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Abstract

This paper is concerned with the investigation of a two-parametric linear sta-
tionary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for
solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-
cyclic matrix. We give sufficient and necessary conditions for strong convergence
of the MEJ method and we determine the optimum extrapolation parameters and
the optimum spectral radius of it, in the case where all the eigenvalues of the biock
Jacobi iteration matrix associated with A are real. In the last section, we compare
the MEJ with other known methods.

1. Introduction and Preliminaries

We consider the linear system

Ax = b, (1.1)
where A € R™™, b € R" and det{A) # 0. We also assume that A has the form

Ayr Ap ]

1.2
A1 A R

. [
where A;;, Azy are square nonsingular (usually diagonal) matrices. As is know [6], A
is a consistently ordered 2-cyclic matrix. |
For solving (1.1) we intend to use the following simple iterative method:

P = L g™ 4 OO, =008, 0y (1.3)
where
wlIl 0
e 1.4
o [ 0 wzfz] ’ \4)
D = diag (A1, A22) (1.5)
and

(1 — w1)h -wlAﬂlAlz‘

w w = = 1.6
Loson [—w2A221A21 (1 — wq)ls 18)
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In (1.4) and (1.6), w;, wy are nonzero parameters (extrapolation parameters) and I,
I; are identity matrices of the same sizes as Aj; an Agg respectively. The construction

of method (1.3} is based on the splitting A = M — N, where

M=DQ1=Q7'D (1.7)

and therefore, in the sequel, we will call it Modified Extrapolated Jacobi (MEJ) method
for the system (1.1). Obviously, for the iteration matrix we have

Liyw, =I-0D'A=1-Q+QT, (1.8)

where T = I — D™YA = L + U is the block Jacobi iteration matrix associated with
A (A= D{ —~L~-U), where L and U strictly lower and strictly upper triangular

matrices, respectively). It is clear that, if wy = wa = w, then the MEJ method reduces
to the known Extrapolated (Block) Jacobi (EJ) or (Block) Jacobi Overrelaxation (JOR)
method (see e.g. [5], [8]) for A. It must also be noted that MEJ is a special case of
the recently introduced ([2], [3]) Block Modified Accelerated Overrelaxation (MAOR)
method, applied to (1.1), which has the form

z{mtl) = LR,g:c("") +¢ m=0,1,2,..., (1.9)
where
Lra=(I—-RL)'I-Q+(Q-RL+QU|=1-(- RLY™IOD™'4  (1.10)

and
¢ = (I — RL)™'QD™'b. (1.11)

The matrices B and 2 appeared in (1.10)-(1.11) are defined by

?‘1I1 0
R = 1.12
[ 0 Tz-ﬁ] ’ -1

and (1.4), with ry, r2 the acceleration parameters. If r;, = ro = 0, then (1.9) reduces
to MEJ method.

Our purpose in this paper is to investigate the MEJ method, in order to find suffi-
cient and necessary conditions for strong convergence of it, as well as to determine the
optimal values of the extrapolation parameters and the optimal virtual spectral radius
(in the sense of [8]) of it, under the further assumption that all the eigenvalues u of
T ave real. A basic reason motivating the investigation of MEJ method is the known
result that under the above mentioned assumptions the optimum EJ method coincides
with the Jacobi method, that is the optimum extrapolation factor is wqopy = 1. We
show that the same is not true for the optimum MEJ method. It must be noted that the
obtained results are new, since, as it seems, similar ones are not appeared in the litera-
ture, and generalize previous ones related to EJ method. In section 4, we also compare
the optimum MEJ method with the following methods: Jacobi, Gauss-Seidel, optimum
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EJ, optimum Extrapolated Gauss-Seidel, optimum Extrapolated Double Jacobi, SOR
and Modified SOR (MSOR).

2. Convergence Analysis of the MEJ Method

It has been proved (see (4.1) for ro = 0 in [2]), that the eigenvalues A and u of
L., », and T, respectively, are connected by the following functional relationship:

(/\ + W — 1)(1 + Wo — 1) = wlwzuz. (2.1)
Setting
a=w; +wy, F=uwws, a,Y€EDR, (2.2)
we can write (2.1) as follows:
| A2 —bA+e=0, (2.3)
where
b=2—«
» (2.4)

=1—a+v(1-p?).

Because of (2.2), if @ and ~ are known, then w; and ws are determined by the two roots
of

2 —az+v=0 (2.5)

and can be real or complex conjugate numbers.

