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Abstract

In this paper, we present a new semi-discrete difference scheme for the KdV
equation, which possesses the first four near-conserved quantities. The scheme is
better than the past one given in [4|, because its solution has a more superior
estimation. The convergence and the stability of the new scheme are proved.

1. Introduction

The numerical studies of the KdV equation have been largely developed since
Zabusky and Kruskal used the second order accuracy Leap-Frog scheme to solve the
KdV equation and revealed its important properties [8]. Recently, computational insta-
bilities such as sideband and modulational ones using finite difference approximating
were observed by the several scholars!ll6l. Not only that, other numerical methods for
the KdV equation also cause the troubles about computational blow-up or numerical
spurious solutions when computing time is long. The point is that, even though the
KdV equation has infinite conserved quantities, it is very difficult to seek a discretiza-
tion with more than two discrete conserved quantities.

Consider the periodic boundary problem of the KdV equation

Ut + UUg + Uger =0, —00 <z < +400,t>0 (1.1)

u(z + 1,t) = u(z,t), —-oo<z<+o00,t>0 (1.2)

with the initial condition
w(,0) = 1, (2) (1.3)

where u,(x) has period 1 and satisfies adequate smoothness requirements.
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In our previous paper [3|, we studied the semi-discrete centered difference scheme
1
Vit + -2-.&01?2 + AgA A _V; =0 (1.4)

and proved that the solution of (1.4) has the first three near-conserved quantities and
uniform converges to the solution of (1.1) if the initial value u,(z) is sufficiently smooth.
Here, Ag, A, and A_ denote, respectively, the centered, the forward and the backward
difference quotient operators with respect to space variable z. V; takes a value on the
net point x; = jh where h is the spatial mesh length such that Jh = 1 with a positive
integer J. And the meanings of the other symbols in this paper are the same as those
in (3] and [9].

In authors’ another paper [4], a semi-discrete difference scheme with the first four
near-conserved quantities was presented. It can be written as follows:

1 | 1

We have proved that the scheme (1.5) is stable and its solution converges to the solution
of (1.1) in Sobolev space Lo, (0, T; H) for any T > 0 if u, €H?. The four discrete near-

conserved quantities are

Viet = AoV +AcA, A _V;+

J
F;“(Vh) — ZBV_I,-h = Const., (1.6)
j=1
298|
FMW) =) Ev;?h = Const. + O(h’t), (1.7)
j=1
¢ 1
Fy (Vi) = 3 _(gV7' — 5|8, V;[*)h = Const. + O(h%), (1.8)
1=1

J
5 0 5 1
Fr(V) = 3 {m Vit — 2Vila, Vi — (A, VP + 5(8, 8.V h (19)
= Const. + O(h*t).

In this paper, we give a new scheme which possesses the first four near-conserved
(1.6)-(1.8) and (1.10), and a better priori estimate than (1.5).

J
9 5 | :
FIa) = Yo% =~ g3 VlA, V0P + (A Vi + 5(A, A Vi) }h
=1 !
= Const. + O(h%t). (1.10)

Applying the theory of discrete functional analysis due to Zhou!® and the technique of
coupled priori estimating by the authors/?/, we prove the convergence and the stability

of the new scheme.
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2. Difference Scheme and Several Lemmas

Our new scheme is:

Vit + 1&.]1»;? + AgA A_V; + lhzagv;a+a_1»3

— —-h4& A_V;AgA A_V; =0 (2.1)
Jt
with the periodic boundary condition
Viys(t) =V;(t), forany j and £ >0 (2.2)
and the initial value
Vi(0) = u, (). (2.3)

(2.1) is also A five-point scheme like (1.5) and can be rewritten as an equivalent
form: |
25 3

e+ EEV__l - I-B-V)a..;.v (2.4)

1
— E(V}'H —2V; + V;_1)Ao(Vi41 + V;-1) = 0.

‘G’t -F.fﬁgﬁ_l_.&_‘@ + (

£

To get the priori estimations of the discrete solution of (2.1), we require several

lemmas which can be found in [4], [9] and [10].

