Journal of Computational Mathematics, Vol.10, No.1, 1992, 93-97.
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Abstract

In this paper we give some necessary conditions for the solubility of addi-
tive inverse eigenvalue problems, multiplicative inverse eigenvalue problems and
general inverse eigenvalue problems.

§1. Introduction

In this paper we shall consider the following inverse eigenvalue problems (see [1],
[2]). |
Problem A (Additive inverse eigenvalue problem). Given an n x n Hermitian

matriz A = [a;;], and n real numbers Ay, ..., Ay, find a real n x n diagonal matriz
D = diag(cy, ..., cn) such that the matrizc A+ D has eigenvalues Ay, ..., A\,.

Problem M (Multiplicative inverse eigenvalue problem). Given an nxn positive
definite Hermitian matrix A = |a;;], and n positive real numbers Ay, ..., A,, find &n
n X n positive definite diagonal matrix D = (ey, ..., ¢, ) such that the matrix DA has

eigenvalues Aq, ..., A,.

Problem G (General inverse eigenvalue problem). Given n+ 1 complez n X n
Hermitian matrices Ag, A1, ..., A, and n real numbers Ay, ..., A,, find n real numbers

L
Cly ..., Cn, Such that the matriz A(c) = Ag + Z cxAp has eigenvalues A, ..., Ay,.
k=1
A number of sufficient conditions for these problems to have a solution have heen
discovered (see [1], [3] ), but, to our knowledge, only one necessary condition is known
and 1t applies only to Problem A. In the present note we shall give another necessary
condition for the solubility of Problem A, which is equivalent to the condition in [4],

but the form and the proof of this necessary condition is apparently simple and
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concise. Then we shall give some necessary conditions for the solubility of Problem

M and Problem G.

Notation and Definitions. Throughout this paper we use the following nota-
tion. @™ is the set of all mx{ complex matrices. €™ is the set of all m-dimensional
complex column vectors. The norm || ||r stands for Frobenious norm of a matrix.

The superscripts T and H are for transpose and conjugate transpose, respectively.
I is the n x n identity matrix, and e; is the ith column of I. &;; is the Kronecker

delta.
Let & and n be integers, 1 < k < n. We use Gk, to denote the set of all

increasing sequences of integers,
= (jl'.lj?!'”}jk) with 1 <1 <je<--<gpsn

For arbitrary ®* = (ji1,...,Jk) € Gin and A = [a;;] € C™*", we use A(n) to
denote the k X k principal submatrix of A whose (3,1) entry is a;,;, (4,1 = 1,2,---,n),
tr(A) to denote the trace of A, and AT to denote the Moore-Penrose generalized
inverse matrix of A, And we define

A = A — diag(a11,"-*, nn).

Without loss of generality we can suppose that a;; = 0,7 =1,2,---,n, in Problem
Aa;=1,1=1,2,---,n, in Problem M, and ag‘:) = 6;x,k,1=1,2,---,n, in Problem
G, and suppose that Ay > Ay > --- > A, in the three problems.

§2. Main Results

Theorem 1. The neceémry conditions for the solubility of Problem M 1s

S (= Ajne)? 2 Mkmax {[AQ(m)|F |x € G}y 2<k<n (21)
1<i<j<k
Theorem 2. The necessary conditions for the solubility of Problem G 13

S i A 2 kmax {|A0(m) + Y m(@AT @l |7 € Gunl,

1<i<j<k , i=1
2<k<n, (2.2)
T 1) am@)T = (S,
tr(A0 (1) AP (r) - (A0 (1) AR (7))
S{x) = 5 é , (2.3)
tr(AD (AP (1) - tr(AD (1) A (7))

b(r) = (—tr(A0 (M) AP (1)), - - -, ~tr (AP (m) AP (m)T.
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Letfing Ap = Eke{, k =1,2,-:--,n, in Theorem 2, we immediately obtain the
necessary conditions for the solubility of Problem A as follows.
Corollary 1. The necessary conditions for the solubility of Problem A is
> i Xpn)? Zkmax{A(M)I} T €Gin), 2<k<n  (24)
1<i<i<k
Remark. Corollary 1 is equivalent to Theorem 2 of [4].

