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A SHARP ESTIMATE OF A SIMPLIFIED
VISCOSITY SPLITTING SCHEME"

' Zhang Ping-wen
(Depariment of Mathematics, Peking University, Beijing, China)

Abstract

A viscosity splitting method for solving the initial boundary value problems of
the Navier-Stokes equation, introduced by Zheng and Huang, is considered. We
give an improved and sharp estimate in the space L*(0,T; (L*(2))?).

§1. Introduction

Let Q be a bpunded domain in R?. For simplicity we assume that it is a simply
connected bounded domain, and its boundary 9% is sufficiently smooth. Denote by
¢ = (21,22) a point in R?. The usual notations H*(2), W™P(l) for Sobolev spaces,
and || - ||s, || - |l for their norms are applied through out this paper. It is known that
L2(Q)) = H°(Q).

In [1] the viscosity splitting method for solving the two-dimensional initial boundary
value problem of the Navier-Stokes equation |

1
%+(u-v)u+;'{7}’=y&u+_f, zeflt>0, (1.1)
7 u=0, z€Nt>0, (1.2)
u +cO0 — 01 (13)
Uit=0 = HU(I) 1 (14)

was considered, where v = (u1,us) is the velocity, P is the pressure, the positive
constants v, p are the density and viscosity respectively, and <7 is the gradient, A =
72,7 - ug = 0,u,]ze50 = 0. The following scheme was considered: divide the interval
[0, T'] into equal subintervals with length k; then we solve ﬁk(t),ﬁk(t),uk(t),Pk(t) on
each interval [ik, (i + 1)k),i = 0,1, - - -, according to the following procedure:

First step. Solve a problem on interval [k, (Z + 1)k)

St . N

| . A+ -7 P =, 1.5

5 (. U)“L-FPV .= f (1.5)
\/ 'ﬁk e ﬂ, (1..5)
Ty, - nlzcon = 0, (1.7)
ﬁk(tk) = uk(ik - 0) (]_3)

* Received April 24, 1990.
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where n is the unit outward normal vector and u;(—0) =
Second step. Solve a problem on interval [ik, (i 4+ 1)k)

1
?;"f-!-;vl’kzvéuk, (1.9)
V Uk = 0, [1.10)
Uplzeon = 0, (1.11)
ug(ik) = (i + 1)}k - 0). (1.12)

Zheng and Huang proved that this scheme converges, and for any 0 < € < 3, the
rate of convergence is O(k%“) in the space L*=(0,T;(L%(02))?), where k is the length
of the time step. |

We now consider the same scheme and give an improved and sharp estimate. Qur
main result is the following

Theorem. If uy € (H3(R))* N (HJ(Q))?, v -uo = 0, f € L®(0,T;(H*(9))*)
NW2°(0,T; (H%(Q))z), u 1s the solution of problem (1.1) — (1.4), g, us ts the solution
of problem (1.5) — (1‘;12), 0 <8< 3/2 then

UE‘:ET“ﬁk(t)”aH < M, (1.13)
UiggT(H“(t) — uz(t)|lo, [[u(t) — Te(t)llo) < ME, (1.14)

where the constants M, M' depend only on the domain , constants v,s,T, and func-
tions f,up and u.

§2. Preliminaries

We will use the Helmholtz operator P and the Stokes operator A frequently. It is
known that

(L’(Q)*=XaG
where
X = Closure in (L*(R))? of {u € (CF(R))*; v -u = 0},
G = {vP; P € H'(Q)}

P is the orthogonal projection P : (L%(Q2))? — X, which is a bounded operator from
H*(Q))? to (H*(Q))? for any nonnegative s. A is defined as A = —PA with domain
D(A) = X n {u € (H?*(Q))? u|sq = 0} which admits the following properties:

A%~ A< Ct™, a>0,t>0, (2.1)

1 X

"""”““2'1 i ”AaﬂHD a C”“”hw Vu € D(A )1‘1 20 {2-2)
and if 0 < s < —.=.=t,nt::].-t.r.eXr‘l(H(ﬂ))2 thenueD(A:);iflgs-r{ 3/2 and
u € D(A)N (H**1(Q))?, then u € D(A )
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We first consider the linear problem. Assume f; = P(f — u-</)u) is known, where
u is the solution of (1.1)-(1.4), and u, f are sufficiently smooth. Then (1.5) becomes

Bty
Eoh (2.3)

Lemma 1. If ug € (H3(Q))? n (H (), - up = 0, f is sufficiently smooth,
u 15 the solution of problem (1.1) — (1.4) and u*,u* is the solution of problem (2.3),
(1.6) — (1.12), 0 < 5 < 3/2, then
sup (|lu(t) — u”(t)llo, f|lu(t) — w*(¢)llo) < Crk
0<t<T
where the constant C, depends only on the domain 2, constants v, s, T, functions f, up

(2.4)

and u.
Lemma 2. If up € (H3(Q))? N (HI(N))?, 7 -ug = 0, fis sufficiently smooth, u is

the solution of problem (1.1) — (1.4), and s, us, ts the solution of problem (1.5) —(1.12),
0<s<3/2 then, for0 <Lt < T,

sup [[ix(®)llass < M (2.5)

5 0<t<T

where the constant M depends only on the domain Q, constants v,3,T, functions f,ug

and u.
The above results were proved in [1].
Following the argument in [2], we prove a similar lemma.

