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CONSTRUCTION OF HIGH ORDER SYMPLECTIC
RUNGE-KUTTA METHODS*!)

Sun Geng
(Institute of Mathematics, Academia Sinica, Beijing, Chinag)

Abstract

Characterizations of symmetric and symplectic Runge-Kutta methods, which
are based on the W-transformation of Hairer and Wanner, are presented. Using
these characterizations we construct two classes of high order symplectic (symimet-
ric and algebraically stable or algebraically stable ) Runge-Kutta methods. They
mechide and extend known classes of high order implicit Runge-Kutta methods.

#

§1. Introduction

In this paper we construct high order implicit Runge-Kutta methods which are
based on certain combinations of the normalized shifted Legendre polynomials . Of
particular interest is the symplectic property of these methods as well as their order,
symmetry and stability properties. The construction of such methods heavily relies on
the following simplifying assumptions of order conditions introduced by Butcher[2]:

1
Blp] e =2, Beillls

k’
C(n): A1 = %ck, k=1(1)n,
D(C): (b A= (87 — (b)), k= 1(1)¢

where A is an s x s matrix, and b, ¢ are sx 1 vectors of weights and abscissae, respectively.
Butcher proved the following fundamental theorem:

Theorem 1.1. If the coefficients A,b,c of an RK method satisfy B(p),C(n), D({)
with p < n+ ¢+ 1 and p < 21 + 2, then the RK method is of order p.

On the other hand it will be seen that the construction also relies heavily on
the W-transformation proposed by Hairer and Wanner¢/8l, In particular , the W-
transformation facilitates more the construction of high order symplectic RK methods.
Recently!*® the research of symplectic methods is very active. The symplecticness,
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roughly speaking, is a characteristic property of geometry possessed by the solution
of Hamiltonian problems. A numerical method is called symplectic if, when applied
to Hammltonian problems, it generates numerical solutions that inherit the property of
symplecticness. Sanz-Sernal'll obtained the following result : if the coefficients of an
RK method satisfy

M =BA+ ATB — 07T =0,

where
B = diﬂg(bl, BN 163)1

then the method is symplectic. In fact , for an irreducible RK method this condition
also is necessaryl®l. Up to now it was only found out that symmetric and algebraically
stable Gauss, Lobatto III E!%3] and Lobatto III S methods are symplectic in the
class of high order RK methods. *

In Section 2 we recall the W-transformation of Hairer and Wanner and present char-
acterizations of symmetric and symplectic methods based on the W-transformation.
The properties Pf known high order RK methods are immediately obtained from these
characterizations. In Section 3 we first construct a two-parameter family of symmetric

and symplectic methods based on the combination

V2541
w0
where P,(z), P,_y(z) are the Legendre polynomials of degrees s and s — 2 respectively
, and give , with special choice of parameters, known symmetric and algebraically
stable methods and examples of these new methods for 2 and 3 stages , particularly

diagonally implicit methods for 2 and 3 ;.sta.ges. Then, we construct a one-parameter
family of symplectic and algebraically stable methods based on the combination

v2s + 1
x

V2s —1

and obtain , with special choice of the parameter , two kinds of new methods which are

called Radau I B and Radau II B respectively as new members of the Radau family.
Finally, examples of new methods for 2 and 3 stages are given.

ﬂpsﬁg(i‘!),

M(z) = P,(z)

M(z) = Py(z) + P,_1(=),

§2. Characterization of Symmetric and Symplectic Methods

Hairer and Wanner, in their study of algebraic stability of high order implicit RK
methods, introduced a generalized Vandermonde matrix W defined by

W = (Polc), Pa(c), - -, Ps_1(c)) (2.1)
where the normalized shifted Legendre polynomials are defined by

k ;
Pi(z) = vV2k+ 1) (-1)* (k) (k M 1):.:*’, B T
=0

! z
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These polynomials form an orthonormal set with respect to integration on [0, 1}, that
18,

1 : :
[ Po)P(e)de = b ki=0,1,
H

For an s-stage RK method generated by (A4, b, ¢) with distinct abscissae they considered

the transformation
X =wtBAW,

where B = diag (41,---,5,); thus the (k,I)-th element of X is given by

K = E b;Pk_l(c;)a,-jﬁ_l(cj), k. b=1l1]s
1.7=1
From the transformation matrix X they obtained a series of important results ‘which
are very useful for studying and constructing symmetric, algebraically stable and sym-
plectic methods. For example, for the Gauss method of order 2s they proved that the

transformation matrix X has a special simple form given by

» 1/!2 _'fl
&1 0 ;
X =WTBAW = o kel =: Xg, (2.2)
; 63-2 0 _Es—-l
fa—l 0
where & = : . For other known high order RK methods, the X-matrix is

