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ON THE CONVERGENCE OF A C° FINITE ELEMENT METHOD
FOR THIN PLATE BENDING"V
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{ Northwest University , Xian, China)

81. Introduction

Using the finite element method to solve Kirchhoff’s equation of thin plate bending
usually requires that the finite elements have C' continuity. This requirement causes
a rapid increase in the degrees of freedom of the elements and in the cost of the solu-
tion. Mixed, hyBrid and more general nonconforming methods are thus introduced to
attack the difficuity. Those methods, though free from the requirement and some what
convenient in calculation have some disadvantages, and so new methods are still being
searched for by engineers and scientists.

In a recent paper [1], Ortiz and Morris proposed a new method of using the c
finite elements. At each step of the method, a variational problem, which contains the
derivatives of the unknown function of only the first order, needs to be solved. But
unlike the usual mixed methods[2, 3], the method does not solve the deflection w and
moments M;; or w and Aw simultaneously. The potential energy of the bending plate
is expressed as a functional of the solutions uw; = dw/dz;, u = 1,2, in the method

o . Ou Ou _
and then the energy functional is minimized under the constraint R = T

3..":2 B 82!1

constrained extreme problem is solved by using the penalty method. It was reported
in [1] that excellent accuracy was attained in the numerical test.

The purpose of this paper is to analyse the convergence properties of Ortiz and
Morris’s method {OM method) and to estimate the error bounds of the finite element
approximation obtained by using the OM method. Also, we will study how to choose
the penalty parameter such that it matches the partition pa.ra.metér to get the optimal
accuracy.

For the convenience of our description, we outline the OM method in the following.
Assume, for the sake of simplicity, the plate is clamped at the boundary. For other
houndary conditions, we refer the readers to the original paper {1]. Suppose the plate
occupies a convex domain £ C R? with piecewise smooth boundary J§}. We are going
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to minimize the potential energy

2 2 2
2/ D|(1-v) Z‘ (am,am;,)zﬂ(zg : zmig)z]dm—qudm. (1.1)

'Ij_‘

On space H2(Q), where w(z) = z(z1,22) is the deflection, ¢ = ¢(z) is the load and
dz = dz1dz,. Set

Sw
Ox;’

i=1,2; u=(u,us).

u; =

Suppose @(z) is the solution of the following boundary value problem:

—ﬁ.g?zq, 3€ﬂ,
w = 0, z € Ofl.

(1.2)

Let n = (ny,n3) be the outward normal direction of §{}. Using Green’s formula, we

see, since w = 0 on 91},

. dp Ow Oy Ow O
—#f — — | dz — i
]ﬂqwda: ]ﬂ &(Pde ./ (331 8z, Oz, Bzg) . /n On .

B dp Jy / ‘ | |
_]( 1 32y + u amz)dm_— 8 Vedz. (1.3)

Substitute it into (1.1), and the potential energy becomes

P(u) = -;—‘/;lD[(l-—v) z (%)z—l—u(g:i | z:z)z}dm—fnu-vgodz. (1.4)

i_,j:l

The necessary and sufficient condition for the existence of a function w such that

Jw

90, = W for a given function u € V = H3(1) x H§(Q), is that u has null rotation:

3‘H2 3’111
Bu = rotu = = (. 1.5
u = rotu e, Bug 0 (1.5)

To minimize functional P(u) on space V under constraint (1.5), we use the penalty
method. Set A > 0 large enough, and then minimize

Py(u) = P(u) + %/D(Bu)zd:c

du; du; &8 du;  Buin?],
fD[ 1“”)2 (a:,) (52 - a:z)z‘”(ﬁf a:;)g]d“’

19=1

II

— /ﬂu Vedze - . (1.6)

on space V. Suppose uy = (uj1,uy2) € V is the minimum point of Py(u). Substi-
tute u, for u on the right-hand side of the following equation, and solve the problem
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obtained. We get an approximation of deflection w:

31:1 8252: (17)
w = 0, z & 0f).

Therefore, solving Kirchhoff's equation becomes solving problems (1.2), (1.6) and
(1.7) successively. Of course, we can solve these problems approximately by using any

CY finite element.

It is clear, for any given A > 0, that the solution u) of (1.6) does not necessarily sat-
isfy (1.5). Even though the real solution of (1.7) can be obtained, the solved deflection
w), (with uy on the right-hand side of equation (1.7)) is still an approximation of the
real deflection w. Actually, we can only solve these three problems approximately by
using the finite element method. Therefore, we must study whether the approximate
solutions converge to the real solution as A — oo and the partition parameter A — 0,

and estimate the error bound.

§2. The Convergence of the Peualty Method

In this section, we assume that for a given X problem (1.6) can be solved precisely
and problems (1.2), (1.7) can also be solved precisely. We will use the usual notations
for Sobolev spaces and the seminorms and norms. If the seminorms or norms are
calculated on domain 2, the subscript 2 will be omitted. The seminorms and norms

on the product space H™(Q) x H™ (1) are defined as
‘0

[ule = (Jualf + [u2l7)7, 0 < T <m;

{

full = (1), 0<ti<m

1 =(}

Notation (-, +) is used to indicate the inner product on space L?(§?) or L*(2) » L*(12),

1.e.

(u,v) = / wvdz, Yu,v e L*(Q);
0

(u,v) = ] u - vde = /(u1v1 + usvy)dz, Yu,v € EA(QY) 4 LE(8D).
1 {1

Clearly, B = 1ot is a linear operator defined on V = H}{Q) x H}{(Q). B: V" — L*(DQ).
Since, Vv € V',

a‘H'} 81}1 1/2
15t ={ [, (52 ~ 53;) %=}

(2 2 S, b, " G
{{2f azi * az;) (a;) (a;,) Jde} < Cixta, (2)

where C is a constant independent of v, B is a bounded and hence continuous operator.
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By the way, letter C will denote a generic constant and may take different values at

different places.
The bending stiffness D and Poisson ratio v are assumed to be constant, D) > 0,0 <

v < 1/2. Define a bilinear form on V:

2, 8w\ [ O Ouy  Ougy O0vi 8
a(u,v):D];]((lﬂu) Z (a:j)(az;) y(é:_i+£>(32 | 32))dm.

4g=1
Since
3 a du, B E :
o) =D [ (Go)"+ (Ga)" oG gm v (G + (G2
(2 r - . -
> 3 Jy (o) + )+ (320" (520 )ee - 5

and by the Poincaré-Friedrichs inequality
“U“U < UI'U|1~.- VU e,

we get the V-ellipticity of a(-, -}, 1.e. there exists a constant a > 0, such that
»

al|lvlli < a(u,v), YvelV. (2.2)

Obviously, a(-, ) is bounded on V, i.e. there exists a constant M independent of u and

v, such that
la{u,v)| < M|ul|l1||lv|l, Vu,veV. (2.3)

Let the null space of B be Vp, ie. Vo = N(B). The problem of minimizing P{u} on V
subject to constraint (1.5) is the same problem of minimizing P(u) on V; and hence is

equivalent to the problem:
find u € Vp, such that a(u,v) = (v,Vy), VveW. (2.4)
Vo is obviously a closed subspace of V, so (2.2) and (2.3) indicate that problem (2.4)

has a unique solution.
For any A > 0, we define a “penalized” bilinear form as

B dal o ol A ] BuBudz. (2.5)
{1

The V-ellipticity of C(-,-) is a consequence of (2.2). Since
6ug 3uq)(T8ug 8v1)‘
dz

8zy Ozo/ \Bzy Oz,

321 3$z
< CAD|u|i|vly < CAD||u|l1||v]]1,

\,\D/n,ﬁuﬁvdzf < m/ﬂ I

we see, Yu,v € V, that
[Ca(u,v)| < My||ulls|jv]|1, (2.6)

where constant M, depends on A. Minimizing Py(u) on V is equivalent to the problem:

find uy € V, such that cy(uy,v) = (v, V), Vv eV (2.7)
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Set
Vl s {'U - V; SuCh that ﬂ-('U,'ur) — Ojvu < WJ'}'

Then every v € V' can be uniquely decomposed as
o =o' 4 v“], v & Vi, i=0,1. (2.8)

We need the following
Lemma 2.1. There exists a constant 3 > 0, independent of v, such that ‘U'v € Wi,

|Builo > Bl|v]|1- (2.9)

Proof. Since B : V — L?*(Q) is a bounded linear operator defined on V, the dual
operator of B, say B’, is well defined on (L2(?)) = L?*(§1) and is also a,bounded linear
operator. If v = (v3,v3) € V, ¢ € L%(}), then

B Ovy O _ dp dy
];Bw,oda: = /ﬂ (6?::1 — amz)cpdm = ‘L ('ul o ami)dm

where partial d(ﬁ‘lva.tlves ;)cp 6’6 ? are understood as distributional derivatives. Ac-
L1 Lo
cording to the theory of Sobolev space, gw ; grp e H-1(Q) = (H}(R)). The integral
L1 £ D

on the right-hand side of the above equation is understood as the duality pairing be-
tween Hj(2) and H~1(1). Therefore

P 3(,0 3&0 - ¥ o ’ 2
Bga_(wz, azl)eﬁf (N) x H-YO) = V', Yo L}N). (2.10)

In [6], it is proved that the range of the gradient operator, grad € £{L*(Q1), (H (1)}

is a closed subspace of (H~1(Q))", which means that (when N = 2) set {(8;': ;’: ) €
1 Oz

H1(Q) x H ()¢ € Lz(ﬂ)} is closed in H~'(Q) x H~'(Q). By (2.10), we con-
clude that the range of B’, R(B’'), is a closed subspace of V'. Using the closed range
theorem!!), the range of B, R(B), is a closed subspace of L(£2). If there are two funci-
tons v and v/ € V] such that Bv = Bv’, then v — v’ € V3, and hence v = v'. So, B is
a 1-1 mapping defined on Vi onto R(B ) Then by using the open mapping thenrem[4],
B~l: R(B) — V; is also a bounded linear operator. The lemma is proved.

Now, we are in the position to prove

Theorem 2.1. Assume that {A\;} C BT and A; < A; when £ < 7,A; — oo(f — 00).
The general term of sequence {\;} s indicated by A. If u and uy are the solutions of
problems (2.4) and (2.7) respectively, then if A is large enough, we have

u — wr . < CA oo (2.11)
Proof. If v € V, decompose u, and v according to (2.8):

Uy = ug) + um v = p0 + v,
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Then
ex(uy, v) = a(ugﬂ} u&”,vm) (1) )&D];} 1:':'('u:5::IJ + uiﬂ})B('ﬂ{D} + v{)de

— a(ugﬂ}, 'U(D}) T a(uil), 'U(l}) + AD /;} Buf]Bv“}dm

= (v!% + o1, Vy). (2.12)
If v € V,, noticing Bv = 0, we see
ex(uy — u,v) = a{uy —u,v) =0, Vove W,

which shows u, —u € V5. Because of u € Vj; and the uniqueness of decomposition {2.8),

U = u{f}, Thus the component of uy in Vj is u, for any A. Hence

by (2.4). Substituting the above equality into (2.12), we get
a(u,ﬁ”v(:]) + /\Df Bu&”vadz = (', V), Vo'Vl e Wy,
| §

or, Vv € V4,

/ﬂ Bul Bude = ull) v) + (v, V).

o
Using (2.9) twice, we have

* (1)
| o Buy Bvde| 1 (v, Ve)l + |a(el",v)

(1) (1)
1 :C Bu = 51U < C_._., su
L ek o B | TR v

Green’s formula shows that, since v|g5g = 0,

d Dy

= F s dz = d
(v, V) ./;l(vl oz, Vs 3..'".;2) T L)SZ(VIHI + vanin )ods

3‘111 61:-: 31}1 31:2
- i = - | dz.
-/;I (8231 amg)(pd:c ./ﬂ (31’1 3-’32)50 ¢

Substituting the last equality into (2.13) and using (2.3), we get

1 s L 1
iy < A Yl + '3 Yles L

If X; is large enough such that C'A7' < 1/2, we see
1 3
”“E\ ]”1 = j|luy - U”l < CA 1{|‘P||u-

The theorem is proved. |

We now examine what happens when function u on the right-hand side of (1.7) is
substituted by u,. Suppose we then get a solution wy from (1.7). For &(z),n(z) €
H'(Q), set

" g on 06 On
o(&,m) = ./13 (821 Je, Oz 32:2){12' -
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Problem (1.7) is equivalent to the problem:

findw € Hy(Q), such that b(w,£) = L (z—: + %)Edﬁt VE € Hy(R2). (2.15)
Therefore,
- O(uy — ux 1) , O(uz — ua2) 1
b(w — wy, &) = /ﬂ ( b 2 Jédz, VE € HY(Q).

Then the H;(Q)-ellipticity of bilinear form b(-, ) gives

| — will? < Cb(w — wy, w — w))

_ c/; (6(u18;1u,1,1) | 3(1-528;:;,2))(1”_1”)@‘

= {c (w & wl)((ul B “A,l)ﬂl + (‘Hg - ‘H-),_,g)ﬂz)d.ﬂ
918

, /ﬂ (('U-l = ’HA,l)a(wr“ o - (u2 — uﬁiz)a(w . w}‘))dm}

» 6:1:1 3;1:2

= C’{ — /ﬂ(u —uy) - V{w — w,;)dm}

< Clju - wallollw — walls.

We have proved

Theorem 2.2. Suppose w and wy are the solutions of (1.7) corresponding to the

right hand funcitons v and uy respectively. Then
lw = walls < Cllu = uallo £ CA7|pllo. (2.16)

Remark. If an estimate of ||u — uyl|lg, which has higher convergence rate than
that of |[u — uy||1 given by (2.11), can be obtained, it is obvious that an estimate of
| — wy||; better than that of (2.16) can be obtained. The problemn remains open.

§3. The Convergence of the Finite Element Approximations

In this section, we are going to investigate the error produced by using the finite
element method to solve problems (1.2), (1.6) and (1.7) approximately. For simplicity,
let us assume that domain 2 is a polygon. As usual, make a triangulation on {2, say
T.., which satisfies the condition of quasi-uniform partition and the partition parameter
h < 1. Suppose that § }1" is the space of finite element functions (piecewise polynomials).
Let P,(K) be the set of all polynomials defined on K € T} with degrees < %k and
P, = SF|;. We always assume Py(K) C Py for some integer k > 1, Sf C C°() and
vlegg = 0, Vv € S}E. |
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If o}, is the finite element approximation of ¢, the solution of problem (1.2), in S,
from the well known results of finite element analysisl?/, we have estimate

e — enlli < ch*H 1 ollks1, 1=0,1. (3.1)

Let us then estimate the error of the approximation of u. Set V}, = S;fl x S¥' . where
ki is a positive integer not necessarily equal to k. Assume that iy, is the solution of

the problem
ityp € Vi, coa(itan,v) = (v, V), VYve V. (3.2)

Since the well known result like (3.1):
lux — @anlls < CRE Y luplly 41, 1=0,1 (3.3)

can not be used here directly, because the constant C' on the right-hand side of (3.3)
may depend on the coefficients of c¢y(:,:) and hence on A, and so may the constant

factor on the right-hand side of the ragularity inequality:

,  lluallesr < ClVollk-1 < Cllollk,

we have to make a more careful analysis.
Let us introduce the “penalized norm” in V;

1v]l(a) = (Calv,v))2, Vo e V.
Obviously, Vo, w € V,
lolltyy < Calw,v),  lealv,w)| < ol allwlleay- (3.4)

The following lemma holds:
Lemma 3.1. If XA is large enough,

lux — @anlls < CAY2 inf fluy - o], (3.5)
veEV; |

where constant C 1s independent of A and h.
Proof. As usual, if v € V},,

Jea = Banlly < [fua — vll1 + ||Jv — @anils (3.6)

By equality
caluy — ﬁ,:kh,t!) =0, Vvel

and (3.4), we see, Vv € Vj,

”’U = ﬁhh“f;} < C:'A('U — Urp, Y — ﬁkh)

= ex(v — ux,v — uxp) + ea(uy — Gan, v — ap)

< flv — wallnyllv = danll(a)- (3.7)
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Hence

lo = @xnlls < llo = @anllny < llea = vlln) = (a(ur — v,ux — v) + AD[B(us — v)|[IF)"/2

< (Mlua — v + cadljuy — v||)M? < A2 |uy - |1, (3.8)

where we have used the assumption that X is large enough such that ¢;A > M. The

lemma is proved.
If the solution of (1.2) satisfies ¢ € H" (Q), lemma 3.1 says

lux — danlls < CATV2+ A2RM) o], . (3.9)

In fact, since
fua — vll < Jlux — a1 + [ju - vl];, (3.10)

taking function v of the last inequality to be uj, the interpolant of u« in V), and using
theorem 2.1, we obtain (3.9).
Now let uy; satisfy

uy, € Vi, c;,(u,xh,v) = ('U,v(ph), Vv € Vj,. (3.11)

Calculating uyp, s our work. Since

”ﬁAh — uzli € € sup Icl(ﬁ'lh - ukhau)l < C sup ‘('U, v(@ — ﬁah))’
 veV, H“”{A}  weVy, |v]ix
< Clle — wnllo < b el (3.12)

we have |
Theorem 3.1. Assume that u and uyy are the solutions of (2.4) and (3.11) respec-

tively. Then A and ky can be chosen such that
fe = uanlls < CAEHI2 g, (3.13)

where constant C' 1s independent of A and h.
Proof. By using inequality

u — wan|lt < |lw — wxjls + ||us — @anlls + [|Esn — urells
and combining (2.11), (3.9) and (3.12), we see
e — uapli < C(AHlello + (A2 + AV2RM) 1|l + A5 Ie]lks1)-

Set A = A= (*+1) k) =k + 1. (3.13) follows.
Now, let us assume that 1, satisfies

Rty = O{uan )1 = 3(“11&)2, % i
3231 832
wyy = 0, T C 39,
and w)y is the solution of the problem:
Hupp )1 | O(uan)2
k2 g, . / AR ) Ah ko
Wiy € Sh ; (W,\h,f) A ( B, + B )Ed:a, VE € 5;.°, (3.14)
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where (-, -) i1s defmed in (2.14) and k3 .- 0 is an integer. We can easily see
”Tﬂ = TDA)'LHI i ("Hu e u;\hll”} (3.15)
where w is the solution of (1.7). It is well known that

Ny — wanlly < ¢ inf |y, — |1, (3.16)

i s
ne s <
h

Since

wan — v|[1 < ||Wan — w1 + [Jw - vlj1,
if we take v of the last inequality to be wj, the interpolant of w in .5';:"‘" , We see
[@ar, — wanlll < C(lle — urnllo + k™ [[w]|g,41).

Let k9 be chosen as

(k+ 1), when k£ + 1 is even,
(3.17)

b
b
||
b | e O]

(k+1)+%1 when &£ + 1 is odd.

We get
Theorem 3.2. If w and w); are the solutions of (1.7) and (3.14) respectively and
ko s defined in (3.17), we have estimate

Jw - wanlls < CAEF2gfl s,

where constant C s independent of A and h.
Theorem 3.1 shows that the error order of the OM method is the same as that of

the usual penalty method!®.
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