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Abstract

In this paper a new approach for time discretization of an integro-differential
equation of parabolic type is proposed. The methods are based on the backward-
Euler and Crank-Nicolson Schemes but the memory and computational require-
ments are greatly reduced without assuming more regularities on the solution u.

1. Intfoduction

We consider the time discretization of the equation

T
ug + Au = fﬂ b(t,s)Bu(s)ds + f(t), 0<t<T, (1.1)
u(0) = v,

where A is an unbounded positive definite self-adjoint operator with dense domain
D(A) in a Hilbert space H and B is another operator with domain D(B) D D(A).
The kernel b(¢, s) is assumed to be a smooth real-valued function of both ¢ and s for
0 <s<tand f(t) € H is a smooth function.

This type of problem occurs in applications such as heat conduction in material with
memory, compression of poro-viscoelastic media, nuclear reactor dynamics, etc. The
numerical solution by means of spatial discretization by finite differences and finite
element methods has been studied by several authors; see V. Thomee |2] and the
references cited there.
~ In this paper, we shall restrict our attention to the time discretization of such
problems. A standard way of time discretization is to employ the quadrature formula

t n—1
|7 ale)ds = 3 wasglik), (1.2)

* Received July 7, 1993.
1) The Pro ject Supported by National Natural Science Foundation of China.



260 HAUNG YUN-QING

where k denotes the time step, e.g., the left rectangle rule and the trapezoidal rule are
simple quadrature rules which are consist with O(k) accuracy of the backward-Euler
scheme and with O(k?) accuracy of the Crank-Nicolson scheme , respectively.

Let t.. = nk and U™ be the approximation of u(¢,) and f* = f (tn). Also we define
the backward difference operator by

n__ Fn—l1
gum =2 kU | (1.3)

Let o}(g) = kz_}‘;& g(t;) and o3(g) = 1kg(0) + ;:& g(t;) be the left rectangle rule
and the trapezoidal rule respectively. Then, the standard backward Euler and Crank-
Nicolson schemes are |

™ 4 AU = a7 (b, B n, =il dy ¥
BE - 0 U™ = o} (b{tn,s)BU)+ ", n=1 (1.4)
% = V;
o Un+Un—1 - i 4
— + A(— : ) = o3 (b(t,_1,9)BU) + 773, n=12-, (g

=

where o7 (b(tn,s)BU) =k Z}:& b(tn,t;)BUI and o7 is similar.

A practical difficulty of these methods is that all {/7 need to be stored as they all
enter the subsequent equations; hence the number of U 7 which have to be stored is of
order O(3) per unit time. |

In order to reduce the memory requirement, Sloan and Thomeel!! proposed more
economical schemes by using quadrature rules with higher order truncation errors. For
example, in order to retain the accuracy of the backward Euler scheme, they used the
trapezoidal rule with mesh size k1 = O(vk) on [0,t;,] and the rectangle rule with
mesh size k on the remaining small part [t;,,%s], where t;;, = max{jk1} (Gk1 < tn-1)-
For this scheme, the storage requirements are reduced from O(i—) to O(Z}'_E) per unit
time. Likewise, a combination of Simpson’s rule and the trapezoidal rule preserves the
accuracy of the Crank-Nicolson scheme. Because of using higher order quadratures,

the regularity requirement of the solution u is very severe.
The results here are based on the following iterative relations for the quadrature:

n—1 i
) =k 3 o6) = 7@ +hatas) (= [Toids ). (19)

J

n—1 “
o3(9) = 2kg(0) +E 3 (ts) = 05 (g) + k(tn-1)
: =0

(= [ o ); 07

#2(g) = — 5 kg(0).
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2. Iterative Backward Euler (IBE) and Iterative Crank-Nicolson
(ICN) Schemes

2.1. Product type kernels b(t, 3) = p(t)q(s)
For product type kernels, IBE and ICN can be easily defined as

SU"' U™ = p"ag™(aB L i ] B s '
IBE +A P Jl (q U)""f ? n 1: ’ ) (21)
Ul =V,
ay™ U+U22Y = p"~202(¢B L =1,2,-
ICN :{ UO +VA( 2 ) 20'2 (q U) +f T y Sy 3 (2‘2)

For these schemes, we need only to store o™ and U™ 1; the previous U7 can be discarded.

Hence the storage requirement is greatly reduced.
2.2, The analytic kernels
- Assume that b(¢, s) is analytic and all the derivatives are bounded by M. Then, by

the Taylor exparsion of b(t, z), we have

b(t,8) = b + e, ' (2.3)
Sm—l
= b(t,0) + sb(¢,0) + - § i T“I(t 0) = Zpi(t)qi(S), (2.4)
1=
7m] < %3 < %TM | (2.5)

Choose m such that L ‘wr = O(k%), where a = 1 for the backward Euler scheme and
a = 2 for the Crank-Nicolson scheme. Replace the kernel by its degenerate Taylor
approximation. We define:

U™ + AU™ = o7 (b, B i =1,2,:-
IBE:{ e gl(m U)+f: T y Ay 3 (26)
o’ =v;
o Un+Un—1 Cn -
- Ul =V.

Since b, = E pi(t)gi(s) is a sum of m functions p;g; with variables separated, o7(b,, BU)
=0
n
= Zp}"‘ (g BU), o5 (b BU) Ep!_ o5 (g; BU), we need only to store U™, 6™(¢;
1i=1 t=1

BU), ¢ = 1,2,---,m. It is easy to show that .

| In k|
storage requirement for o™(q; BU) is like that of U™ if space discretization is consid-

ered. Hence in our schemes, the total storage requirement is of order |Ink| per unit

> 0 as £k — (0. Generally, the
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time, which is much smaller than O(3). All the computation in the quadrature can be
carried out recursively.

2.3. More general case

If the kernel is not so smooth, supposing b € ™ and ||bllem < M for some fixed
m, We propose the following approach.

Dividing interval [0, T into subintervals with length &y = lk for some integer | and
using the Taylor expansion of b(t,s) on the subinterval, we have:

b(t, s} = bmj + Tmjy JE1 S8 < (7 + 1)k,

_ , ; g —qbi™ *

bong = Bt k1) + (8 — ROBY (o GR1) + -+ ey O (k) (28)
kT |

|7mg| < _1",' . (2.9)
. .

Choosing k; such that EET — O(k*) with @ = 1 for the backward Fuler and a =
2 for the Crank—Nimls})n scheme. Replacing the kernel by its piecewise degenerate
Taylor approximation, we can similarly define IBE and ICN as above. Now the storage
requirement is of order m - b T O(mk"':?) per unit time.

In view of practical implementation, the computation of the derivatives of the kernel
‘s somewhat complicated. We suggest using a plecewise Lagrange interpolation of
degree m — 1 of the kernel instead of the piecewise degenerate Taylor approximation.

Divide [0,7] into elements with length ky = lk as above and then construct a
piecewise polynomial subspace with degree m — 1 by adding some Inner nodes in the
slements. It is not necessary to require the inner nodes to be time step points. Let
{; (3)} be the nodal basis of the constructed subspace which is just a conforming finite
element subspace with freedom N* = mTki'l. Now the interpolation bn(t,s) can be
written as

N.,
bon(t5) = 3 bt £5)5() (210

j=1

which is a sum of functions with variables separated. IBE and ICN can be defined as.

in (2.6) and (2.7). In order to preserve the accuracy, it is required that k7" = O(k%).

Hence the storage requirement is again of order ‘“,;: = O(m ~m) per unit time. A

special case is m = o. In this case the IBE or ICN becomes their standard form
separately (BE or CN).

3. Error Estimates

In this section we derive the error estimates by using the stability of standard
hackward Euler and Crank-Nicolson schemes. First we have the following Lemmas
from [1].
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Lemma 3.1. Assume that ||A1B|| is bounded. Then the backward Euler scheme
with left rectangle quadrature yields .

i < e@)(loli+ k3 1F1), nk<T.
j=1

Lemma 3.2, Assume that ||A~'B|| is bounded. Then the Crank-Nicolson scheme
with trapezoidal rule yields

U™ < C@)(lvll+ &> 11F772)]), nk<T.
=1

Now we can show the error estimates:
Theorem 3.1. Assume that ||[A1B|| is bounded in H and that ||usl|, HBut” and
||Bu|| are bounded. Then for IBE scheme we have that

lu(ty) — U|| < C(T,wk, tn<T.

Proof. Let e™ = u(t,) — U™, it follows from (1.1) and (2.6) that e satisfies the
 equation
de™ + Ae™ = o7 (bmBe) + T, (3.1)

where 7, is the truncation error

e e
... k”(t"'l) wglt) + f b(tn, ) Bu(s)ds — o7 (bBu) +07((b—bm) Bu). (3.2)
0
Under the assumptions of this theorem we can easily verify that
|ITnl] < C(T, u)k. | (3.3)

This and Lemma 3.1 complete the proof.

Similarly we have

Theorem 3.2. Assume that ||A™1B|| is bounded in H and that |{uw||, || Buyl|| end
||Bu|| are bounded. Then for ICN scheme, we have that

lu(t,) — UP|| < C(T, w)k?, tn<T.

From these theorems we see that the regularity requirements on the solution are
much weaker than in the economical schemes of [1] where ||Buy|| (for backward Euler)
and ||Bug|| (for Crank-Nicolson) are also required to be bounded. The difference
between the schemes here and the schemes suggested in [1] are the following.

First we store the integral [;" bBUds in parts instead of storing the individual U,
hence we can reduce the memory requirements in several way pmvlded b(t, s) smooth.

Secondly we employ lower order quadrature rules which are just consist with the
discretization instead of employing higher order Quadra.ture rules, hence we do not need
more regularities on the solution v. What we have to do is to find an approximation of
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kernel b(t, s) such that the approximation is a sum of functions with variables separated.

In general, the interpolation is a reasonable choice.
Acknowledgement. Thanks are given to Professor Wahlbin and professor Thomee

for may helpful sugpestion in style and context of this paper.
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