2v/4k% — 1
easy to obtain and also has a similar simple form. For example, for the Lobatto IIL E

method!193] gbtained by the X-matrix is given by (2.2) with the following exception:
Xs,a—-l = _-X.u—l,.u = Eu—luw

where u = b7 P2 (¢} . In order to give the properties of high order RK methods here
we quote some results of {8].

Definition 2.1. Let n,{ be given integers between 0 and s — 1. We say that an
s X s matrizc W satisfies T(n, () for the quadrature formula (b, c) if

a) W is nonsingular, ,

b) wfj:Pj—l(ci)i t1=1,---,s, jzl:'”!ma’x(nac.)+1:

c) WIBW = (; ; ) where I 1s the (( +1) x {(( +1) identz’ty matriz ; R 15 an

arbitrary (s —{ — 1) x (s — { — 1) matriz .

Lemma 2.2. If the quadrature formula has distinct nodes ¢; and 1s of order p >
s 4 (, then W defined by (2.1) has property T(n,().

Theorem 2.3. Let W satisfy T'(n,() for the quadrature formula (b,c), then for an
RK method based on (b,c) we have, for the transformation/matrizc X = WTBAW,

a) the first n columns of X are those of Xg <= C(n),

b) the first ( rows of X are those of Xg <= D(().
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From Theorem 8.7 of [7] (see also [12,13]), we obtain another criterion for symmetry
based on the W-transformation. That theorem says that if the coefficients of an s-stage

RK method for some permutation matrix P satisfy

A+ PAPY — T

and
Pbh =5,

where e = (1,---,1)7, then the RK method is symmetric. In fact, if the abscissae of

an RK method are ordered in an increasing order, that is, there exist a permutation
matrix P whose (i,j)-th element is the Kronecker 8; ,41—, such that the conditions
above are satisfied, then, by the definition of the symmetric method and Theorem 8.2

of [7], such conditions are also necessary.

Theorem 2.4. An s-stage RK method with distinct nodes ¢; and b; £ 0 satisfying
B(p),C(n) and D({) with p > s+ { is symmetric if and only if

a) Pc = e — ¢ for the permutation matriz P,

b} the transformation matriz X of the method takes the following form

1/2 -&

3 .
X = WTBAW = 0 —g, . where v = min(7n, () (2.3)

&

B,

having the residue matriz R, whose (k,l)-th element rpy = 0 if k + [ is even. (If B is

singular the Theorem 1is still true). |
Proof. By Lemma 2.2 and Theorem 2.3 the transformation matrix X of the method

possesses the form of (2.3). If Pe = e — ¢, then by the symmetric property of Legendre
polynomials we have

PPy(c) = (-1)*Pe(c)  for k=0(1)s— L.

Let X = (PW)TBA(PW) (the technique of the proof is borrowed from [3]). It then

follows that
Xu = (-1 Xu.

On the other hand, since B(s) holds and Pc = e — ¢, we have Pb = b or PTBP = B.

Furthermore, since

i

1
b7 Py(c) = /Pk(z)dz B, B0 - )
{

then bYW = (b7 Py(c), b7 Pi(c), ...,bT P,_y(c)) = (1.,0, ...,0) = e , by condition b). We
have
A g }? = Ejgl‘&"‘.‘%r1
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t o WEBAW + WTPTBPPTAPW = (5" W)T6TW
== WI'BAW + WIBPTAPW = WTBebTW
== A4+ PTAP = b7
== A+ PAPT = EbT,

since W and [} are nonsingular.

The reverse is easy to obtain by noting that A + PAP7T = b7 and Pb = b imply
Pc=c¢-c.

Now we recall the definition [1] that an irreducible RK method is called algebraically

stable if B > 0 and
M =BA+ ATB — T > 0.

