Journal of Computational Mathematics, Vol.11, No.3, 1993, 225-235.

SQUARE MATRIX PADE APPROXIMATION AND
CONVERGENCE ACCELERATION OF SEQUENCES*)

Xu Guo-liang Zhuang Gue-zhong
(Computing Center, Academic of Sincica, Beijing, China)

Abstract

This paper provides a new method for approximating matrix-valued functions—
-square Padé approximation. Some computational methods of the approximants
are given. For accelerating matrix sequences, a family of nonlinear extrapolation
formulas based on the square Padé approximation is given, a convergence acceler-
ation theorem is proved and numerical examples are presented.

#
§1. Introduction

For a given formal power series f(2) = 3.2, ¢;2*,¢; € C, let the polynomials Py(z)
and Q.(z) be of degree v and u respectively and solve the (v, u) Padé approximation

problem:
(fQ. — P )(z) = E Eizi: Qu(0) = 1,
i>vtutl

then we call P,(z)/Qu.(z) the classical Padé approximant. For a formal power series
f(z) = 3522, ¢:2* with matrix coefficients ¢; € CP*™, we can directly generalize, when
p = m, the definition of the classical Padé approximation to the matrix case (see (1],
(7). If ¢; € CP*™ is not a square matrix (p # m), but mu can be divided by p, then
we can still define matrix Padé approximant successfully (see [8]). However, in other
cases it is difficult to define matrix Padé approximant because of the trouble with
matching the number of unknowns to be determined with the number of equations
that determine the unknowns. In paper [9], different matrix Padé approximants have
heen derived. However, these definitions have a defect that all the elements of the
numerator (or denominator) don’t have the same degree. In this paper, we define a
new kind matrix Padé approximant, which can eliminate the above defect. The basic
idea is, instead of setting some coeflicients of the residual to be zero, we let them satisfy
some minimization conditions in Euclid (i.e.,Frobenius) norm. Hence, the approximant
derived in this sense is called square matrix Padé approximant. Although other norms
can be used, Euclid norm seems to be the most convenient one.
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In section 2, we first give the definition of square Padé approximant under two
normalization conditions, and then discuss its existence and uniqueness. In section 3,
we give some effective computational methods of square matrix Padé approximant by
utilizing fully the special structure of the related matrix. In section 4, we derive a set
of accelerating formulas for matrix sequences from two different square matrix Padé
approximants and obtain an accelerating convergence theorem . In the last section,
numerical examples for accelerating the convergence of vector sequences are presented.

§2. Definition, Existence and Uniqueness

List P2 = T¥uent, v € (VD pe) {SF pa;2" @ a; € CPX9}. If the
polynomial Py(z) = V0 Aiz* € HP™ and Qu(z) = T%, Biz' € HI™™ satisfy

F(Z)Qu(z) * Pu('z) = Z Ei'zir -Et' & CPme
=

and
g E;=0, i=0,1v, (5.1)
&
Y || By4illF = min, (2.2)
=1
Y ||Bi||F = min, (2.3)
1=1

under one of the following normalization conditions

B[} — I, (24)

y 8=, (2.5)

Ralps. 1/2
where || - ||F denotes the Frobenius norm, for 4 = (a;;)7'71, ||4||F = (Z Zlﬂmz) ;

i=1 j=1
we call the approximant P,(z)(Q.(2))"" the square matrix Padé appmx_iniant of F(z),
and denote it by [v,u, k).

If mu = pk, and the matrix Padé approximant [v/u] (See [8]) exists, then (2.2)
becomes E,; = 0,z = 1,2,---,k. Hence the usual matrix Padé approximant is a
special case of our square matrix Padé approximant. If & < 1, (2.2) is neglected, (2.3)
implies B; = 0 (under the condition (2.4)), thus Q.(z) = I, P,(z) = 3.¥_;¢c:2'. In the
following we will always assume & > 1. The condition (2.3) is proposed so that the
solution is unique. From (2.1), we have

Ai — Eci_jﬂj, i = 0,1,* R ) (2.6)
3=0
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here we use the convention: ¢; = 0, if 7 < 0. Hence A; can be determined if all B;’s

have been computed. From

1L
EiZZci_ij, i:v-l—l,---m-}-k, (2.7)
o=t )]
we have )
Cut1 Cy "t Cytl—u rB(] i Eu+1
Cu42 Cy41 "t Cyg2—u Bl ETH'? (2 8)
,_C'u+f.: C1:+i.:-—1 P Cn—i—k—-u_ - Bu - _Ew—i—k o

From (2.8) and (2.2)—(2.3) we know that, under the condition (2.4), B;’s are the
minimal least square solution of the following equation