Lemma 3. Ifv,w € (C'l(-ﬂ'))2 v = (vy,vs), then

I
4y 2 5 (vwllo < 7 A wllo. (1wl (2.6)
=1 Zi
and
je-apy: D 52 (wiw)llo < CE7H 8 wfo o]l (2.7)
=1
where
1 1 1
g>0r>0—-+—-—== >0
g r 2

Proof. Let the left hand side of (4.17)—(4.18) be a. Then

a = sup /gae_”tAPEaz Ulw)dz}.

u‘P"ﬂ"l =1

Since P is an orthogonal projection on (L*(£))?, hence

a= sup /Pcpe“”sza

lwtlo=1 i=1

w)dz}

and e V*4 is self-adjoint in the sense of

/ o - e tdr = / Y e““m(pdm Yo, € X,
{ Y.
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* Therefore

a= sup {fn "”mPf,aPZax ('U';w)da:}

”‘5"”U=1 1=1

Again by the orthogonality of P,

a= {/ "”mPtpz Az, (v,w)d:r:}

IIf.n='IIun--—1 i=1

By Green’s formula and by observing e **4 Py|sn = 0, we get

a= sup fzaz e "' APy . (viw ]dz}

[lello=1

< sup CzII-—E'”APQS'HUq||th||or||'"-’||0
lleelle=1 =1

From the imbedding theorem,

2 1
|72z Pl <He"”*"‘Psz__<CHA‘ Le=vA Pyllo < CE T |gllo

which together with (2 8) yields (2.6). The proof of (2.7) is similar.

83. Proof of the Theorem

Let u* and %" be the solutions of (2.3), (2.6)-(2.12). Then,

3(-:?'3: ﬁk) _ P(((ﬁk _ 'H-) : v)u + {ﬁk " v)(ﬁ'k s u)), 2k S Al (‘i + 1)k,

w*(ik) — tg(ik) = u*(ik — 0) — ug(ik — 0).
Since
(8 - V(W — w), & —ue) =0,

‘ .

1

we have

. o7 1% — Bllo = (P((E — u) - V) + (e - ) = w)), & = Uk )

= (((E — w) - T+ (i - VYE — ), T — ).
Using (1.13) gives

a m~ ~ =~ ot i o~ e
e l1E" = ello < Clllullg (1 — o + 18" — ullo) + Iltixll2]lu”™ — ull1)

< C(||te — &"|jo + |&* — ulf1)
and then

(@ — @)(E)llo < e M(I(hk — E)(ik)llo + k mmax, & (r) - u(r)ll

< C(||#"(ik) — (ko + k).

(2.8)

(3.1)
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Let fo = ((ur — u) - V)u + (ur - 7 ux — ©). Then

) iage .
wr(t) - w(t) = Y / e~V(t=k)A Pt () ds.
| =0 tk
Then
(‘“k —-u(t——ik]A
o) - (Ol € 5 / Pfi(s)lods
2=0) ik
(] +1)% .
+ [ |let=*IAPfy(s)|lods.
[£1k
By Lemma 3,

-1 iy ed ~
Jw(®) — wa®lo <€ 3 [ (e~ i) E(llullo,llu — el

i=0
L141)k

¥ [l e ~ ello) + j 1 fa(8)llods

&
[31-1 itk ,
Ty /k e SRR~ Bilod Bide 4 Gk

[#1-1 Grnge a4l
<c Y f (¢ — o) 1 E(l{u" — wello + k)ds + CE.

Set ¥(t) = sup ||u*(7) — ur(7)|lo. Then
O<r<t

N
' (8) - w(®)lo < € [ (£ 7) “'zp(r)da— +Ck.
0
Taking the supremum with respect to ¢, we obtain
5
¥(t) < C f (t — 7)1 Ep(r)dr + Ck.
0

The corresponding Volterra integral equation is

y(t) = C/:@ = T)_1+%y(r)d'r + Ck.

It can be checked that
B(8) < u(t), ¥(t) < Ck,

which together with (3.1) and (2.4) gives (1.14).
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