If we consider the W-transformation of Hairer and Wanner, an equivalent condition

WTBW > 0
and
WAMW = WIBAW + WTATBW — wTabTw
=X+ X7 —eel >0 (2.4)
1s obtained. I

It is easy from Theorem 2.4 and condition (2.4) ( see [8], IV. 13 for details ) to
show that an irreducible symmetric and algebraically stable method is symplectic.
Hence the s-stage Gauss, Lobatto III E and Lobatto III § methods are symplectic. The
(vauss, Lobatto III E and IIT S methods have stronger stability properties which appear
to be unnecessary for the computation of Hamiltonian problems, because an s-stage

irreducible RK method is symplectic if and only if
WIMW = X + XT — e1el = 0. | (2.5)

Combining condition (2.5) with Lemma 2.2 and Theorem 2.3. We immediately obtain

Theorem 2.5. An s-stage RK method with distinct nodes ¢; satisfying B(p),C(n)
and D(() with p > s + { is symplectic if and only if the transformation matriz X of
the method takes the following form:

1/2  —&
b ™
X = WT'BAW = L , where v = min(n, () (2.6)
3
R,
having the residue matriz R, satisfying
R,+RI=0 |, (2.7)

namely, R, is a skew-symmetric matriz.
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Therefore, the coefficients of symplectic RK methods with high order can easily be
generated by

A=WXWTB = A"B,

and all the weights b; # 0; otherwise the symplectic RK method is degenerative . Then

we obtain still further from A = A*B
Proposition 2.6. An s-stage irreducible RK methud s symplectic if and only if the
AB~

matric A = ! satisfies

A* 4 A - 6T =1,
if the method 1s symmetric, then there are still

Pb = b.

Furthermore |

A® — PAFEPT -y and

Proof. Insert A = A* B into the conditions

BA+ ATB — ! =0

and

= A4 PAPT = b7

respectively.
For the known implicit RK methods with high order { including- Radau I B and
Radau IT B which will be given in the next section), their transformation matrix X is

the same matrix as X with the exceptions given by Table 1.

Table 1
Method Kwad | Kociw | Xaa P
(auss Eoeed | 0 =
Lobatto III A| £, _qyu 0 0 —
Lobatto II1 B{ 0 —€,_1U 0 =
Lobatto III C| £, (u | ~£,_1u {21.::—1] =
Lobatto II | &,1u | —€,_1u 0 =
Lobaito III S |£, _jou|—§€._10u| O =
Radau I A Lot | —Co1 | 75 £
Radau ILA | &y | ~&1 | ooy | #
Radau I B o1 | =€, 0 -
Radau II B Eo_1 —£._1 0 -+

The properties (including symmetry , algebraic stability and symplecticness ) of
known high order implicit RK metods are immediately obtained by Theorem 2.4 and
Theorem 2.5 from Table 1 . Radau I B and Radau II B are non-symumetric, but are
algebraically stable and symplectic, and of order 2s — 1 from Table 1.,
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§3. The Construction of Symplectic RK Methods

We first construct a family of s-stage IRK methods satisfying B(2s — 2),C(s — 2)
and D(s — 2), based on the combination

V28 + laP,_g(a:) |
V28— 3

which is symmetric and symplectic, where P,(z) and P,.., are the normalized shifted
polynomials of degrees s and s — 2 respectively. If a < (s — 1)/s, then the roots of
M(z) are real , distinct and satisfy Pe = e — ¢, and the weights are determined by
B(2s — 2) (see[8] IV.5. for details). From Lemma 2.2 we can compute a matrix W.
Then by Theorem 2.3 and Theorem 2.5 we may choose the transformation matrix X

M(z) = Py(z) 1

as
W2 —&
§1 0 -
X = 2 ‘. _63—2
Eo—2 0 —€s_1u0
. » Eu—lua 0
where £ = W ek u = bTP2 (c) and ¢ € IR. Now since WIBW = diag

(,---,1,u)=Jand u # 0, hence A = WXWTB, X = J-1XJ !, where X is the
same matrix as X with the exception that