We assume that all the eigenvalues y of T are real, i.e., u € 6(T') C R where o(T)
is the spectrum of 7. Since A is a consistently ordered 2-cyclic matrix we have

— gL u<u=p(T) (p(T) denotes the spectral radius of T).a,nd
- _ s 2.6)
min = < < 1. (
i l=pslul=p
It 'is noted that p, &z are eigenvalues of 7. By (2.6) we have E2 < u? < 7% and
consequently the MEJ method is strongly convergent if and only if the two roots of
(2.3) are less than one in modulus Yu? € [&2, EE] . We can prove the following theorem.
Theorem 2.1. Let A in (1.1) be a matriz of the form (1.2). If all the eigenvalues
of the block Jacobi iteration matriz T associated with A are real, then the MEJ method

is strongly convergent if and only if ezactly one of the following two statements holds:

4(1 — p*)
1+ 52 — 22

20 — 2
)<, 0<ac< = My and max{l), o __2)}<."7<': =

142 =~ 20 —E

. 41 — 2 . 2(a — 2
(2.8)

where a, v are defined by (2.2) and pu, & by (2.6).
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Proof. According to Lemma 2.1 {8, p.171} the MEJ method is strongly convergent
if and only 1if

| <1 and [b| <14cVp?® € [p? 7], (2.9)
where b, ¢ are given by (2.4). It is shown that (2.9) is equivalent t0
v(1—p®) < a
1—-pé)>a—2
¥( ﬁz) (2.10)
(1 —p%) >0

V(1—p2) > 2a—2), u?e [,
By distinguishing the following cases for a: (i) a < 0 (i) 0 < a <2 (iii) 2< a <4 and
(iv) & > 4 and considering for each of the above cases the following cases for p: (1)
E<1(2)up<l<pand(3)p=>1,we arrive after some manipulation to the conclusion
that (2.10) is equivalent to (2.7) and (2.8). It must be noted that for the upper bounds

M, and M> of a in (2.7) and (2.8), respectively, we have
2< M;<4,i=12and Mi=4<=p=FL (2.11)

Remark. If we consfder the special case wy = wy = w, then o = 2w, v = w* and from
Theorem 2.1 we can obtain the known result that the EJ method with extrapolation

| 2
factor w converges if and only if g <1 and 0 <w < 177 This means that the MEJ
method converges for u > 1 only if wq # wa.

3. Determination of the Optimum Extrapolation Factors and Spectral
Radius of the MEJ Method

We now solve the problem of choosing « and <y and hence w; and we to minimize

the virtual spectral radius B(Lew, w,) of Lw;w, by proving the following theorem.

Theorem 3.1. Under the hypothesis of Theorem 2.1, the optimal values wj and
w3 of wr and wy (W1 # w2 ), respectively, and the corvesponding optimal spectral radius
of the MEJ method are given in the following table:

Table 1
Case 7 W
2 , —3
iy E+;_L
1 |o<p<LE<l ohis |
5
i+ i
2 1< u<p 1-— =
E—“ Eﬂ_l_ﬁﬂ_z

Proof. In what follows, because of (2.2), we denote by Aa, the iteration matrix of

the MEJ method (Aa~y = Luw, w,). Because of (2.4), we can show that the root radius
of (2.3) is given by |

' 1
(e, %) = 5 |2l + o — 401 - ) (2.12)
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and the virtual spectral radius of A,  is

PlAay) = max I'e,, 2.13
PlAay) = zq_#]( Yo t°)- (2.13)

We assume first that statment (i) of Theorem 2.1 holds. Setting A{p?) = o —4v(1—pu?),
we must consider the following three cases:

(1) A(E*) <0, (2) A(p?) >0 and (3) A(g?) <0 <A@

If case (1) holds, then we have A{u?) < 0 Vu* € [EQ,ﬁz]. Consequently,

[(a, 7, 42) = /1 — a+7(1 — p?) (2.14)
and
P(Aay) =T(a,v, 1) = p(Aay) = \/1 — o+ v(1— 2) (2.15)
Moreover, it can be shown that
4(1 — pi?
A(E*) <0 ifand only if 0 << (1 p;) and
i £ (2.16)
Q o B
. 4(1“ﬁ2)—7 I*EE‘
Hence, using (2.16), we can prove that
: o = . o .
Igglp(ﬁa,-r) =H‘glll]:!;ll\/l —a+9(1—py?) = min /1 — a - i __2)(1 — p?)
=g ﬁ1“4ﬂ*_ﬁﬂ 4(1-p%)  |B -4
implying that in this case the optimal values a*, v* of «, v are
2(1 _ ﬁE) I'J!.'*Z y ﬁﬁ
o — = = 2.17
T T iz T Taa @) T Q- u2p (2.17)
and
=2 .
e —
Agr 4+ ) = — 2.18
p( » ) \ 1 _E_2 ( )
If case (2) holds, i.e., A(&z) > 0, then we have A(u?) > 0 Vu? € [Ez,ﬁz] and
2 — 2 4~y(1 —
Y T R LTS 2.19)
Moreover, it can be shown that A{x?) > 0 if and only if 0 < a<a; and
2(ax — 2)} o’
0 < 2.20
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where

4(1 - p?) - 4/(1 - )@ - p2)
- - > 2, (2.21)

45

Consequently, we obtain

12— o + \/a"’ — 4y(1 - 7°)

p(Aaqy) =T, VB = plAay) = 2 , (2.22)
and
min p(Aqs ) = 11]1i1:11:[1.’111 {]2 - al + \/az — 47(1 — ﬁz)}
o, oy 2 o 7
=}—min 12 — a| + cx:z——4- o (1 —7%2%)
2 a \ 4(1 — p?)
I T PR i o ol -1
S 2 a \ 1- 47 \ 1-42
implying now that 7*
a*=32, 9= a” WP, (2.23)
’ 4(1 — p?) 11— p? '
and
.
m— p
A_ * ok )] = = 224
p( a” Y ) \ 1 e Eﬁ ( )
We assume now that case (3} holds, i.e.,
A(p?) <0 < AEY). (2.25)
It can be proved that (2.25) holds if and only if
4(1 — p?
D<aL 1_1_(_,2_E2)2 and
e (2.26)

2 2
o 2(c — 2) ,_ o o
max < <. mi

where the left inequality for =y is strict if the max is equal to the second expression and
similarly for the right inequality.

In this case, since there is a i € [E! ﬁ] . such that A(F2) = a? — 4y(1 - fi‘) = 0, it
is easy to show that

-ﬁ(Aﬂﬁ) = p{Aay) = max{M(a, 7v), N(a, 7} (?*27)

where

M(o,7v) = \/1 —a+v(1 - p?), (2.28)

2 - af + yJo? — 4y(1 - F)
2

N(a,v) = (2.29)
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In order to find IIH_L;I p(Aa~), we can show that

M(oa,v) = N(a,7) if and only if v = p2(a), where
a?(1 - p®) + 4a(1 — 7*) — 4(1 - B°)
2(2 — p? - 7?)?
\/(a —2)2[(1 — p2)%0? — 4(1 — 2)a + 4(1 - B2)?]
2(2 — p? — f?)? |

Moreover, we have pa(«) > 0 and po(a) belongs to the interval for v given in (2.26).
Since M(a,~) is increasing for v, whereas N{a,~) is decreasing for vy we obtain

pa(a) =
(2.30)

min p(Aa,y) = minmin p(Aqy) = min N(a, p2(e)) = min M(a, p2(a))

.
= min J1-a+ pa(e)(1 — p?). (2.31)
Setting
Rl@)=1-a+p(a)(l—p?), A= i B iL, (0<A<1), (2.32)
we find
R(a) = 2 i N [{12 — 2a(1 4+ X%) + 2(1 + A?) + \/(ct — 2)%(a® — 422a + 42%)| .

(2.33)
It can be proved that R'(a) < 0 if a < 2, while R'(a) > 0 if a > 2, which implies that

min /R(a) = \/R(2) = \2_5_1 ”’M _ (2.34)

This means that in this case the optimal values of «, v are

2
Z_EZ__EE’

(2.35)

a =2, ' =pmd)=

and

EZ 2
p(Aﬂ'*ﬁ'*) - ’\ % ”2 :Ez . (2.36)

Taking into consideration the obtained optimal results for the three cases and since

anld L2 vy AT
iy R N ey

\2_”2 ﬁZ—’\l_EZ
we conclude that if 0 < p < 7 < 1, then the optimal values of @ and ~ are given by
(2.35). Consequently, w} and wj are the two roots of

2 —a*z 4+~ =0, (2.37)
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that is, the following complex numbers

o

| A +E
12 T
1= E-F

appearing in case 1 of table 1 (Note that the values of w}, w3 can be interchanged).

(2.38)

For the remaining case 2 of table 1, that is, if statement (ii} of Theorem 2.1 holds,
the corresponding proof is omitted, since the work is analogous to that for case 1 of
table 1. It is worth noticing that wj, w5 are real now.

