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A SIMPLIFIED VISCOSITY SPLITTING METHOD FOR
SOLVING THE INITIAL BOUNDARY VALUE PROBLEMS
OF NAVIER-STOKES EQUATION*Y
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(Department of Mathematics, Jilin University, Changchun, China)

Abstract

Based on the approximation of the linear operator semigroup, this paper
proposes a simplified viscosity splitting method for solving the initial boundary
value problems of the N-S equation. Some stability and convergence estimates
of the methd are proved. In particular, the mechanism of Chorin’s method is

explained and justified by the splitting method.

§1. Introduction

In this paper, the following initial boundary value problem of the Navier-Stokes
(N-S) equation is considered.

-g;+ (u-V)u+%Vp=p&u+f, (z,t) € 2 x [0, T), (1.1)
divu=V-u=0, (2,6)€Qx[0,T), (1.2)
u(z,t)oeon =0, te[o,T), ' (1.3)
u(2,0) = up(z), €0 (1.4)

where ) is assumed to be a simply connected and bounded domain in IR2, u =

(u!(z, t), u?(z, t))Tis the velocity, p = p(z,1) the pressure and f = (f!(x, 1), f2(z, t))T
1

the body force, constants p, v > 0 are the density and viscosity respectively. Re= -
| 24

represents Reynold’s number.
Various viscosity splitting methods have been developed for _solving the N-S

equation. A remarkable one was proposed by Chorin in 1973 (see [3]) for calculating
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viscous incompressible flows with high Reynold’s number. In terms of this method,
the nonstationary N-S equation is solved by alternatively solving the Euler equation
and the Stokes equation while the first equation by the characteristic vortex blob
method and the next one by the random walk method, and in order to fulhl the
no-slip condition u - 7==0 on the boundary 9€2, vortex sheet is introduced to modify
the solution obtained. A great deal of calculation has demonstrated that Chorin’s
method is effective for flows with high Reynold’s number. However, the theoretical
proof of convergence for Chorin’s method has not been done yet, except for the case
of pure initial value problem.

Recently, Ying Lungan has devnted several papers to the viscosity splitting
method for the N-S equation in a bounded domain (see [4], [5]). He proposed a
new viscosity splitting method of semidiscrete form with a special projection oper-
ator in it, and succeeded in proving the convergence and deriving an error estimate
for his method under the assumption that the solution of the problem is sufficiently
smooth. In [4], he gives a mathematical formulation for Chorin’s method, and based
on this formulation, he points out that “Chorin’s scheme would cause divergence”,
i.e. the approximative solution obtained from Chorin’s method does not converge
to the solution of the original N-S equation. Since satisfactory results of Chorin’s
method have been shown in practice, a further discussion on the interpretation and
the justice of Chorin’s method might be valuable.

In this paper, making use of the approximation of the linear operator semigroup,
we first present another viscosity splitting method with no projection operator like
that in Ying’s method. Then we prove the stability and convergence estimates for
this method. Finally, based on these theoretical analyses, we give a new interpreta-

tion and justification to Chorin’s method.

82. A Simplified Viscosity Splitting Method

We first recall some concepts related to the semigroup theory of the N-5 equation
in two dimensions. Note that finding the projection in step 2 of the viscosity splitting
method in [4] is equivalent to solving a boundary value problem of the biharmonic
equation, so there is some computational complexity in doing it. In order to simplify
the computation, we introduce a simplified viscosity splitting method of the N-8

equation in a bounded domain.

2.1 Definitions and Concepts Related

Define subspaces

X = the closure of {u € (CZ())% div u = 0)} in (L*(2))?,
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G ={Vgqec H(Q)}.

Then there 1s a decomposition of form
(L)) = X @ G.

Let P be the orthogonal projector: (L?(€2))? — X. Substituting P in equation

(1.1), we have

Ou
o —vAu — P{{u-Viu) + Pf, (2.1)

where A = —PA, and D(A) = X Nn{u € (H%(Q))*;u = 0 on 80Q}. It is known

(see [2]) that the operator — A generates a holomorphic semigroup in X, denoted by
— At

Rl e

For any given 0 < a < 1, as in |2], the puwer operator A% can be dehned, where
D(A*) = X N[(L* ()2, D(—-A)la, 0<a< 1.

Here D(—A)% X N (H?2(Q) N H(Q))?, and | -, ], represents the interpolation of
spaces. It is proved that

D(AGTU/2y = D(ALU24) = D(A) N (H*THQ))2, 1< s < 3/2,

and D(AY2) = X n (H} (D).

Lemma 1 (see [4]). Let u € D(A%),0 < o < 5/4. Then there exists a constant

C > 0, such that
C™H|A%[lo < [luliza < CllA%ulo.

Lemma 2 (see [2]). For any o > 0, there exists a constant C > 0, such that
HAQE_MHD LGt %, for t>0.
In particular,
le™**lo <1, for t>0.

It is well known that for any v = (v!,v?)? € X, there exists a unique function
v € H} (), called stream function, such that

1 _ % . 0¥

—_—

~ B8y - 6z

v

Let VA = (8/8y, —8/8z). Then v = (VAy)?, and the scalar function w = —VAv
is called the vorticity of the given velocity field v. They satisly

—AY = w, 'lblﬂﬂ = 0.
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2.2 Construction of the method

Assume u(?) : [0,T) — D(A) is the solution of problem (1.1)—(1.4). Let fi
P(f — (u-V)u). Then

~|I

Ou
ﬁ = —'L-"A‘H- - fl. .
Divide the interval [0,7") into n subintervals of length & = T'/n, and sef ¢;

ik,i=10,1,- -,n. By the Duhamel formula, we have

l

¢ * ¢

u(t) = e Ay(ik) 4 [ DS (g)do xR ) 4 [ fi(s)ds],
ik ik
ik <1< (i+ 1)k,

where e~ ¥(t-9)4 g approximated, by e V—#)A If we let
(i+1)k

(i + 1)k — 0) = i1 (ik) + fk fildida, (2.3)

where it (ik) = ur(ik"— 0)(= u(tk) now), and let

up((@ + 1)k — 0) = e " i, (i + 1)k - 0). (2.4)

then ui((< + 1)k — 0) is an approximation of u{{i + 1)k). Now replace the function
fiin (2.3) and (2.4) by f; = P(f — (g - V)ig). Then from (2.3) and (2.4) we can
obtain a new approximation u((i + 1)k — 0) of u((i+1)k), (2.3),(2.4) are equivalent
to the following process:

Simplified Viscosity Splitting Method. For i — 0,1,---,n, on interval
ik, ( + 1)k)

Step 1. Solve the Euler problem

T @ V)it IR = [, k<<, (2.5
V-tipg =0, @ -nlgg =0, ' (2.6)
g (ik) = ug(ik — 0), ug(—~0) = u(0). (2.7)

Step 2. Solve the Stokes problem

; _
. F =Vpi = vAug, ik <t < (i + 1)k, (2.8)
at p .

V- Uy = 0, Ut |*3Q = 0, (2.9)

ug(ik) = dp((z + 1)k - 0). (2.10)
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It is easy to see that for any t € [0, T),

Lkl Gk

ur(t) = e g + z E_”(t_ikmﬂ(s)ds. (2.11)
1=0

ik
2.3 Stability and error estimate

Consider the homogeneous Stokes equation

0

The solution u(t) = e “*4v with the initial value v € X has singularity as t — 0 in
general. For the solution u(t) to be smooth on [0, 7T), it is necessary to demand, in
addition to smoothness of v, that this initial value be compatible with the equation
and the boundary condition at 852 for ¢ = 0. When v € D(A%/ 2), we say that v is a
compatible initial value of order s of equation (2.12).

Lemma ¥ (see [6]). If v € (H*(}))? is compatible of order s with equation
(2.12), then |
le ™ 40|g1r S Ct™2||v||,, r>0,0<t<T,

- where C' = C(Q, s,r,0,T).
The following theorem is our main result of this section.

" Theorem. Letu be the solution of problem (1.1)—(1.4), &ty and u; be the solution
of (2.5)-(2.10), ug € D(A3?), and u, f be sufficiently smooth in € x 0, T],1<s<
3/2. Then for any 0 < € < 1/4, the following estimates hold for 0 <t < T,

fe(t}|s+1 < M, (2.13)
max(||u(t) — ug(t)llo, |u(t) — @r(t)[lo) < M'E¥**, (2.14)

where constants M and M depend only on Q,v,s, T, ug, u, f and ¢,
To prove this theorem, we first consider the linear problem, i.e. assume f; =

P(f - (u - V)u) to be known, where u is the solution of (1.1)-(1.4) and u, f are
sufficiently smooth. Then (2.5) becomes

Pty
5 =1 (2.15)

Lemma 4. Assume ug € D(A%2) and the solution u of (1.1)-(1.4) and f are
sufficiently smooth. Let u* and @™ be the solution of (2.15), (2.6)—(2.10). Then

[u() — u*@)llo, llu(t) — @*()lo < Cik, 0<t<T, (2:16)
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and for any 0 < £ < 1/4,
lu(t) —@* @) < Cok¥4 2, 0<t<T, (2.17)
where C, Cy depend on Q,v, T, u, f, and Cy depends on ¢ additionally.
Proof. From the assumption, we have (with I; = [t/k]) .

I —1

WHUR gl el
sty — ) = ka (e7V(t=9)A _ o~u(t-ik)Ay £ (v

—

* A k
b f e PSR

(It-|-l)k
- / eVt hkA £ (5)ds. (2.18)
t .
Because

[(em>t-4 — este=mdy £, sy
» s s—ik
< Ollpai=r/zet=94 [ c—vaddq|of| 47/2 5, (o)l
0
< C(t—s) "2k fi(s)], 0 < r < 1/2,5k < s < (i + 1)k,

ot
and f (t—s)"""/2ds < C and |le " 4|p <1, we get for 0 <t < T
: .

1 A1)k
[u®) —w@lo< Y [ 0t~ 9)7 k) fi(s)lds + Ck swp ()l
i—0 Yk 0<s<T

A
<Ck [ (t—s)"""2%s sup ||fi(s)ll, + Ck sup |fi(s)llo
0 D<a<t 0<s<T

< Ck sup | fi(s)l1/2:
0<s<T

which proves the first half of (2.6).

Since * ;
u(t) = E_"(t_‘r*kmu(ftk) -I-/ E_”(t*s)“ifl(s)ds
Tk
and t
*(t) = @* (Lk) + / Filalds,
Ik

then
- :

u(t) — @*(t) = (e "=10A _ Nu(Lk)+ [ (e77¢ 24 — D) fi(s)ds
; . Iik

+u{lk) — 4" (I:k). (2.19)
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Noticing that u € D(A), we have

t—Iik t—Iik
[(e=504 — Du(k)llo = oA [ e dqutb)]| <ve [ u(tik)ladg

< vCk sup |u(s)s.
0<s<T

By the first half of (2.16),

- lullik) — w*(LE)||lo = ||u(lik) — w* (Lik — 0)|lo < Ck sup || f1(s)|l1/2-
0<s<T

Further, from

.t
| [ (94— Di(s)dsll| <Ck sup If(s)lo,
: Ik 0 . 0<s<T

we obtaln

fu(t) — @™ (t)llo < Ck sup llu(s)fl2+ Ck sup [fi(s)llij2, for 0<t<T.
0<s<T 0<s<T

»
Thus (2.16) is proved.
Now we turn to the proof of (2.17). By (2.18) and Lemma 1,

; ; 1N Dk k—s)A (jk—ik)A
luGik - 0) =Gk =)l = 1Y [ (eGR4 — e k-BA) £y (s)d]
f) >3

i—l oG4+ 1)k _ s—ik

<CY [ [4¥2ek0A [T cmahig  s)fods
i=0 "t
JI=1 aG+)k , s—ik

< CZ ”Al—rf2e—u(3k—s)Af Al{4+rﬁ—ququ1/4—rf2f1(S)Hods
‘o Jik 0
e e . —1+4r/2 733 /4—r

<C>. | (jk — s) (s — k)" 7" f1(s)ll1/2—rds
o

1>
< Ck¥4T f (jk — 8)"1*"/2ds sup || f1()]]1/2
0 0<s<T

< CK¥4T sup | f1{s}liij2, for 0<r<1/2,5=0,1,---,n.
0<s<T

And by (2.19)
lu(t) —&* @)1 < (e ¥4 — Du(GE)I1 + ||lu(ik) — a* (k)

t .
+ / Cla e L fl(s)dsnl, jk <t < (§ + 1)k,
ik
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Since
[(e* =304 — Du(jk)l1 < Ck sup [lu(s)]ls,
0<s<T
lu(ik) — @* (k)1 = lu(ik) — w*(Gk — 0)|ly < CE¥*~ sup || fi(s)||1/2,
0<s<T
D<Lr<1/2
and
H / (=M — D) fi(s)ds| < _[ (e D4+ 1 (s)l)ds
<C [ (¢~ Ry 9| £y (6) 2 pds + O _sup [fy(o)l
Jk 0<s<T
< cft — jk)3/4-9/2 sup 1 f1(s)ll1/2 + Ck .. . f1(s)l1,
0<a<LT
forr 0<8<1/2, jk<t <Z_(j+1)k, F=0, 1~ n,
we have

lu(t) —@* ()l < Ck sup |lu(s)lls + Ck sup [|fi(s)lls + Ck¥*" sup [Ifi(s)ll1/2
0<s<T 0<s<T 0<s<T

+CK402 sup || fi(s)llija, .O<T<1/2, 0<0<1/2
0<a<T

i.e.(2.17) is valid, and the proof of Lemma 4 is completed.
Consider the Euler equation problem as follows

% + {(u - V)u + p\_r"p f, 0LtL<T, =ze(, (2.20)
dive = 0, 0<t<T, z€Q, (2.21)
U - n|yq =0, (2.22)
o1 = e, z€Q. | (2.23)

We are going to prove

Lemma 5. Let ug € D(A(‘“"'l)m), u be the solution of the above Euler equatiﬁn.
problem, 1 < s < 3/2,81 =1+ s/3. If ||ugl|s, 11 < M>, then there exists a constant

ko which depends only on Q, s, T, Mo and nlélﬂ%xT | F(8)||sy+1, such that

lu(®)lls+1 < Cslluolls; 41+ Cat, 0 <t < kg, (2.24)



A Simplified Viscosity Splitting Method for... 47

where C3 depends only on .5, T and JHax | f(s))sy41-

Proof. Substiteting —~VA in equation (2.20), we obtain

%L;- +(u-Viw=F, F=-VAf, u= (VAp)T,

~AY =w,Plog =0, w(0) = wp.

where w = —VAu is the vorticity corresponding to the velocity u, wg = —V Aug.
Since [lwolls, = |[VAug|l,, < Clluol|sy+1 < CMa, by Lemma 1 in [5] there exists

a constant kg > 0 which depends only on 9, s, T', M5, Cy and max. | £(s)]|s,+1, such
that o

lwlls < Collwoll, + Cot < CoClluglley+1 + Cot, 0 <t < k.

By the regularity of the elliptic operator,
lullst1 = | VAY[ls11 < Cllgllas2 < ellwlls < Clluolley 41+ Cat, 0 <t < ko,

where Cg, C3 depend only on Q, s, T and Jmax. N F(8)]la;+1-

Lemma 6. Let uy € D(A("”H)f?),sl = 1+58/3,1 < 5 < 3/2. If there exists a
constant My > 0, such that

lae(®lls < M, 0<t<T,
and there exist Cs3, kg > 0, such that when O-<Z k <k,
lax@lls+1 < Cslln(ik)lsy+1 + Ca(t — ik), ik <t < i+ 1)k, i=0,1,-- +y (2.25)

then when 0 < k < kg,
sup i (®)llss1 < M, B (226
0<t<T |

where M]. dEpEﬂ-dS ﬂﬂ.ly on 031 MD-_. 8, T‘.! v, ﬂ! UE:H?'{XT ”f('g)”51+1 and ||HD”31+]_-
X8

Proof. Let fi = P(f — (ix - V)iix). By (2.11),

4
tA [k] S ~u{t—ik)A §
[ue @i < Clle™ Auollogr+ 3 [ e B4, (5)],,41ds)
t=0 **
£]

T (i+1)k | T
< Clllwollorra+ 3 [ (¢ — k)~ 0402 (o)),

=0

o
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forsi—1<r<1/2,(j—1)k<t<jk,j=12,---. Since

sup [|fi(s)ll- < C sup (| F(s)ilr + lfiar(s)lIF 1)
0<s<jk 0<s< gk -

2(1—+")  ~ r!
<C sup (IF(s)]l-+ ()29 (s 127
0<a<gk
and
t
[E] (i+1)k 3k
Z f (jk — ik)_““l"r)ﬁds = / (jk — s)~UFe1—m/2¢s < C,
5 Jik 0
where (j — 1)k <t < jk,0 <r <7’ < 1/2, we have

1~—rf
lur {7k = 0)||s;+1 < C(lluo||31+1+njuf k(\lf(S)llr MU a(s)IF))
a<.7

<O+ sup [axn(s)]2y)-
0<s<3k

B}’ (225)& »

@ (®)llosr < CCOL+ sup in(s)731), sk << G+ Dk =01,
8< 3

And we have

sup [ar(t)]s+1 < 003(1+ sup ||ag(s )Il.s-l-l
0<t<T 0<s<T

Then there exists a constant M; depending only on C3, My, T, s, v, Q, sup || f(s)|s,41
D<s<T

and ||ug||s,+1 such that (2.26) is fulfiled.

Lemma 7. Let ug € DALY 5, = 1 +5/3,1 < s < 3/2, u and f be
sufficiently smooth, k < 1, max ||ax(t)||s4+1 < Ms. Then for the solution ug, ug of

0<t<T
(2.5)-(2.10), we have
e () —ur(t)|o, [|w(t)—ae(t)]lo < CykP47%  for 0<e<1/4,0<t<T (2.27)

where C4 depends only on Q,T,v,s,u, f, M3 and ¢.
Proof. Let u* and @* be the solution of (2.15), (2.6)—(2.10). Then,

oé a; ) _ P((iy — uw)Vu + (g - V) (8 —u)), k<t <(i+1)k,
W) irni, s

u*(ik) — w(ik) = @*((i + 1)k — 0) — #x((G + 1)k — 0).
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Since ((ig - V)(4* — ), @* — 4ig) = 0, we have

5 318" — W18 = (@ ) - Vu+ (- V) — ), (@° — )

= ((4g — u) - Vu + (1 - Vi(a* — u), u* — 4g).

Hence
%llﬁ* = tkllo < Clllulls/a(llx — @*lo + |[u* ~ ullo) + [lix|l2]|@* — wl|y]
< C(litg — @*llo + ||&* - ufl;)
and then
Ja*(2) — ()0 < eCEF)(Jla* (ik) — ar(ik)]lo + & max [|4"(¢) — u(t)||1),

0<t<
he* () — we(t)llo = lle™ R4 (a*((i + 1)k — 0) — @x((i + 1)k — 0)lo
o < J|#*((¢ + 1)k — 0) — @ix((3 + 1)k — 0)||o.

From the above two inequalities, we see
1%*(( + 1)k — 0) ~ @k ((i + 1)k — 0)[lo < eC*(||a*(ik — 0) — ik (ik — 0)||o

% Thd €A ; —
+k max [[@(t) —u(®)1), for i=0,1,

These together with (2.17) yield
12*(@) — @ (Bllo, Mu*(t) —ua(t)lo < Cik¥*~%, ik <t < (i+1)k,i=0,1,-

Then Lemma 7 is proved by the triangle inequality and (2.16).
he proof of the theorem. Let sy = 8,81 = 1 + 8;_ 1/3!-12 -, and H =