$3. Proofs of Theorem 1 and Theorem 2

The proofs of Theorem 1 and Theorem 2 will be based on the following lemma.

Lemma 1. Let B = [b;;] be a k x k Hermitian mairiz, and its etgenvalues be
p1 2> - 2> pug. Then |

D (pi—py)? 2 k| BO3. | (3.1)
1<1<3<k

Proof. Singe

k k
D ui=tr(B?) = |BO|Z + 382 > | B + — (Z i)
=1 $==1 1=1

we have

Now we prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Suppose that Problem M has a solution D) = (c1,¢2, - ¢cn),
gy 20,42 1,2, e m, a,nd = (71, ,}k) € Ggp, 18 arbltrary Let pg > -+ > uyg

be mgenvalues of [D(ﬂ')]ﬁA(ﬂ')[D(ﬂr)] Because DEADZ is s1m11ar to DA and

D(m )]2A(W)[D(?r)]2 1s a k X k principal submatrix of D2 AD2 by Lemma 1 and
we]l—knﬂwn interlacing inequalities for the eigenvalues of a Hermltlan matrix, we

obtain
S (i — )2 > K|[D(x)]2 AO () D(x)| 2|2 (3.2)

1<i<s<k
and
’\i > Hi = '}"i—}—n—k:: = ]-:l 2: e k. (33)

It follows from (3.3) that
Ap— Agavi B s — g > 10, l<i< i<k (3.4}

— A— remnagp
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Combining with (3.2) we get

T (= Ajni)? 2 KI[D(0)]2 AO@)DIZ[3. (3.5)
1<i<j<k

By the min-max theorem of Hermitian matrices, we get
C; 2> Ay >0 g 1,25+, 8, (3.6)

Let A () = [b;;]. It follows from (3.6 ) that
1 it k k
IDEZAQ@DENZ] = 3 e lbul® = A D 1bul* = X214V @)%

il=1 il=1
Combining with (3.5) we get
3 h—Agma)? = ANAO ()% (3.7)
1<i<j<k
Noting that 7 € Gy, is arbitrary, we get (2.1) from (3.7) at once. The proof of
Theorem 1 is completed. |

Proof of Thgafﬁn 2. Suppose that c1,---e, is a solution of Problem G, and
7 = (j1,"*,Jk) € G, is arbitrary. As in the proof ot (3.5), we have

Y = Ajani)? 2 KA (1) + Y Al ()3 (3.8)

1<i<i<k i=1
Now we define

(A,B) = tr(AB) A,Be 08X

It is easy to prove that {.,.} is an inner product on C*** and that norm || |F is
derived from this inner product.

We consider AEG)(w),i —1,2,---,7n, as n+ 1 points in (€*** (.,-)). By the
well-known property of the inner prnduct space, we know that there exists x 0) —
(:t:(lo), (D))T € €™ such that

) + 3040, =i,

A+ m,-Ag‘”(ﬂ)HF (3.9)
i=1
and z(0) satisfies (3.9) if and only if

(AP (), AP (m) + 3 P AV (m)) =0 for j=1,2,-,n,
| i=1
that 1s

S 2 Otr(A0 (1) A0 (r)) = —tr (A (1) AP (7)) for j=1,2,---,n.  (3.10)

(3.10) can be written as
S(m)z(® = b(x) - (3.11)
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where S(m) and b(n) are defined by (2.3).

Since S(n) is positive semidefinite, there exists a unitary matrix U such that
S(m) =U"3U
where ¥ = diag (01,02, ", 0m,0,---,0), 0y > 0,i=1,2,---,m. Let y = (y1, -+,
Y )T = Uz® and d = (dy,---,dn)T = Ub(w). Then (3.11) is equivalent to
2y = d. (3.12)
Since (3.12) must have a solution, it follows from (3.12) that
d; =) t=m-+1,---,n.

Therefore, if we set

0, m+1<i<n,

then y(o) = (yf,ﬁ), e ,yLO))T is a solution of system '(3.12).

Now let z(x) = UPy9, that is z(x) = [S(x)]'6(x). Then z(r) satisfies (3.11).
Hence z(n) satisfies (3.9). Note that # € G, is arbitrary. Combining with (3.8),
we obtain (2.2) at once. The proof of Theorem 2 is completed.
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