4, Comparison with Other Methods and Concluding Remarks

In this section some results are obtained from the comparison of the optimum
spectral radius p(Lys w2 ) = p(MEJ) of the MEJ method with the corresponding ones
of the following iterative methods: Jacobi (J), Extrapolated Jacobi (EJ), Gauss-Seidel
(GS), Extrapolated Gauss-Seidel (EGS), Extrapolated Double Jacobi (EDJ), Successive
Overrelaxation (SORY) and Modified SOR (MSOR).

Under the hypothesis of Theorem 3.1 we restrict our consideration to the case
0<pu<u<l.

Since p(J) = p(EJ) = 1 < 1, it is clear that

2 — 2 |
= = < U 4.1
with equality holding if and only if 7 = 0.
It is also know that
—2
p(GS) =R and p(EGS) = = = (4.2)
implying that
p(EGS) < p(GS) < p(J), - - (4.3)

with equality holding if and only if & = 0.
The Double Jacobi (DJ) method [4] for (1.1) is defined by

gt = 2a(m) L (T TYD™ 1, m=0,1,2,... (4.4)

and consequently for the EDJ we have

e 2
B~ p

= p*(MEJ). (4.5)

Hence we obtain

p(EDJ) < p(MEJ) (equality holds if and only if 4 = 1) (4.6)
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and
p(EDJ) < p(EGS) (equality holds if and only if 4 = 0). (4.7)
For the SOR and MSOR methods we have the known results (see [8], 7], [1])
1 —/1-—3° - |
SOR.) = : 4.8
. 1-p?2—/1-p2
p{ MSOR ) = v = (4.9)
\/ 1~ p2++/1-p2
and
p(MSOR ) < p(SOR) < p(EGS), (4.10)

with equality holding, in the left inequality if and only if 4 = 0, while in the right
inequahity if and only if 7i = 0.

Using the above given comparison results we can obtain some others, which are
summarized in the following theorem:

Theorem 4;1. (i) Under the hypothesis of Theorem 3.1, let 0 = p <@ <1l Then
we have

p(MSOR ) = p(SOR) < p(EDJ) = p(EGS) < p(GS) < p(MEJ) < p(EJ) = p(J).

(ii) Under the hypothesis of Theorem 3.1, let 0 < u < @ < 1. Then:
Il L

(1) p(MEJ) < p( GS) if and only ifﬁ\/l gﬂ « ,u;,

(2) p(MEJ) < pof EGS) if and only if IE\/ >

(3) p(MEJ) < p( SOR) if and only if \/ - ﬂz) V1 - <.’. i,

(4) p(MSOR) < p(EDJ) (equality holds if and anly if u =n. If p = [, then
p(MSOR ) = p(EDJ) = p(MEJ) = 0).

Proof. It follows after some manipulation by comparing the corresponding spectral
radii and using the results given previously.

As Theorem 4.1 shows, the optimum MEJ method can be under some assumptions
concerning i and jt asymptotically faster even than the optimum SOR method, but is
always slower than the MSOR one for p # 7i. Moreover, it has as the MSOR method
the property of converging if 2 > 1 (see (2.8)).

References

[1] A. Hadjidimos and A.K. Yeyios, Some recent results on the modified SOR theory, Linear
Algebra Appl., 154-1586 (1991), 5-21.



212 A.K. YEYIOS AND A. PSIMARNI

(2] A. Hadjidimos, A. Psimarni and A.K. Yeyios, On the convergence of the modified acceler-
ated overrelaxation (MAOR) method, Appl. Numer. Math., 10 (1992), 115-127.

3] A. Hadjidimos, A. Psimarni, Y.G. Saridakis and A.K. Yeyios, The block modified acceler-
ated overrelaxation (MAOR) method for generalized consistently ordered matrices, TR-102
(1990), CSD Purdue University, West Lafayette, IN 47907.

4] L.A. Hagemen, T. Luk Franklin and D.M. Young, On the equivalence of certain iterative
acceleration methods, SIAM J. Numer. Anal., 17 (1980}, 852-873.

[5] L.A. Hageman and D.M. Young, Applied Iterative Methods, Academic Press, New York,
1981.

[6] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, N.J. 1962.

7] A.K. Yeyios and A. Psimarni, Convergence analysis of the modified SOR (MSOR) method,
Intern. J. Computer Math., 35 (1990), 231-244.

8] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