Lemma 1919

k, n which satisfy

. Let V, 1s a discrete function. For any constanis p, q, r and integers

1<g,r<0, 0<k<n , —(n- k—}-) l<1

there exists an constant K such that the following interpolation formula holds
1A% Vallp < K(IVRlZ™* AT VallZ + [Vallg) (2.5)

where the constant o is fized by

1 s
E—k“ : qa+a(l—n)

and the norm

J
1/p
[a*Vill, = (3 145 ViiPR) 7, 1<p< 0.
J=1
Lemma 214, Suppose 2(t) is o non-negative function on [0,T] and satisfies the
inequality -

z(t) < Al -+ B] ‘/: IZ(S)‘B,gdS , Vi € [O,T] (2.6)
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where A1, By > 0. If By 13 small enough, then

O /5/3 1
B2 3 { e 2‘7
- 3A1 BT < % (2.7)
(2.6) tmplies the estimate

z(t) < 24 ; vt € {0, T} : (2.8)
Lemma 3[4, Set A, and B, are any discrete functions. There are relationships:

A, A A} = A, (ARA_AR) + A_(ARA Ap) =2ARA A_A,

+ (AL AR + (A_AR)%, (2.9)

A, ApA, By, + A_ARA_Bj, = 2A0AR A0 By + -;-h2&+ﬁ_AhA+A_Bh, (2.10)
A, Aple By — A_ALA_Bp = h{AoARA, A_By + AgBrA, A_AL},  (2.11)
A, A, ALA, By +A_A_ARA_Bp =2A, A_ApAgBy,

+ h%[AgA, A_ARA, A_Bp+ AoBrA, A_A A_A,). (2.12)

Lemma 4!, Set A, and By, are the periodic discrete functions. The inner product
sattsfies the formulas:

(Ah: A.;.A_-Bh) s "(&+Ah: &+Bh) = _(&*Ah y &-—Bh)! (213)

(Ar, AoBr) = —(Ag Ay, Br), (2.14)
1 1

(An, BrloBy) = —5(AoAs, B?) + Zh2(3+Ah, A, Bul*) (2.15)

and

A _
(("2"+Ah)2 +(A_Ap)?, AoA A_Ap) = g(ﬁ,l_ﬁ_ﬂﬁ , Do, A_Ap) (2.16)

1
- ghz(ﬁ{]z‘lhﬁ_'_ A_ Ah 5 A+“"""""'-» ‘&+ AN Ah)

f_5h4(a+a_Ahaga+ﬁ_Ah, A, A_ALA_Ap)

where the inner product is

J J+k=—1
(An, By) =) A;Bih= Y A;Bjh  for any k.
i=1 =k



228 HAN ZHEN AND SHEN LONG-JUN

3. The Priori Estimates and the Near-Conserved Quantities
We set

Gy = -1—213 fsﬁv AN VG- 8&# AL V0N, AV B A)

and
6= AA MM Vi 2AA VP - (A VP + (A VP4V (32)
Then, the scheme (2.1} can be rewritten in the form
Vit + —;-&QV}E + AsA AV, +Q; =0. (3.3)
Multiplying (3.3) by g; and summing them up for § from 1 to J, we have

1
(Vht'.r gh) + i(ﬁﬂvhz 3 Qh) + ('&0&.‘.‘&_ Vh: gh) + (Qh 3 gh) = (. (3*4)

For convenience, we smit the foot-symbol h of discrete functions below. Making the
estimating term by term, and using Lemma 3 and Lemma 4, we get

(Vz, g) = {zaava,ﬁv’)——(v (A, V)2 +(A_V)D)

2w, vl (3.5

1 1 ' 5
E(“-):"lﬂl"’r2 y Q) i E(‘ﬁﬂvz ’ A+‘ﬁ-&+&— V) i _22(&01’;2-: ('&+V)2 + (&—V)z)
5
(A2 yS3 3.6
+ 36( 0 3 ): ( )
1
(ApA,A_V,g) = E(a+a_v2, AoA, A VY—(Q, A, A A A V)

5
+ -l-g(vﬁ, AoA, A_V) (3.7)
and

g (Q’ g) = (Q’ &+&*&'+'&—V) + g(Q: ﬁ+&_V2)

0 2 5 3
~ 3@, v+ v+, V). (38

Substituting (3.5)-(3.8) into (3.4), we obtain

d

D
2 2 4
S{GI8,A VIB- 2V, 1A,V + 1AV )+ 751V}
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5 5 b s s 5 g
= -—(ﬁuvg, (AL VY +(A_V)?) - -—-(ﬁon-s V) — “—(Vas DAL A V)

- w(l'l? ALA_VE)+ —(Q, (A3, V)" +(A_V)) ~ —(Q ! (3.9)
Applying Lemma 3 and Lemma 4 again, we have

(V3,00A,A_V) = g(aﬂvﬂ, (A, V)2 + (A_V)?)

