lla)I"). (4.8)
t'=0
1
In particular, if 6 > ~x then we can take d = 26 and Q2 =0, etc.
Finally, we apply Lemma 8 to (4.8), and obtain the following result.
Theorem 1. Assume that 6 > % or the following conditions are fulfilled:

(1) 6 < %,p22 and T < cM7P,

(2) I|fz(t)|\2 < cMP~P=2 where B is an arbitrarily small positive constant,
(3) p(t1)e®t < doM P=B—2 where d; are positive constants depending only on |||7|

|1,m

and |[|¢|]1,00-

Then for allt < 14,
E(t) < p(t)e®2t. (4.9)
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Remark 1. In the first case, § > 1/2 and thus we can take d = 26. In the ..
1 i ; - B
case, § < : and so d — 26 # 0. Thus we require that p > 2 or p =2, | f2(t)||* < CMB

and p(t) < eM ~B. Then for all 7, fo(t),p(t) and t < T, (4.9) holds. The ..,,.
«tatements mean that scheme (2.5) is of generalized stability with different indices for.

i1

different values of 0.

5. The Convergence

Ou 3
This section is for the convergence of scheme (2.5). Clearly, PM(E;X) = gi( Pru).
Moreover by (2.4), .

Py (Au(A,0)) = — Z E n(n + 1)imnYmn(A, 0)
|m|<M n2|m|

" E E aﬂhnﬁym,n()ﬁﬂ)-= A(Ppu(A,0))-

|m|<M n>|m)|
Let éM) = Pp¢ and M) = Pyep. Then (2.3) leads to
(EM(1), ) + (JEM(2) + 676 (2), pM (1)), v)

M) 4 :
—20( 3 (t),v) = Y (9;(t),v); Yv € Vyp,t € Ry,
j=1
_(ApM(t),v) = (€M(2),v), Vo € Vag, t € Ro,
p,('v’b(M)(t)) = 0, t € Rr,

£(M)(0) = Puéo
with

a(t) = €M) - 50, alt) = srI(EM @), p0(1),
ga(t) = J(EM() — £0), @),  a(t) = TE(), ¥ ) = ¥(2)).

Furthermore, let £ =1 — M) and ¢ = p — M), Then by (2.5) and (5.1),
(E(t),0) + (JE®) + 5760, 9@ + (1)), v) + (JEM W) _.
+51€0(0, 5(0),0) ~ 2050 0),0) = — B @(00), Vo € Vanrt € By
—(A(1),v) = (E(t),v), . Vo € Vit € Rey
p((t)) = 0, : i | t € Ry,
£0) =o. s

~ We know from (4.1) and (5.2) that for the convergence, we have to estimate on 3
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.. llg; (EI*. According to

”T; 28 ay
A [ e+ -ty @,
we have : |
T a)? < er “NENEr20,6,22¢sy)
t'=0

Next, we have from Lemmas 3 and 5 that, for any B > 0,

M) 2 3
5 Il < er |“'+”|”2+ﬁ“| IH -

g2 < e[l ™)13,.4]I

_'.' Since £ = —Ay, we get

[210] e '”ﬁ"l 112

Er
i Furthermore, Lemmas 3 and 5 lead to

3@ < el (@)113, 51 () — E@)IF < M2 ||l 124 4llIEN,,
< M ||IENENEN2 4 v
lga(®)I? < ell€™ @1 (1) — (8)lI345 < M2 (IENIZIIEN,,-

Therefore,

4 t—1

pt) =7 > g(t)I? < e €l 720,225y + er?[[IENZNENZ o 1 H1(S))
3=1 =0

+ M NN NEN s

Clearly, if 7 = O(M~P), then p(t) = O(M~2P + M =2r). In particular, if p > - _I:; - and
B

r> 145 2, then j(t) = o(M-9-2),

By an argument similar to the proof of Theorem 1, we have the following conclusion.
Theorem 2. Assume that

1
(i) 6 > 3 and 7 = o(1), or § < 2,7‘<{:M'"” and p > 2,

(ii) £ € C(0,T; HH*(S))NCY(0, T H'(S))N H?(0,T; L*(S)) and r > 0.
Then for all t < T, |

IE@)II? < da(7? + M)

where dy is a positive constant depending only on the norms of £ in the spﬂces mentioned
in the above.
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