Tes—1 = —La—-1s = Eu—la-

Then the two-parameter family of IRK methods with coefficients A = WXW7TB is
symmetric (by Theorem 2.4 ), symplectic (by Theorem 2.5) and of order at least 2s —
2 (by Theorem 1.1 and Theorem 2.4). In addition, it is still algebraically stable if
WY BW > 0. Besides such results with the special choice of parameters ( a and o ) we
can obtain : |
a) a = 0 corresponding to s-stage Gauss-type method;
1) order 28 if ¢ = 1,
2) order 25 — 2 with B(2s),C(s —2) and D(s—2)ife# 1 and s > 3 ;
b) a = —1 correspoding to s-stage Lobatto-type method with order 2s — 2;
1) Lobatto III E method with B(2s — 2),C(s ~1) ,and D(s — 1) if ¢ = 1,
2) Lobatto IIT § method with B(2s — 2),C(s — 2) and D(s — 2) if ¢ # 1 and
s > 3.
Therefore, we call the family the Gauss-Lobatto method. Its members with 2 and

J stages are given by

l—a 1 1/2 - a
2 4 2
l+a 1/2+ a 1
2 2 4
1 1
2 2
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v3{(1 - 2a)

where a = - , and
t [1/2—2..r;:+(12u2 -1)mr]
1/2 - a R (i - 12&2)[1/2—(1+a;’2]u] o
1 [1/2+ 1 +0/2)a] . 4 [1/2 - (1 + o/2)d]
2 24q? 21~ Toa2 2442
[1/2 + 2a — (124% - 1)ao] 1
1/24+a e (t — 1232)[1;2+(1 + o /2)a] ror
1 1 1
2402 (- 27! 24qa2
where g = \/5(310_ . ;

¢) Particularly, with the special choice of parameters we can obtain DIRK methods
of order 2 and 4 respectively:

1/24+ a 1/2+a 0 0
1 1 1
= = - 1+ 2 —(1/2 ] 0
n i 0 5 + 2a (1/2 4 2a)
3 1
i | % 18—a | 142 —(1+4a) 1/2+a
5 5 1 + 2a —(1 4{1) 1+’2ﬂ.

asa=1/8andoc=1asa= (2242713 _1)/6 and ¢ = —(2 + 1/a).

But it 1s impossible to choose a and & such that the RK method with B(6), C(2)
and D(2) is diagonally implicit. In fact it is easily shown by satisfying the order
condition C(2) or D(2) that symplectic RK method with B(p),C(n) and D(() , when
n or { > 1, cannot be diagonally implicit. Therefore, according to what was described
in this section, order greater than 4 symplectic DIRK methods cannot be found out .

Secondly, we construct a family of s-stage IRK methods satisfying B(2s—1),C(s—1)

and D(s — 1), based on the combination

which is symplectic, where P,(z)} and P,_;(z) are the normalized shifted polynomials
of degrees s and s — 1 respectively. Now the roots of M(z) are real and distinct , but
there exist no Pc = e — c if @ # 0 . The weights are determined by B(2s —1). For
the same reasons we may choose the transformation matrix X as X = X5 . Since
p 2 2s ~ 1 by Theorem 12.7 of ([8], IV.12.), b > 0, the one-parameter family of IRK

methods with coefficients

A=WX-W'B

15 symplectic and algebraically stable, and has at least order 2s — 1. Besides such
results, with the special choice of parameter o we still obtain :
a) s-stage Gauss method of order 25 if a = 0 ;
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b) s-stage symplectic and algebraically stable IRK method of order 2s — 1 satistying
B{2s —1),C(s — 1) and D{s — 1), called Radau I Bifa =1 ;

¢) s-stage symplectic and algebraically stable IRK method of order 2s — 1 satisfying
B(2s —1)C(s—1) and D(s — 1) called Radau II B if a = —1.

Therefore, we call the family Gauss-Radau method. Furtheremore, since the sta-
bility function of RK methods depends only on the transformation matrix X (here
X = Xg and WTBW = I) and not on the underlying quadrature formula (see (8]
p.89), all s-stage Gauss-Radau methods possess an identical stability function. Its
members with 2 and 3 stages are given by

J—a-—« a— « (1/2—a/3)(a+ a)
6 da 2a
J+a—a (1/24+ a/3}(a + a) a+ o
6 Za 4a
a— a+ o
2a 2a

C1 %1 (1/2 + wiz)bs  (1/2 — wy3)bs
Cs (1/2 —~ wi3)by %2-* (1/2 — ws3)b3
Cs | (f2twnh (f2+emds 2

by by bs

where ¢y = -X; + (b - a}/10,Cy = Xo + (5 — a)/10, C3 = — X3+ (5 — a)/10 ;

