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Abstract

In this paper, we generalize the paracontracting matrices to pseudocontracting
matrices. The convergence of (parallel) iteration

i = Py, g, Ti-1

and

p
Titr; = Q5 Tipe,—1 + (1 — aji)ﬁiafimi

where F; ;, j = 1,---,n, are paracontracting and/or pseudocontracting matrices
is analyzed. These iterations can also be applied to solve consistent systems with
incomplete data.

§1. Introduction

Consider the following system:
Re = § (1.1)

where B € C™*™, and m > n. This sort of systems may arise in application of computed
tomography, parallel beam reconstruction, and other fields. In these areas, m may be
very large, m > n. If (1.1) is consistent, its solution set is # + N(R), where # is the
unique minimum 2-norm solution of (1.1), and N(R) is the nullspace of R.

Write R into the form:

rR'—lr"
R =1 :| (1.2)
 BE
where R; € C™, and construct paracontracting matrices:
R;R} : .
H:I—WR?&, i=1,2, - ,n _ (1.3)

where w € (0, 1). Based on the Kaczmarz algorithm (c.f. [5]), Elsner et al. proposed
an asynchronous paracontracting method to solve (1.1) in [1].

* Received March 15, 1991.
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In this paper, we generalize the algorithm in [1] to the block case. The methods of
proving the convergence in [1] are not valid. In Section 2, we present our main results

on the block iterations. Then using these results, we propose block and asynchronous
algorithms for solving (1.1) in Section 3.

§2. Block Paracontracting and/or Pseudocontracting Iterations

Through this paper, we denote || - || as the 2-norm. AT, 2T denote the Hermitian
transpose of the matrix A, vector z, respectively. R(A) denotes the range of 4. A
matrix P € C™*™ is paracontracting (cf. [1], [6]) if

Pz £z & ||Pz] < |z forall z ¢ C™, (2.1)

Lemma 2.1. If P is paracontracting, for Yz € R(I — P), there exists a constant
v < 1 such that || Pz|| < v|iz]|.

Let # ¢ C**™, N = {1,---,n}. N;, i =1, ..., p are p subsets of N such that
Ui_yNi = N. Note that we allow N; N N; # ¢ for i # j. n; is the number of elements
in N;. r;r 1s the jth row of B. R; is an m X n; matrix with columns r; for all 7 € N;.
Assume R7 R; is nonsingular, and consider matrices

P,=I-wR{RTR)RT i=1,.--,p (2.9)

In the following, we can prove that P; is paracontracting. If we need to compute
P;z, then we need to solve an equation: RY R;c = P¥z. Our first idea is to use some
(; to approximate R?Ri:

P,=1-wPC'Rf i=1,,p. (2.3)

Theorem 2.2. Let P, = I — ngci_lR?. O<w< ]l If R,TR,' = C; — (C; — R?Ri)i
15 a P-regular splitting, then P; is paracontracting.

There is no difficulty to prove Theorem 2.2. We refer the readers to [3] for P-regular
splitting. Let RTR = D+ L+ LT where D is diagonal and L is strictly lower triangular.
If ¢ = D (Jacobi type), or C = D + L (Gauss-Seidel type), or C = (D + AL)/A with
0 <A< 2(SOR type),orC' =D+ L+ LT, then RTR = C — (C — RTR) is a P-regular
splitting.

The next idea is to choose some number to replace R R; in (2.2). Let P; =
I — wB,R;RY. In this paper, we use only the contracting property. Then our second
idea is: for arbitrary fixed z € C™, choose an optimal f; ., which depends on z, to
minimize || P; .||, where P;, = I — ﬂ;,mRin.

Theorem 2.3. Let ¢ € C'™ be arbitrary and fized. Then
B (IR 2|l/| R: R ||*,  if RTz # 0 (2.4)
o, if RTz 2 0 |

minimize || P; z||, and || P 2|l < lz|| & Pi.z # =.
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Theorem 2.4. For ¢ any z € R(R;), 0 < w < 1, there exists a v < 1, which is
mdependent of z, such that

||P;,z=:|| = (I — wB; . R:RF)z|| < 7||z].