3 Cy e Co+41—u 17T Bl E § Cu4-1

LCyt k=1 ' Cy4k—ud L Bu H L Cypp ke
 Under the cemdition (2.5), by setting B; = B; — B; 4, for ¢ = 0,1, ---,u — 1,

1l
B = Biron Bl = ZBJ’ for = = 1,:--,u, we have another minimal least square
J=t
problem
- - — 'f - - wm
Ac, o &ﬂu-{-lmu -81 Co+1
: = : - ﬁc,; = g1 — Gy (2.10}
B &Cv-i-k—l S &CTI-}-L‘—H ki _BL 3 L Cup ke -

Both (2.9) and (2.10) always have their unique minimal least square solutions.

§3. Computation

Equations (2.9) and (2.10) have the same form, thus we need only consider com-

puting the solution of (2.9).
3.1. Direct Computation
Lots of classical methods can be used to solve the minimal least square problem,

e.g., if we denote

G vt Cigl—j |
H(I,],k) P . y
LCithk—1 """ Ciph—j-

then the minimal least square solution of (2.9) can be expressed by
i Bl | i Cot1 ]
| = —H(v,u, k)7 ;

Bu_ —C!I‘I"k-ﬂ

o
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here H(v,u, k)" is the Moore-Penrose generalized inverse which can be computed, for
instance, by QR factorization?l: If

H(*v,u,k) s QR, Q = Crk]'}}ir1 R c Cﬂ*::-::*Hr:.n:1F Q-Q - I,
with » = rank H(v,u,k) = Rank @ = rank R, then
H(v,u, k)" = R*(RR*)"'Q".

However, since H(v,u, k) is a block Toeplitz matrix, there are some more efficient
methods for solving (2.9). At first, we discuss the method which directly solves the

normal equation

- B ] Cyt+l
H(v,u,k)H(v,u,k) | ¢ | = —H (v,u,k)| : |, (3.1)
LB, L Cotke o

here we assume H(wv, u, &) has full rank in column. Let

S(v,u, k) = (Sij):l‘jzl = H*(v,u,k)H(v,u, k) (3.2)
k
h 3 mXM which impli = d
then s;; = Z g, ,H_Ic,, i EC which implies s;; = s3;, an
$ij = 8i—14-1 1 Cup1-iCut1-j — Cophp1—iCoth+l—j- (3.3)

So s;; can be computed from s;..; ;1. Hence the elements of matrix S{v,u,k) can be
easily obtained by (3.3) when the first row {or column) has been computed.

Because S(v,u,k) has low displacement rank, the method in [3] can be used to
obtain §~1(v,u,k). In fact, for a matrix Ry = [ry;]];=; (ri; € CP*P), define the
“shift—difference” operator 8| - | as

11 *** T1N T0.0 To,N-1
S{RN]=| | =) 5 : (3.4)

 TN1 ' TNN. L ’N-10 " TN-i,N-1-

and write §[Ry] as
§[Ry]=D) D, Deeyron, ¥ R (3.5)

with ¥ being a diagonal (signature) matrix consisting of +1’s, then we can use the
generalized Levinson—Szegd algorithm(for the limit of space, we do not list it here) in
(3] to compute Rz}l, which needs approximate (a + 2)p? N? operations. This number
may be small compared to 3p® N>-the number of operations required for a conventional

matrix inversion algorithm.
From (3.3) we have

E[S(v,u,k)]_—.C*(v-»l,v—f—k—l,u—l)[% ‘}]C(u—1,u+k—1,u_1), (3.6)
-

where

e Ci-l o Ci+1—k]

€; Cj—1 ' Ci41-k

Cli,isk) = |
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Since s;; € (™%, (3.6) does not have the same form as (3.5) completely. In order to
write it in the form of (3.5), let p = am — 3, 0 < 8 < m, where both a and A are

imlegers. Denote

i €; - .. & €1 vrmv Ciyi ik
{:I — { 7 J , C(Ej‘?jk) - { F ! ? 1+
D,r’-];-::m.