- XoX3 + a(Xs — X3)/10 + (25 + 322)/300
(X3 — X1 )(X1 + X)) |

_ X1 X3+ a(X; + X3)/10 4 (25 + 3a*)/300
(X3 + X2)(X1 + X3) ‘

b,g =1- bl s bg " Wiy = (X1 + Xz)[6X1X3 - 3&(}(2 e XI)/‘5 = (3&2 - 75)f50],
Log = (Xz -4 Xa):ﬁXZX;a + 3{1(}:2 e Xg)ff) — (3&'2 ~+ 75)‘/50: g
wiz = (X; — X3)[6X1 X3 + 3a(X; + X3)/5+ (3a® + 75)/50] ;

by

b,

1 1 =+ @8 L _ i g 1., . x @
X1 — EKS SIII(E + 5), .Xz = EKS CGS(E), Xg — gK3 SIH(E = E) :
cosd = a(5 - a?)/K, sind = 5(a* 4+ 2a% + 5)}/2/K ;
1/2

K = (a® + 15a* + 75a% + 125) /~.

Its special members with 2 and 3 stages, Radan I B and Radau IT B methods, are given
by
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1 1
Yl 8 s
y, 7 3
3 24 8
I 3
4 4
) 1 -1-+/6 -1+ 6
18 36 36
6 — /6 52 + 3/6 16 + /6 472 — 217/6
10 450 72 1800
6 + /6 52 — 3+/6 472+ 2176 16 — /6
10 450 1800 72
1 16 + /6 16 — /6
9 36 36
and
1 3 1
3 8 24
g { | 7 1
8 8
3 1
4 4
4 — /6 16 — /6 328 — 167v6 -2+ 3v6
10 72 1800 450
4+ /6 328 + 1676 16 + +/6 % 3116
10 1800 72 450
; 85 -10v6 85+ 10v6 iy
180 180 18
16 — /6 16 + V6 1
36 36 9
respectively .

259

Corollary 3.1. For ¢ = 1 and a = —1, let the transformation matrix X be the

same matrix as Xg with the exception that

X.ss—l = _X.s—la = Ea—lar

a(# 0,

1) € IR,

we can obtain s-stage (s > 3) symplectic and algebraically stable IRK methods of order
28 — 3 satisfying B(2s —1),C(s — 2) and D(s — 2), called Radau-type I and IT methods

respectively .
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260 SUN GENG

References

(1] K.Burrage and J.C.Butcher, Stability criteria for implicit Runge-Kutta methods,
SIAM J. Numer. Anal., 16 (1979), 46-57.

2] J.C. Butcher, Implicit Runge-Kutta method processes, Math.Comp., 18 (1964), 59—
64 .

(3] R.P.K.Chan, On symmetric Runge-Kutta method of high order, Computing, 45
(1990), 301-309.

[4] Feng Kang, On difference schemes and symplectic geometry, Proceedings of the
1984 Eeijing Symposium on Differential Geometry and Differential Equations, Feng
Kang ed. Science Press, Beijing, 1985, 42-58.

5] Feng Kang, Differential schemes for Hamiltonian for malism and symplectic geom-
etry, J. Comput. Math., 4 (1986), 279-289.

(6] E.Hairer and G.Wanner, Algebraically stable and implementable Runge-Kutta meth-
ods of high order, SIAM J Numer. Anal., 18 (1981}, 1098-1108.

(7] E.Hairer,5.P.Norsett and G.Wanner, Solving Ordinary Differential Equations I,
Non-stift Pmble%ls, Springer-Verlag, Berlin, 1987.

8] E.Hairer and G.Wanner, Solving Ordinary Differential Equations II, Stiff and Diftferen-
tial-Algebraic Problems, Springer-Verlag, Berlin, 1991.

0] Kuang Zhi-Quan and G.Sun, On the necessary condition of canonical Rung-Kutta
methods, to appear.

110] S.P.Norsett and G.Wanner, Perturbed collocation and Rung-Kutta methods, Nu-

mer. Math., 38 (1981), 193-208.

(11] Sanz-Serna, Runge-Kutta methods for Hamiltonian systems, BIT, 28 (1988), 877-

883.

12] H.J.Stetter, Analysis of Discretization Methods for Ordinary Differential Equations,

Springer- Verlag, Berlin, Heidelberg, New York, 1973.

(13] G.Wanner, Runge-Kutta methods with expansions in even power of h, Computing,

11 (1973), 81-85.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg

