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Abstract

Three classes of symplectic multistep methods for linear Hamiltonian systems
are constructed and their stabilities are discussed in this paper.

1. Introduction

Professor Fertg Kang advanced the principle for construction of symplectic algo-
rithms for Hamiltonian systemsl!! and pointed out that symplectic algorithms can re-
flect main features of Hamiltonian systems, therefore they are more available. Plenty
of theoretical and numerical results have proved these points.

Professor Feng Kang also discussed the approximation problems by algebraic func-
tions. The conclusions are stated as follows[?l: |

1. We note ¥(£) = p(£)/a(£). A multistep method M(p, o) is symplectic for linear
Hamiltonian systems (we call it linear symplectic for short) iff ¥(&) = —¥(1/€).

2. Assume p and ¢ have no common factor. p(€) is antisymmetric (¢Xp(1/€) =
—p(€)) and o(€) i symmetric (¢Xa(1/£) = o(€)) iff $(€) = —(1/€).

Dased on the above results, in this paper three classes of linear symplectic multistep
formulas are given and some good proterties are discussed.

2. The Construction of Linear Symplectic Multistep Formulae

Lemma 1. All roots of p(¢) have module equal to unit and are stmple if the linear
multistep formulae M(p, o) are linear symplectic.

Proof. According to symplectic condition (¢ ) = —9(1/€) if € is a root of p(¢), so
does 1/¢€. The module of no root of p(€) is exceeds 1 and the roots of module 1 are
simple (stability condition), therefore lemma 1 holds.

Lemma 2. o(§) is antisymmetric if p(§) = (- 1)(E+1)(E— e )(E—e 1) .. (£ -
eiwp)(f — e7¥P), '
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Proof. Bince C(LE - V== -1), t(L{E+ D =(E 4+ 1) and
EL/E ~ *YL[E — ™) = (1 = Ee¥)(L — §e ™) = [ ~ €¥) (¢ ~ &™),

we have

2P+ 5(1/€) = —p(£).
When
p(€) = (£ — 1)(€ — W)€ — e™1) - (£ — e¥¥P) (£ — e *¥P),

the proof is the same.

Theorem 1. p(£) stands for above mentioned antisymmetric polynomial of degree
k. If k is even, then the only symmetric polynomial o(£) of degree k can be defined,
so that the linear symplectic implicit k-step formulae M(p,o) heve order k + 2. (i.e.
optimal methods). If k is odd, then the only symmetric polynomial o(£) of degree k can
be defined, so that the linear symplectic implicit k-step formulae M(p, o) have order
k+ 1.

Proof. Let
4 142z _E~1
Eml-—-z’ . E+1
) l—2\K (142 l—2\K (142
r(z):( 2 ) p(1_z)’ S(Z)“( 2 ) a(l_z)'

r(ﬁz) is odd function because |
- 1-— 1
= () o(33) =~ () (72) oG

_ (1 -2- Z)Kp(l 4 ."-c.-") N _T(z).

l1—2

It is well known that the multistep method M/(p, o) has order p if and - -y if P(z) =
r(z)/log(3E2) — s(z) has a zero of order p at z=0 (see Henrici [3]). We choose the
k terms in front of Taylor series of r(z)/log(X2) as s(z), then the multistep method
M (p, o) associated with r(z) and s(z) has order k+1. Both r(z) and log((1+ 2)/(1 — z))
are odd, so s(z) is even. According to this, o(£) is symmetric and M (p, o) has order
k+2 when k is even. |

Theorem 2. p{£) stands for above mentioned antisymmetric polynomial of degree
k. If k is even, then a symmetric polynomial o(£) of degree k can be defined, so that
the linear symplectic explicit k-step formulae M(p,o) have order k.

Proof. For optimal methods o(§) may express as

o(€) = Cot*/? + C1E** 1§ — 1) + -+ + Cppa(€ - 1)F (1)

where C; is a definite constant. If the last term Cj /5(£ ~ 1)* in (1) is taken away, o(£) is
a symmetric polynomial of degree k — 1 and the corresponding linear symplectic k-step
formulae are explicit and of order k. (see [3]).
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Example. 1. Implicit linear symplectlc k (even)-step methods of order k + 2
(optimal methnds)

k=2,Yn12—Yn = R(2fnt1 — 1v2f“+2), Milne-Simpson formula;

14
k=4, 14— yo = h(4fn+2 : 3 v fngs + _v fn+4)

20 134
K =06,Ynt6 ~ Yn+5 + Unta — Ynt2 + Ynt1 — Un = h(4fp i + ?? ) A 3E VA fats
L 286 g

2. Explicit linear symplectic k(even)-step methods of order k& :

k=2,Yn42 — Yn = 2hfn4+1, Leap-frog formula;

8
k= 4, Un+da — Un — h‘(4fﬂ-+2 e §v2fn+3);

20 134
k=06,Ynt6~Un+5+Unta ~ Ynt2 +Yni1 —Yn = h(4fn+3 ?"7 Jaya+: T V4fn+5)-

3. Ilmplicit lithear symplectic k(odd)-step methods of order % + 1 :

h
E=1,941—Yn = '"Q'(fn+1 + fn), Trapeizoid formula;

k=3 Ynt3 — Ynt2 + Ynit1 — Yn = _""(5.fn+3 + Tfa+2 + Tfat1 + 5fa).

3. Some Properties of Linear Symplectic Multistep Methods

For the test problem 3y’ = Ay, the characteristic equation of M(p, o) is
?JJ(E ) = H, (2)

where

(&) = p(€)/o(8), p= Ah.

Lemma 3. The characteristic equation (2) corresponding to linear symplectic mul-
trstep formula M(p,o) maps the circle | € |= 1 on the &-plane onto a segment on the
imaginary azis of p-plane which is symmetric to u = 0.

Proof. Because P(e¥) = —1p(e %) = —p(e¥) and ¥(0) = 0, lemma 3 holds.

Theorem 3. There exists a interval D: [—ih,ih] on the imaginary azxis of u-
plane such that all roots of the characteristic equation (2) of linear symplectic multistep
formulae M(p,c) lie on the circle | £ |= 1 as long as u = hA € D.

Proof. The roots of p(£) divide the circle | £ |= 1 into & arcs (as shown i in figure 1).
When £ moves along the circle from ¢ = 1 to the second zero of p, 4 moves along the
imaginary axis from u = 0 to hl (or infinity) and then return to u = 0. Moreover, ¢
continue to move from second zero to third zero, 4 moves once again from y = 0 to A2,
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then return to u = 0. Due to symmetry there are the same drawing on the half plane
im £ < 0 and im px < 0.

Therefore, all eigenvalues (there are four eigenvalues in figure 1 ) lie on the circle
| £ |= 1 if A = min(hl, h2) and u € [—ih,h)].

This proof is available to other more complicated situation.

Remark. If linear Hamiltonian systems only have imaginary eigenvalues, so it’s ba-
sic solutions are periodic, Correspodingly, the numerical solutions by linear symplectic
multistep methods also have periodicity when hXA = u € [—ih, ih];

Theorem 4. There does not erist above mentioned interval D : [—ih,ih] in linear
multistep methods ezcept linear symplectic multistep methods.

Proof. If there exist infinite number of ¢ for linear multistep methods M (p,0) so
that ¥(e*) = p(e*?)/o(e'?) = iy, ¥(e*¥) = —P(e™¥) hold for infinite number of ¢,
then, we have ¥(£) = —¢(1/£), i.e., the method is linear symplectic. For non-symplectic
multistep methods, (¢) only maps finite number of £ on the the circle | { |= 1 onto
imaginary axis so there does not exist above mentioned interval D.
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