Proof. Let R; € C™*9, with rank r. Now suppose R; = USVT is its singular value
decomposition, where U € C™*™, V ¢ C%*Y i3 unitary, and

- L 0
- 0 0]
where ¥ = diag (1, -+,0,), 01> -+ > 0. > 0. Let £ = U3. We have
zER(R)&¢g= (yT, UT)Ts ye (2.5)
and
IRzl = IZyll, llzll =llyll, and|R:RTz| =[Sy _ (2.6)
From the definition of P; ., we can easily draw that
: 2 2 ||R;I-’°”4
# ”th'z“ = ”E“ _w(g_w)“RiRg‘zllz
Then s —_—
|l : IR z|
sup ’ =1-w(2-w) inf
entry el 29, R TelP TR ET=?
but r . ;
- |z III?R;-’EH — lylll| % 2yll — |2 EIIL\EEH
zeR(R;) || B z]] C 12y 2C” [zl
—q
< sup 12~ =] X sup BE . = o;1/0y.
e 2l 7 o N2l

Set 4 such that
7 =1-w(2 - w)o, /0.

Then ¥ < 1, and for Yz € R(R;)
|1 Pizzll < 7=,

In general, for a fixed z, P;, is not a paracontracting matrix. For example if

2 0] 0 1 ~-31 -
— — t i = L. = ; Pim oo h y
[U 1] x [1} hen S 1. But for y [U} Y [ 0 } Thereby
|8, 2yl > |lyll. So, P; . is not paracontracting. But, from Theorems 2.3 and 2. 4,

|75, 22| < ||z]|- So we call P;, a pseudocontracing matrix.

Remark. If R; ¢ C™, i.e. there is only one column in R;, then for Ve Rfz #0,
we have 8;, = 1/(RfR;). It is equivalent to the usual case in (1.3), and P;, is
independent of the choice of z. |

Remark. In Theorem 2.2, we assumed that RTR; is nonsingular. However, in
Theorem 2.3, the nonsingularity is not required.
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Now we consider the following iteration:

i =Py 2 %1 1<j<p, i=1,2, - (2.7)
where P;, is defined by
P;=1- ijCj'lR}‘ 0<w<l, or (2.8;-1)
= {I - whizR;RT O<w<l (2.8b)

In (2.8 a), we assumed that R;er 18 nonsingular and the splitting R?Rj = C; -
(C; — R?Rj) 1s P-regular; in (2.8 b} 8; . is defined as in (2.4). According to Lemma
2.1 and Theorem 2.4, if 2;_; € R(R;, , there exists a 7;; < 1 such that

l2sl] = |y, ziy @icall € 95 [|2])i-1.

Setting

= max ¥;
’ ISiSPTt

we have ¥ < 1. :

Theorem”2.5. If zy € Span{R,, B} = R, and {7;}2, is admissible, i. e. for
every j € {1, ---,p} , 7 appears in it infinitely often, then the vector sequence {z:}32,
defined by (2.7) and (2.8) converges to the zero vector.

Proof. For the vector sequence {2;}2,, ||z;|| < ||zi-1|{. Hence {z:}72, is a bounded
sequence, and there exists a convergent subsequence {z,,}?2,, such that lim;_, . z,,. = y.
fy#0,weknowy € R. Fori=1,..-,p,let y = z;4+w;, where z; & R(R:), w; L R(R;).
Let

o =min{||z(] | z; #0, 1 <1i < p}.

We have o > 0 (otherwise y 1 R, and hence y = 0). For any fixed ¢ > 0, 37, forVvi >
I, ||zp; — yl|| < e. Now for a fixed i > I, denote ¢ = p;. r is a nonnegative integer such
that

Pjﬁhzﬁk_ly:y for k< r, and By o Boirm iU E Y

So z;,,, # 0. Because {7;}22, is admissible, r always exists. Then

“z"?+f"‘1 I y” = ij+r—1- Typr—2 " ij+la Iq(mq - y)”

P.:fq+11 Iq—y(‘tq L y)”

jq+r-—l » Tgdr—2—Y

< lizg — yll <.

Let z44r-1 = z + w, where z € R(R; , ), w L R(E; ,,). From the above inequality
<€, [jw—wj, |l <e Hence

we have ||z — 2;

”y” 5 ”zl’]""r” = ”ij+r.- Tg+r—1 zﬁ"l"r—l” = llw ki ij-l»r- Tq-{-r-—l‘z”

2)H2 < (Jlwf? + 43| 2)*)V?

= (1wll* + | Pjgq..

< ((lwjpe I+ €37 + 12 (ll2), 1) + £)2)Y2.
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From this we have
|12,4. ]| € CEM?

where C is some constant which is dependent on y, ¥ and independent of ¢. This
contradicts ||z; ,,|| > o > 0 if ¢ is small enough. So we have y = 0. From lim; o {|z;|| =
|yl = 0, we know lim;_ o z; = 0.

Iteration (2.7) is a recursive procedure. Because of the chaos of P;'s, it fits only
sequential computers (including vector computers), not MIMD computers. Now we

consider the following asynchronous iteration:

Titr, = 05 Tipri—1 (1 — @) Py, 2,2 (2.10)
where P, . is defined as in (2.8), a1, -, ap € (0, 1), and {j;};2, is a regulated sequence,
i.e., there exists a T > 0 such that for any i, {1,---,p} € {j1,, JieT—1}-Ti, T =
1, 2, ---, are integers such that 1 < r; < T. Asynchronous implementetion of (2.10)
is: Assurne that we have p processors Proc(1), - - -, Proc(p) with shared memory. At
time i, Proc(j;) retrives the global approximation vector z;, which resides in shared
memory, and forms a local approximation vector P;, ., z;. If the global approximation
vecotr in the sharéd memory has been updated r; — 1 times while Proc(j;) has finished
its local approximation, then the global approximation z;4,; is formed at time 2 + r; as
in (2.10).

Theorem 2.6. Let
r € K, s < T,
B { Q;.Ly-1 T (1 = ﬂj;)Pji, 2; L1, s=1+71; > T.
If {7:}2p,, is regulated, r; 15 the smallest positive integer such tHGL i = Biv 04 E
(0, 1), =1, ---,p, and P; . is defined as in (2.10), then lim z, = 0.

: 3= OG0
Proof. Consider the vector & € CP™ partitioned into p subvectors as follows:

& = (&N <, (&)

where (&), ! = 1, -, p, are defined in the following way: before or at tiume 2,
Proc(!) finishes its last local approximation and obtains a local approximation vector.
Substituting this vector into (2. 10), we can obtain a global approximation vector, that
is (&)r- : ‘
Let ¢ > T. Because j;1,. = j;, then & = B;fi_1, where B; is a pm X pm matrix
given in block form ((Bi)s, t)} ¢=1, Where

bopl,  if 8 #jijors=gi, t#Ji, ji-1,

(I — a;)Pj, 2, fs=t=jiandji# ji_1,

(Bi)st = ; : : . :

aj, if s =45, t = ji—1 and j; # ji—1,

ajl + Ll = a.‘i'i)P'.',::i if s =1¢=73; = Ji-1
where §,, = 1if s =t or 0 if s # ¢. And z; = (£i—1);;. Next, define a norm | - | on C"™
by

€] = max [|(E)]]. -

1<i<p
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It is easy to show |£;| < |&;-1]. So {£}2, is a bounded sequence, and {£27;}$2, has
a convergent subsequence {{a71, }i2;, imi .o 210, = 1. As well known, (); € R for
1 <1< p. Suppose n # 0. Then for Ve > 0, 3T > 0, integer, for alli > I, |€ar,. — 1] < €.
Now for a fixed i > I, if we denote 2Ty; = 4, 78 = 7, Jée+1 = 77, then we have

166 —nl < &, |I{€e)t — (m)]] < €. Let
(Mi=z+w, (6) =2+ 0y
Zi, 21 € R(Rx), wy, Wy L R(R;}, 1 <L P.

Therefore
|z —zil| <&, |lwi—w]<e, 1<I<p. (2.11)

Now consider £g..1 = Bgy1€s.

1) l|(m)3ll < Inl.
Suppose ||(7);;ll = d;;|n|, where d;; < 1 is a constant independent of §. For

simplicity of notation, we denote hereafter by d all positive constants smaller than one
and independent of # and £, and by ¢ all positive constants independent of § and ¢. In
the followingpethe readers can easily distinguish these different d’s and c’s. Hence we

have
(0415511 < ejill(€o)sll + (1 — aj){€o)ssll < ajjll(me);ll + (1 — aj5)ll(ne)ssll + ¢

< ajjlnl + (1 — aj;)d|n| + ¢ < d|n} +e.

The last d depends on 7, {a;}i_,

2) 1(m);l < inl-
It is similar to the case 1), and

1(€+1)15ll < diml + ¢

where d depends on n, {a;}_,
3) (m)i;ll = [[{m);1l = Inl, but z;; # 0.

(€641 )51l = lles;(€a)i + (1 — @5} Pis (e0y,; (€6)iill
< aj{|(n) + ) + (1~ aj))l| Py, (e0);; (255 + w5
< ajjln| + (1 — ajz)llws;l| + vllz550i) + ce
< dig| + ce

where d and ¢ depend on 5, {a;}/_; and R.
4) |lng;ll = [[(m;ll = Inl, zj5 = 0, but n;; # ;.

Pii (¢0);5(88)55 = Pij, (60);;(Z5 + W35) = W5 + Py, 35, %55
From (2. 11), we have [15;;|| < €, |\;; — w;;|| < €. Hence,
1(€o+1)55ll = Neesi(€0)i + (1 — @5) Pyj. (e0),:(80)551) < Nlegz(m)s + (1 — azhw;jll + ce

< llaji(m); + (1 — a3 0(n);5ll + ce < d||n|| + ce
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where d depends on 1 and {a;}!_,, depends on 5, {x;}’_, and R.

=1
5) 155 = nj, |Inill = Inl, 25 = 0.

1(€6+1)55 = (m)isll = Nees5(€6)s + (1 ~ @) Py g0y, (€6)i5 — ()]
< ajill(e)i — ()il + (1 = ajj)l| Pjs, 55,255 + wiz — wy5]] < e.
Repeat the above steps until § + 27. Because { j,-}?;l is regulated, if the following
conditions are not valid:

)(n)i=(n); for 1 <4, 7<p; ii)(n) L R(R;) for 1 < i< p,
then

o427 < d|n| + ce (2:12)

where constants d < 1, and ¢ are independent of 8 = 2Tvy;, but depend on T. On the
other hand, if 1) and ii) hold concurrently, then (5); L R for ¢ = 1, ---,p. But this
means (n); = 0, and therefore n = 0. So (2. 12) always holds, but for n # 0 and & small
enough. So n = 0. |

In light of the above results, we have lim;_, || = 0, so lim;_, & = 0. This is

equivalent to im;%, . z; = 0.

§3. Algorithms

In this section, we propose two algorithms for solving (1.1). Partition f into the
same block form as R, i.e. R?z = f;. Define

(I — wR_}:C;lRE)z + ijC';Ifj,

Q;(z) = { . ; (3.1)
(I —wB;2R; Rj)z + wBi-R;f;

I fi — Rjz|
|1R;(f; — Bjz

2
where ﬁ;‘m i1s defined as ﬁ;,m = ( )”) ,for 3 = 1, ---, p. Then the two

algorithms are:
Block Chaotic Algorithm:

z; = Qi (1) - (3.2)

where {7;}72, is an admissible sequence, 0 < w < 1, C;+ CE -~ RER_,; is positive definite.
Block Asynchronous Algorithm:

Tivr; = QG Zigr;—1+ (1 - aj.‘)Pjhm.'zi (3.3)

where {j;}72, is a regulated sequence, 0 < a; < 1. @, »(z) is defined in (3.1). Its
paralle]l implementation is as in [1].
Theorem 3.1. If{1.1) is consistent, then for any initial vector o € C™, iteration

(3.1) and (3.4) converge to &, the unique minimum norm solution, plus the component
of 2, in N(R).

]
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Proof. Let #; = 2;— % — the component of zo in N(R). It is easy to show that (3. 2)

and (3.3) with initial vector z¢ are equivalent to (2.7) and (2. 10) with initial vector 2.
In light of Theorems 2.5 and 2.6, lim;_, ., #; = 0. So we obtain the conclusion
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