’

Ci Cj-1 -+ Ciy1-k

where 04,,, is a § ¥ m null matrix, then (3.6} can be written as
8[S(v, . k)] = C* (v — 1,0+ k- 1L, u~1)diag (L,  Fny =Ty <+ * y—=Tiu)

xClv—1,v+k—1u—1). (3.7)

Now, expressions (3.7) and (3.5) have the same formn. Hence the matrix inversion

method of (3] can be utilized.
3.2. Recursive Computation
a) u and k fixed, increasing v, i.e., compute §(v + 1,u,k)"! from S(v,u, k)" !,

Because

S(v+ 1,u,k) = Sfv,u, k) + C™(v,v + k,u) [_UIP 2}] C(v,v + k,u), (3.8)
then by the She;man-Mnrri'scm formula
(A+USV*) ' = A=A~ U (WV*A T +8- 1) vat, (3.9)
we have o
S(v+1,u, k)"t = §7 (v,u, k) — D* (DC"‘('U,U + k,u) + [_OIP IO })_ID,
p

where D = C(v,v + k,u)5(v,u, k)™, here we only need to compute the inversion of a

much lower order matrix.
b) v and u fixed, increasing k, i.e., compute S(v,u,l)"* from S(v,u, k)", 1 > k.

Since

F-

c;+k il c:+t—1 i Cot+k " Cuotktl-u
S(v,u,l) = S(v,u, k) + : : : : ; (811}

&

ESTOIPINER® N | AVIPET S
we can compute S{v,u,l)” " using (3.9). Especially, when I = k£ 4 1, (3.11) turns into

- 5, .

ll:'-ul+k
S(t’: U, k o5 1) = S(vi u"_rk) + [cu-f-k ks Cu+k+1—u]

R -
by (3.9), we need only compute a p X p matrix inverse.

Note 3.1. If { < k, we can compute S(v,,1)~! similarly.

c¢) v and k fixed, increasing u, i.e., compute S(v,u’, k)~! from S(v,u, k)" (¢ > u).
Because we can obtain S(v, v, k) from S(v, u, k) by adding (v’ — «) columns to the right
and (u' — u) rows to the bottom, then the matrix bordering inversion technique can be
utilized. However, this method doesn’t make use of the special structure of 5(v,u, k). If
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S(v,u,k)”! is computed by the generalized Levinson-Szego algorithm, it will be more
efficient to continue using this algorithm (u’ — u) steps. In fact, the & — ¢h step of this
algorithm forms the parameters while computing R; ' of the nested matrices { R, Fa

§4. Application in convergence acceleration

For a given matrix sequence {sy, sy, -}, 8; € CP*7, and two integers m and I, we
shall derive the following accelerating formulas from different approaches:

MLl - 1,mm - I,l-
h’l{f* }(?’:J) = S?'rh‘j-l—i—ﬂ = '&51(1+£_:'1{&25LL ])+&S£t+_‘}—li (4.1) '

forz=1,.--, ;7 =1,---,m, where

y= —

S} ke Skirn—1
(L. ; ;
Sk ) - : : 1
LSk4l-1  Sk4wm+l-2
»
2 'I..'. I ; T 3T L-
and A = g L g ARG = pgibel gl

Note 4.1. If ¢ = 1,m = p,I = 1,2 = j = 1, formula (4.1) coincides with Henrici’s
transformationld:.
Let fi(z) = s, + 3%, As;y;-127, i=0,1,---, where As; = 5,4, —s; ,for 7 > 0.

Proposition 1. For two given integers m and I, let

e B ocv fmer 7 -
F(:) = == S{(}Lm} + Z xﬁSﬁ{:T}EJ,
Lfiev i fmei-n o

and in + 1, 1,1]7(2) = Po41(2)Q1(2) ! be the square Padé approximant of F(z) under

the condition (2.4). Then, if @,(1) is nonsingular and ASY™ is full rank in column,

we have

n+1,1,1p(1) = SIE™ — ASEMHAZGEmIYA glhm)
Proof. Now we compute {n + 1,1,1]x(1). From (2.6) and (2.7)
Ai = ASIIT + ASY B, i=0,1,-,m+ 1(ASE™ = 5 Agltm _ ),
Enen = ASYT L ASU™pB,
By = |—Agibmiyha gl
then

Q1) =1+ By = (ASF™)FASE™ — (AsE=hrAsYT = —(AsEm)ya25¢),
(4.2)
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n—1

n 41,1, 1p(1) = Puaa((Qu(1) ™ = (30 ASH™ + Y ASE™ ) (1 + Bu)*

1==1 1=—1

= (S0 4 BB, YT + B = gl g KB B, )

- 51{1!,1?1) - &ST(:,TH}(&Z‘S!E;HLJ)+&5(f,m].

Note 4.2. Obviously, hg’m}(i,j) defined in (4.1) is the (4,7)-th block of [n +

L 1:1]3(1);

An important property of (4.1) is that , if A2SE™ §

(£, m)(

is full rank in column, A" (%, 7)

doesn’t depend on 3, for j = 1,:--,m+ 1. In fact

RO™ (6,5 4 1) — BE™(4, 1) = Aspyigiz — ASST (AZSE™)FAa2sEY

- (1,m)
= ASnyjtiea — A5, ;7 €5 =0,

here e; denotes the j-th column of the unit matrix.