ﬂ(H" (2))2. Since u is assumed to be sufficiently smooth in the hypothesis, we

{=0

may assume u € H and set My = 201:%:-%1 lu(t)]|1. Determine C3 by Lemma 5, and

then determine M; by Lemma 6. Considering M; as the constant My in Lemma 5,
we use Lemma 1 once more, and adjust ko such that (2.25) is valid for the above

constant C3. Then, determine M3 according to Lemma 6 again. Set

My = max(M,, M3), | (2.28)

determine C; by Lemma 7, and reduce kg if necessary, such that

C(Cak/ W max llu(®)llz + Me)'/2 < Mo/2 (2.29)
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where C is a determined constant of the following inequality (2.30).
With these determined constants, we prove by induction that for any 0 < € <

1/4, when 0 < k < kgand 0 <t < T, ,
gk ()l < Mo, |l@x@)ilsg+1 < My, 1=0,1,---,
lu(t) — ug(®)llo, [lu(t) — ax(t)llo < Cak®e.

This is evident for 0 < t < k. Now we assume that for 0 < ¢t < jk,7 > 0, the above
conclusions are true. Then by Lemma 5, Lemma 6 and (2.28),

k()| ay_ys1 S M3, 1=1,2,---,0<t < (j+ 1)k
By Lemma 7,
lu(®) — uk(t)llo, lu(t) — dx(t)llo < Cak¥*75, 0<t < (4 + 1)k
From interpolation of norms,
e — walls < Clle — el s — il (230
Noting (2.29), we have
v — axlly < My/2, 0<t< (54 1)k,

and therefore
”ﬁk(t)lll < My, 0<t< (] : l)k.

By Lemmas 5 and 6,
”ﬁk(t)”sl_;l-l-l < Ml: [ = 112:"'105t< (.?_I_l)k

Then the argument of induction is completed.

If & > kg, then there are T/ kg steps at most, and the theorem is thus also valid.

2.4 The interpretation of Chorin’s method

Substitute —VA in equation (1.1), and let w = VAu, F = —VAf,wg = —VAuy.
We get the following form of the N-S equation

Ow

5 Tu Vwrdw + F, (2.31)
A

A e = 2.32

Qwaa d)‘ﬂﬂ an - . ( )

u = (VAy)T, | (2.33)

L

w(0) = wp(z). | (2.3-?1)
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By a construction like that in Section 2.2, we get the viscosity sphtting method
for solving the N-S equation in vorticity-stream function form: for i = 0,1,---, on

ik, (2 + 1)k).
Step 1. Solve the Euler problem

%t‘*-’_k ‘i -Vap=F  ik<t<(i+1)k, (2.35)
— Ay, = Wy, Yrlon = 0, (2.36)
ix = (VAg)T, ' (2.37)
wir(tk) = wi(ik — 0), (2.38)

where wi(—0) = wy.
Step 2. Solve the Stokes problem

»

% =vAwy, ik<t<(i+1)k, (2.39)
‘ﬁ'qybk — Wk, (240)
Oy,
e PEL o) 2.4
Yrion B Lo~ O (2.41)
up = (VAy)", (2.42)
wi(ik) = &p((z + 1)k — 0). (2.43)

The Euler problem in step 1 is relatively clear (see [1]) and can be solved ef-
fectively by a characteristic method or upwind type schemes. Step 2 is to solve a
special diffusion problem of wg, where the boundary condition is implicit, so there
are some difficulties in this step. |

Chorin solved the N-S problem (2.31)—(2.34) in a small time interval (ik, (i+1)k)
in the following steps: |

1° Solve the Euler problem (2.35)-(2.38) by characteristic vortex blob method;

2° Solve a pure initial value problem, i.e. (2.39) and (2.43), by the random walk |
method, and denote the solution obtained by &}, and define 1 by

_‘&'&k = Wk, &klﬂﬂ — D:

Then, get the corresponding velocity field @; = (VA1;)T which satisfies condition
Ug - ﬂl&ﬂ = 0 automatically.
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3° Fulfil another boundary condition

OPr

on

g, n§}
U —
0, inR?\%.

UL - TIBQ = 0, 1.€. = U,

o1l

and define

Due to the discontinuity of u; on 802, Chorin introduced a boundary vortex sheet
with line density iy - 7 to modify the solution &; of the diffusion problem (2.39) and
(2.43); the modified solution can be written as

wi(x) ='u'3k(:1:)x(m)(da:) + wi (dz), inQ

g 1, 1,
- x(z) =
| 0, inR%\Q.

where

and
wi (A) = / ay, - di, for any open set A C R”. (2.44)
ANa

In a word, Chorin’s method contains three steps in each time interval. Step 1,
solve the Euler problem (2.35)—(2.38). Step 2: solve the pure initial value problem
(2.39) and (2.43). Step 3, introduce the boundary vortex (2.44) to modify the
solution obtained in step 2. The Step 2 combined with step 3 can be considered
as a procedure of approximately solving the initial boundary value problem (2.31)~
(2.34). Based on the above interpretation and the theoretical analyses in Section
2.3 for the simplified viscosity splitting method, we believe that Chorin’s method is
a reasonable method for solving the N-S flow with high Reynold’s number.

§3. The Implementation of Simplified Splitting Method

It is identified in-previous section that Chorin’s method is a realization of the
simplified viscosity splitting method. In this section, we provide another simple and
convenient realization of this splitting method, which is alsu-presented in correspon-
dence with the vorticity-stream function formulation (2.35)—(2.43).

3.1 Method to solve the Euler problem (2.35)—(2.38)
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Consider the Euler j;)rublem
Ow

‘3?'*'(“'?)“:0’ inﬂX[U,k)
u=(VAY)T, inQx[0,k),
wlt=p = wo(x), infQ, (E)

where ) is the solution of Dirichlet’s problem
—-AY=w, n), Ylgg =0. (D)

- Let 2, = K € Q be a quadrangular partition of domain 2, K is the element, the
boundary of K is denoted by K. To define the approximation (14, ws)of {1, w),
we make use of the following finite element spaces:

H;, ¢ HA(SY) consists of piecewise bilinear functions on €,

Sa C L2(f2) counsists of piecewise constants on .

Given vorticity w € L3(f2), the corresponding stream function 1 defined by (D) is
approximated by v, € H; which satisfies

(Yh: 6n) = (@, ¢n), Vo € Hy. (Da)
In terms of up = (VAy)T, we divide 8K into two parts as follow
OK_ = {x € 8K;up n(z) <0}, inflow part
0K, = {z € 8K;up, -n(z) > 0}, outflow part
and for any given wy € Sp, we define on 8K the “upwind value” of wy

2 { the exterior limit value ofwy, on 9K _,
top =

the interior limit value of wy, on 8K,

and assume wh|sanax = 0. Then as in [7], we define the semidiscrete finite element.

approximation of the Euler problem as

3,
(ﬂ‘_, f?h) i up - nopnpds =0, for anyn, € Sy, K € Q,
At K Jox (En)

wr(0) = Mpwo(z),

where

; 1
Mpuwglo = m/[;wg(m)d:n, | K| = meas (K).
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Since div up = 0, we have f up - nds = f divupdz = 0, so that
K g

OK
f Up - ORTHAS = f up, - n{wp — wp)pds = f |[up - nlfwn|nnds
K oK - K _

where [wp]| = wp — @4, and then the first formula in (£;) can be expressed as

&uh
(ﬁ: "?h)K + LK_ |y, - ﬂ|["—*—’h]ﬂhd3 =

or -
3wh 1

3 —| = T luy, - n|jwy]|ds, for any K € Q.

Further, by using backward difference quotient (m};l) —

derivative Jwy /Ot in the above formula, a completely discrete scheme for the Euler

ng)) /k to approximate the

equation is set up, namely

w;al)\;{ = wy )10 ¥4 f |'u, nl[wh }]ds for any K € €, (3.1)

where w; )|K = wp(0)|x, u,, 0) - (VA¢(O)) and ¢£ﬂ) € Hjy, is the solution of

(quf”,?th) (1, ¢1), for any ¢y, € Hp. (3.2)
In addition, we have

uiﬂ) : = 3T¢£”), on K. (3.3)

The formulae (3.1)-(3.3) derived for (E)} can be easily changed into form that is
suitable for the Euler problem (2.35)-(2.38).

3.2 Method to solve the Stokes problem (2.39)—(2.43)
Consider the Stokes problem of form

dw Hw  Hw

T Rl : % Ff, in Q x {(nk, (n + 1)k), (3.4)

—AY = w, in 2 X (nk, (n + 1)k}, (3.5)

Y |lag = is [ 0, fort € (nk, (n + 1)k), (3.6)
dn |aq

w(z, y,nk) = wn(z,y), (3.7)

where 2 = {(z,y);0 < x < 1,0 < y < 1} and k is the step size of time as before.
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To discrete the problem (3.4)-(3.7) in space variable, we shall use the rectangular
mesh {2, with nodes: (z;,y;), ¢=0,1,.--,I,7=0,1,---,J and cells:

-Ki,j = [mi—lwmi;yj—lsyj]a 1= 112:"'1I:j :‘132!'“:'}1

where z; = z;_1 + Az, y; = y;—1 + Ay;. Let Ti_1/2 = (#ia1 T+ ) /2, Yi—-1/2 =
(¥j-1 + ¥;)}/2,then the center of cell K; J 18 (Z;_1/2, ¥j—172)- The mesh with nodes:
(ﬂ:,-_lfz,yj_lﬁ).i = 1,2,---,1,7 = 1,2,.--,J is called the dual mesh of 2, and
denoted by {2;. As an approximation of equation (3.4), we define on Q} the following
finite difference equation

(n+1) ey ) 2 (n) 2 (n) (n)
“*’:1;2,_—;—1;2 = sy T k(‘sm”i—ljz,j-uz T ‘Sy“"z'—l,fz,j-—uz) + &fi—uﬂ,jfuzv

i B o I 1= G F1 , (3.8)

where 62 and 6!2, denote difference quotient operators of second order with respect
to r and y op uniform mesh 2} respectively. As in Section 3.1, the equation (3.5)
1s approximated by finite element method: To find v, € H; such that

(Viﬁh, vth) = (wha ¢h)1 for aly f]’bh E Hh: (39)

where H, C H}(Q) consists of piecewise bilinear functions on K it =12, 1,5j=
1,2,---,J. In boundary cells, for example in K1 = [xi_1,2:0,y1/2], we have

Vr(z,y) = Yp(zi—1, 11)(1 — (@ — zi_1) /Az))y/ Ay
+on(zi, 11 )(z — 2 )y/Az; Ay,

then by the no-slip condition uy, - T = 8y, /On = 0 on the boundary, we get the
following formula for calculating the average vorticity on boundary cell K,

3. = . / uy, - Tds = L f i g
R T - Az;Ay; Jax On

= —(¥n(zi—1, 11) + ¥nlzi, 41))/2(Ay )2 (3.10)

Similar formulae can be derived for other boundary cells.
The calculation of the method can be done in the following way:
First, solve problem (3.9), while wy, in the right hand is taken as wy, (z, y);
Second, calculate the boundary vortices by formulae as (3.10);
| Third, let wfﬂ 2,5-1/2 = wn(Z;_1/2:Y;j—1/2), and use the boundary. vortices ob-

tained in the second step as the boundary values of mesh function wgf;;;‘,)jj_ 1)2? then



56 ZHENG QUAN AND HUANG MING-YOU

calculate by difference equation (3.8) the all values of w(__ll_flg —1/2 at interior nodes

of (3.
It is easy to see that the approximate vorticity in Sy, (Section 3.1), some piecewise
constant function, can be identified with a mesh function defined on the dual mesh
» (Section 32) And the approximate stream function 1, € Hj, as piecewise
bilinear functior, can be identified with a mesh function defined on 2. Therefore,

the Fuler problem (2.35)-(2.38) and the Stokes problem (2.39)-(2.43) are solved
with the same mesh.
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