1
- %hz(agvﬂ, (A A_V)?) — 5hﬁ(vm.v,, (A, A_V)?) (3.10)
and
(AgV?, V3) = %hz( (VY s A V) — %h”( (A VY@ +(A_V)?, V3.  (3.11)
So, from (3.10), (3.11) and (3.9), we gain
d (1 5 5
T1318:8 VIR - SV, 1A VP +|a_VP) + V]3]

= — WAV, AV + o

=R (A, V)4 {8 WP, v
" ihz(.&uvz + VAV, ('&+&— V)E)

-—(Q ALA V2)+—(Q, (A V) + (A V)E)——(Q i

= h BV, (0,8 + SH(VAA, AV, (8,8 V)
D
+ 5k (A, V)2 +(A_V)Y, A, A_VAA,A_V)
2 RA(ALVE 4 (A V)E, V2) + = h4((A,V)? (A, V)*)
288 + =T ® 864 oo
4 3
648h (A V', A A VA A V)
25 2 2 1 1
< P IV IoollA, Visoll 8, A VIE + SRIVIEIA, VI, —+> =1 312
Here, the constants 2 and 3 are respectively much smaller than those in scheme (1.5)
425 1015
which can be found in [4] where the constants are s and 2592

According to the interpolation formula (2.5), we have following inequalities:
BT 6/7
IV lleo|lA, Voo < 2K2(IVIE T IA, A_VIY + [[V]2)

T T
IVIE A, VIS, < 16K3(|VIE A, A_VIET + |v|I5)
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and
—\(V (A V)Y +(A_V)H) < —|IV|I4II& Vs < IIVlI4+—IIﬁ A_V|3

3,25

o CRPRRPVIY +81(%

8/3|1y7 14/3
KAV

Making an integral of {3.12) with respect to ¢ in [0, ] and thanks to above inequalities,
we get

1A, A_V@IE + LIV < Co+ KV + KallV ()5 (3.13)
+ Ksh? [ IV IALA_VEIE + V() [E)ds+

+ Kqb? / |8, 8_VE@IEIVEI 1A AV +1V(s)lE)ds,

where and below K; (i = 1,2,---) are absolute constants independent of h and V3 (),
and Cy is a constant gependent on the imitial value:

5 D
Co = 2[|A, A _u,f - 3t (B, us)? + (A_u,)%) + ig”ﬂullﬁ- (3.14)

Now, multiplying (2.1) by V; and sum them up for ;7 from 1 to J, we get

v, Vi) + Erﬁ(vj, AoVA,A_V) — %m(v, A A VAA,A_V)=0. (3.15)

Because there are

1
(V, AgVA, A V) = *§(a+v, (A, V)?)

and
1 1
(V,A,A_ VA A, A V) = —5(&0V, (A, A_V)*) + Ehz(ﬁ+V, (A, A A_V)?),

(3.15) brings about the following inequality

d 17 |
IVl < 5% 1A, V3 (3.16)
dt 36
17 39
where the constant = is also smaller than that of scheme (1.5) which is 51 in [4].
From (3.16), we immediately gain
VIR < luoll3 + 5042 [ 14, V(s)lds, (3.17)

Therefore, as similar as doing in [4], we get the following inequality for any ¢ < T
from (3.13), (3.17) standing by Lemma 1.

AL A_V(#)|2 + —EHV(t)IIi < C1 + KsTh[1 + (TR + (ThH*3]  (3.18)



A Better Difference Scheme with Four Near-Conserved Quantities for the KdV Equation 231
{
+ Koh?[1+ (Th)/° + (Th)F%] [ (||, A_V(s)]3
0

1
+ EIIV(S)IIi}B” %ds
where 25
G1 = Co++6( T K1) Vg 1472 + 328 (2 K4) ™ B |, |

is only dependent on the initial value.
According to Lemma 2, for any T > 0, if ~ is small enough there is an estimate

max {18, VIR + SIVEIL} < G (3.19)

where C2 and below C; (i = 3,4, ---) are the constants independent of h and T.
Furthermore, using interpolation formula, from (3.19) we get

2 IV (O)leo + 18,V (®)loo + 18,8 V(D)l} < Cs. (3.20)

Hence, we gam the forth near-conserved quantity from (3.12) and (3.20), which is
written as (1. 10) The first conserved quantity (1.6) of scheme (2.1) is proved immedi-

ately because 23-1 it = 0 and the second (1.7) is obtained from (3.16) and (3.20). To

derive the third one (1.8), we make the inner product of A, A_V; + £V and equation
(2.1). There is

£ (v Jav, A =@, a8+ v

< KR [|A, ViellA AV + VIl VA, A_V]g]
< Cy4h?

and (1.8) is true.

Next, we estimate Vj; and AgA A V. Set V] = Vj;. Making the derivation of
(2.1) with respect to t, we have

Vie + B0o(ViV;) + AoALA_Vi + Qe = 0. (3.21)

Multiplying (3.21) by V;; and summing them up for 7 from 1 to J, we get
1d

533V V) - (VV', &gV') +(Qe, V') =0. (3.22)

Because there is

(VV', AgV') = —= Z ViVi 1A, Vih, (3.23)
25z .
the following inequality is obtained from (3.22)

d .
V@3 < KsllA, Viieo (I < CslIVi(t)113
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or, by Gronwall’s inequality,

max |\Vi(£)|12 < IVA(0)}3 exp (CsT) = Cy (3.24)

0<Lt<T

for u, €H>. The constants C; (i = 1,2, ---) are dependent on 7.
Finally, from (2.1) and (3.24), we see

UlgaéxT |AgA A_V(t)|l2 < (.72 (3.25)

Thus, we have
Theorem 1. For any given T > 0, if h is small enough, the solution V5(t) of the

difference scheme (2.1)-(2.3) satisfies the priori estimates:

nggllV(t)ll < Cs, OgngIIV(t)\I s < Cs, OH{lngIM(t)HM&

Meanwhile, scheme (2.1) has the first four near-conserved quantities (1.6)-(1.8) and
(1.10).

»

4. Convergence and Stability

Having the priori estimations in Theorem 1, basing on the framework about conver-
gence of discrete solutions given by Zhoul®), we get following convergence theorem!4l.

Theorem 2. Suppose that u, € H>. For any T > 0, the difference solution Vj,(z,t)
of scheme (2.1)~(2.3) converges to the differential solution u(z,t) of (1.1)-(1.3) in the
Sobolev space Lo, (0,T;H3) as h — 0. *

Now, we turn to analysis the stability of the difference scheme (2.1), or say, how
the discrete solutions of (2.1) depend on the initial values.

Suppose Vj(t) is the solution of scheme (2.1), (2.2) with another initial i, (x) €HS.
Let Wi(t) = Vi(t) — Vi(2) and Vi (t) = Vi(t) + Vi(t), then W3 (t) satisfies the difference
equations :

1, - . ) ]
Wit + 380[V;W;] + B2, A_W; + oW [BW; A, A_V; + AoV;A, A_W;](4.1)
1 = -
— 'é—ﬁ-h‘l[ﬁ+ﬁ_wj&ﬂ&+ﬂ_1’? + ‘&+A—‘G&0‘&+&qu] =),

W;(0) = u,(z;) — 4, (z;)

and the periodic boundary condition.
Multiplying (4.1) by W; and summing them up, using formula (3.23) and Theorem
1, we have

—-I\W(t)\lg Cr|[W(t)3, 0<t<T (4.3)
therefore

2235, W @)l < Callup — gz (4.4)
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Secondly, multiplying (4.1) by A, A_W; and summing them up too, using Theorem
1 and the formula below

(Ao[VW], AL A_W) = Z[(VJH + Vi—1)AoW; + (W1 + Wi—1)AcV;|A L A_W;h
_ 3—1

i 2 - -
= ) Z[(Wj+2 + W;)A0ALV; + &01’3&+(Wj+1 T Wj—l)]&+wjh

b ZA+(1@+1+ Vi-1)(A, W;)?h
j"'l

we get
d s =
1A WOI3 < Ko(IIA, ViolA, WIZ + 1A, A_V[2|WlwllA, Wiz)  (4.5)
< Gs(lla, W)z + [W(@)3).
From (4.3) anfd (4.5), according to the Gronwall’s inequality, we obtain the estimate:

max [WOl g1 < Colluy = doll 1 (4.6)

At the last, we multiply (4.1) by A A_A A_W; and sum them up. Because that
I(Ao(VW), A, A_A,A W)|| < Kio{llA, V]ool|A, AW
+ AL A_V ]2l A Wl AL AWz + |AcA L A_V{i2|W|eollA, A_W||2},
we have
%llﬂnﬁ_ Wz < Cr(la A WOIE + 1A, WIE+ IW®IZ).  (4.7)
From (4.3)(4.5) and (4.7), we get directly

max IWOll s < Colltg — gl 17 (48

We end our article by following theorem.
Theorem 3. The scheme (2.1) is stable about the initial values in the sense of
(4.8) for small h, where u,(z), 4,(z)cH>.
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