Proposition 2. Let f(z) = 3772, As; 127, AS_; = So, and [n + m,m,l|;(z) be
the square Padé approximant of f(z) under the condition (2.5). Then, if AZg™ s
full rank in column,

n4+m,m,l;(1) = hg*m}(l,j), =1,----m+1.

Proof. We only need to consider the case j = m + 1. Under the condition (2.5),

714171 m
[ﬂ' + m, m, I]f(]-) a Z -A == Z‘Sn—l—m idi = Spn4m Z(sﬂ;+m “ 3n+m—i)Bi
1=0 ], '
* 2] m
— Sp4m Z Z'&Sﬂ.+m j = Sn4m — Z ﬁ5ﬂ+m—i EBJ
=1 =i 15 FE=d
7]
= Snt+m — Zﬁsn—l—m—iB;-
t=1 .
It follows from (2.10) that
[n + m,m,l]f(l)
g &gﬁﬂ.—{—mnl S &231‘1 1kl i ﬁ-sﬂ.-l-m ]
— Snt+m — [ﬁ5n+m—1: s ﬁ-Sn}
-&25ﬁ+m+1~—2 e ‘ﬂzsn—H—-l . o ﬁ‘Sﬂ+m+1—1 9

AU (1, m 4 1).

)
n+m

= $ppm — ASOMIAZ gL+ A gl

Theorem 3. For a given matriz sequence {3p,81," -}, 8; € CP*? if there exist

maltrices a; € C9%9,1 = 0,---,m and a matriz s € CP*9, such that
Trl Tl
Z(sﬂ,ﬂ —s)a; = 0,Yn and Z{If_ =4y detam #F0 (4.3)
1=0 =0
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then, if &S,E'mJ has full rank in column, we have
hgﬁfﬂ}(i,j):.g’ I.:]-:-“".ll; j:11"'1m'
Proof. From (4.3), we have
3 Adnyi: = 0,

1=

which implies As,iym = — 3701 Asnyi{aian!). Then

0 0 --- 0 —aga;! ]
I, O 0 —aia;}
ASLTY - ASt™ = ASE™N (B 1) with B=| " _
% D D Iq _ﬂm—lﬂml a
From (ASy ™) ASYH™ = I, we have now
| H{L:'u] - ST(:'J”] - ASLETH}(B s I)_l
where HY™) = (h™)(, 3 it =1+ On the other hand
(B;I)_IZdiag(—Zai,—Zﬂ;i,---,— ﬂi)(l J}i_; 1
mmt—1 )
# dlﬂ-g(z ﬂ;,Zﬂn ey 8 ol g T
i=0 =0 1=0 "
where
o e fos k20 Thus we have HUm) — gllm} _ {5{5-1} = 5(1.111 5(L11] s 5“.1},
0’ k < U L) | T L n—+
e
S?{II-I_IL . S(J,l}} s [5‘{1,1]1 T S(I.l)] where S{E.l} - [’
S

which completes the proof.

£5. Numerical Examples

Matrix or vector sequences are often generated in numerical computation. Now. we
will give three examples of vector sequences and compare, according to some principle,
the effect of the given accelerating formmulas in §4 with the commonly used vector
¢—algorithm given by Wynn [6]: For a vector sequence {s,}°°,,,

(72} (n +1J (n+1) :{n})_l

TL Tt
() =0, e =, el = el (Y

where the Samelson inverse y ! of y € C? is defined by y~! = 7/ |yl)3.
Comparing Principle: The largest subscripts of the initial vector sequence used
in the computation of two compared values are the same. For instance, we compare



233

Square Matrix Padé Approximation and Convergence Acceleration of Sequetices

hg;?_)m(l’ 1) Wlth Ek"zﬂlj z — 11 2’ ———

271

m=1,2,--sk=0l4+ml+m+ 1, --;the largest
subscript used is k.

The entries in Tables 1-3 denote the numbers of significant digits SD defined by

SD = —log,,|| Exact Solution — Approximate Solution ||

Example 1. In this example, we want to find the numerical solution #(1) of the

ordinary differential equations

(%1 = 2, y1(0) = -1,
!
4 yllz = — Y1, < yE(O) = U'.-
Y3 = —¥s3, ya(0) =1 :

by the well known Euler method.
0'.! 11 el

The initial sequence is generated by taking step lengths 27% (k = -} succes-

sively. The true solution is §{(1) = (—cos(1), sin(1),e )T,

Table 1 (Example 1)

E(>0) 6 8 10 12 14 16

s, 218 278 339 3.99 4.59 5.19
R 360 4.81 601 7.22 842 9.62
e5=? 391 511 631 7.52 8.72 9.93
(1.2)

hi % 488 6.69 850 10.3 121 13.2
ev~® 486 6.64 843 10.2 120 12.7
(1.3)

hi) 570 814 106 129 112 129
es”® 500 7.55 100 125 11.1 13.1

Example 2051, Here we produce the initial vector sequence by the quadratic itera-

tion s,+1 = G(8,), where sp = (1.5,1.6,1.7,1.8)7, G(5) = b+ As + Q(s), with
'2.25 0.01 0.05 0.50° AL 2}t 22y
0.01 1.75 0.00 0.05 ~0.31 22
A= b= ; = —0.5
0.05 0.00 1.75 0.01[' 031 @) 22
L 0.50 0.0b 0.01 2.25,  —0.81 | r1Z4 + T

The sequence {s,} converges to the vector s = (1,1,1,1)7.
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Table 2 (Example 2)

k(-0) 4 6 8 10 12 14

¢ L02 1.98 151 172 198 212
i) 137 1T 200 242 272 3.4
eh=2 139 1.84 223 259 292 3.25
Rl 184 241 289 3.14 347 3.85
gh~% 441 221 265 3.15 364 4.12
ey 2.67 292 327 3.62 3.57
T 211 2.88 354 4.19 4.80
e 2.86 262 2.93 3.52
gli8 288 3.75 4.55 5.27

The initial vector sequence is produced by the quadratic iteration

sni1 = G(sn), where s, = (1.6,1.7,2.2,1.9)7, G(s) = b + As + Q(s), with

3.9
2.4
2.4

2.8

+3.7 24 —086" " —0.75" i
~-2.0 22 -06 —0.75 zs
b: :—0.25
B4 L1 -wE| o5 | 9 r
52 48 —04_ | —0.75_ £

The iteration has both (1,1,1,1)% and (3,3, 3, 3)7 as its fixed points, for the starting

point given here, the iterative sequence converges to the latter one.

Table 3 (Example 3)

K(>0) 8 10 12° 14 16 18
s, 220 2.80 340 3.99 459 5.19
RMY 173 232 290 348 4.08 4.81
eb~2 188 245 3.01 3.54 4.04 463
RMY 260 386 512 630 T7.41 848
ek-1 242 353 469 585 6.98 8.08
R®) 288 441 618 7.04 814 9.31
ek-6 232 356 510 6.97 7.78 8.87
R 247 512 606 7.13 8.24 9.36
k-8 245 362 512 6.90 7.70 9.22

Comparing our method with the powerful vector e-algorithm, we can see from these

examples that the square Padé approximation, a nonlinear method, is also an efhicient

approach in convergence acceleration of sequences and in some cases it 1s even more

powerful than vector ¢—algorithm.



Square Matrix Padé Approximation and Convergence Acceleration of Sequences 235

References

(1] D.Bessis and P.R. Graves-Morris (ed.), Topics in the theory of Padé approximants,
Inst. of Phys., Bristol, 1973, 19-44.

2] LW. Daniel, W.B. Gragg, L.Kaufman and G.W. Stewart, Reorthogonalization
and stable algorithms for updating the Gram-Schmidt QR factorization, Math.
Comp.,30 (1976), T72-795.

[3] B.Friedlander, M.Morf, T Kailath and L.Liung, New inversion formulas for matrices
classified in terms of their distance from Toeplitz matrices, Lin. Alg. Appl, 27
(1979), 31-60.

(4] H. Sadok, About Henrici’s transformation for accelerating vector sequences, J.
Comp. Appl. Math., 29 (1990), 101-110.

5] D.A. Smith, W.F.Ford and A.Sidi, Extrapolation methods for vector sequences,
SIAM Rev., 29 (1987), 199-233.

6] P. Wynn, Acceleration techniques for iterative vector and matrice problems, Math.
Comp., 16 {1962), 301-322.

[7] Xu Guo-liang,sT'he existence and uniqueness of matrix Padé Approximants, J.Comp.
Math., 8 : 1 (1990), 65-T74.

8] Xu Guo-liang and Li Jia-kai, Generalized matrix Padé Approximants, Approz. The-
ory and its Appl., 5 : 4 (1989), 47-60.

9] Xu Guo-liang and A.Bultheel, Matrix Padé Approximation: Definitions and Prop-
erties, Lin. Alg. Appl., 137/138(1990), 67-136.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg

