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ALGORITHMS FOR INVERSE EIGENVALUE PROBLEMS*Y

Li Ren-cang -
(Computing Cenler, Academia Sinica, Beiping, China)

Abstract

Two new algorithms based on.QR decompositions (QRDs) (with column
pivoting) are proposed for solving inverse eigenvalue problems, and under some
non-singularity assumptions they are both locally quadratically convergent.

Several numerical tests are presented to illustrate their convergence behav-
10T .

’ 81, Introduction

Inverse eigenvalue problems arise often in applied mathematics (see [1], §1),
and they are treated by many mathematicians. Let A be a fixed n X n (complex)
valued matrix. The most common inverse eigenvalie problems are the following two
problems proposed by Downing and Householder [11]:

(i) Find a diagonal complex valued matrix D) such that the spectrum of A4 D
is a given set A” = (A],--,An) .

(ii) Find a diagonal complex valued matrix D such that the spectrum of AD is
a given set A* = (A, -+,A})- |

The first problem is called the inverse additive eigenvalue problem, and the second
one the multiplicative eigenvalue problem. Often in practical applications, A, D and
A* in the above two problems are real. 7

Notation. We shall use C™*™ (IR™*") for the m by n complex (real) matrix
set, C™ = C™*! (IR™ = IR™*'), € = C! (IR = IR"); U, C C™**" denotes the n by

n unitary matrix set. T (") is the n by n unit ma.trix,-e_(i“) the jth column of 1 () and

I}“) = (eiﬂ), ces ,egﬂ')). When no confusion arises, these supel_*sc_ripts__(n) are usually
omitted. AH, AT denote the conjugate transpose and transpose respectively, and
|Al|z the spectral norm of A. | .
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For convenience, in this paper we generalize the statement of the above two

inverse problems as 5 -
Problem G. Let A(¢) € €™*" be a differentiable matrix-valued function of
¢ € €™. Find a point ¢* € €©" such that the spectrum of matrix A(c") is a given set
X = (Kf, 000, A0).
Here, the differentiability of A(c) € C"*" with respect to ¢ means, for any
¢ e €, we have |

Q= A+ Y oA - telle= O ()

i=1 =)
where
= (e, yea)Ty @ = (e, N, (1.2)
'—q-A(c) = ( —?—ak-(c)) € G'J"-‘s‘“ for A(c) = (axj(c))
- 0¢; de; -_ :
and

T 1
' i 02 \ 2
#llc — 92 = (Zlﬂi—ca |2) : - (1.3)
i i=1

As to the solvability, and some numerical methods of inverse additive, multipiica.—
tive eigenvalue problems, we refer the readers to, €.g. (7], [1)-[3] and other related
references therein. The aim of this paper is to propose two new methods to solve
Problem G and to analyze their convergence behavior under appropriate hypotheses.
Throughout this paper we assume the given set A* satisfies

AT #EA for i#7, (1.4)

and Problem G itself is solvable.

The rest of this paper is organized as follows: In §2 we cite some necessary
differentiability theorems proved in [12]. In §3 we first discuss some formulations of
numerical methods. Then we give our algorithms and their convergence analysis.
Finally in §4 we present several numerical tests to illustrate their behavior.

-§2'. QR Deéom.position (QRD) and Differentiability

LetA(c) € C™*". The QRDs with column pivoting (see [9, pp.163-167]) of A(c)
can be read as | |

A7) = QORC),QQ) €U, (21)

where w(c)-€ C"*" is a permutation matrix and R(c) € C**" an upper triangular
matrix. The following theorem was obtained in [12], and it is the basis of this paper.
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Theorem 2.1. Let A{c) € C"*" be a mairiz-valued function i::rfc"E C", n €
C"*" g permutation malriz and ) € €™, Assume that the first n—1 column vectors
of A(c®)x are linearly independent, and A(c(u})w = QoRo s sts any QRD. If A(c)
is differentiable at ¢(9 (refer to (1.1)), then there ezists a neighborhood B(®H) c ¢
of ¢\® such that we have QRDs of A(c)w

Alc)xr = Q(c)R(c) for c€ B(c%) (2 2)

satisfying Q(c®) = Qo and R(c®) = Ry, and that the diagonal elements of R(c)
are differentiable at ¢%),

Tnnlc) = e;{'R(c)en = 'efRoen +) [en

=1

. _ETQG dc; A(C)
Fo(lle = ), - 23)

where ¢, c© are pf forms (1.2). Moreover, if A(c(f")) is second order differentiable
or weakly normal, the last term o(||lc — ¢©j|2) in the ezpansion (1.1) of A(c) can
be replaced by O(]jc — c(°)||2) and the last term in (2.3) can also be improved as
O(Jle = I3).

The original form of Theorem 2.1 in [12] is shghtly different from that given here.
The difference lies in that the arbitrary choice of a QRD of A(c!®)x is explicitly
state here, but is implied in the proof of Theorem 2.1 in [12], and we must bear in
mind that QRDs (2.2) vary with this initial QRD.

§3. Formulatioﬁs of Numerical Methods and Algorithms

Once again, we emphasize that the hypothesis (1.4) is always satisfied in this
paper. | -

3.1. Formulations of Numerical Methods. So far, the existing algo-
rithms which are locally qua.di'a;tica.lly convergent (under appropriate conditions)
are obtained by first constructing a nonlinear system and then applying the Newton
method to it. Practical applications have shown that solving general inverse eigen-
value problems such as Problem G in such a way is feas1ble ‘The following are the
two formulations of the problems |

» Formulation 1. Suppose A(c) € G""““is real symme{ﬁc'ﬂr Hermitian, and
-~ arrange its n eigenvalues in ascending order Aj(¢) < -+ < An(c). Solve the nonlinear
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sysiem
Ai(c) = A

: f((‘.') = - 01 (31)
An(€) — AL |
where we assume A] < -+ < Aj.

Formulation I1. Solve the nonlinear system
det( A(c) — ATT}\
doy=| = 0. (3.2)

det( A(e) — ALT) |
The first formulation is the most natural one and has been used in [11} in the case of
the additive eigenvalue problems (for details on this formulation, see [1], [10]). The
second formulation has been proposed in [4]. Recently Yel®! proposed two algorithms,
which are proved to be linearly convergent, to solve _invefse additive, multiplicative
eigenvalue problems for real symmetric (Hermitian) matrices.

In this paper, we shall propose a class of algorithis based on QRDs (with col-
umn pivoting). The oeiginal idea of these algorithms comes from Kublanovskaya’s
approach [13] for s:’:':lving nonlinear eigenvalue problems. We remark here that non-
linear eigenvalue problems may be regarded as a special kind of inverse eigenvalue
problems since finding a A € € such that det B()) = 0 for B(A) € C"*" may be
thought of as finding a A € € such that zero is an eigenvalue of B(A). In such
inverse problems the specified eigenvalue(s) is zero. |

" Now, we are in a position to give our formulation of the equivalent nonlinear
system to Problem G. Compute QRDs (with column pivoting) of A(c) — A7/ (2 =
1,-++,71)

(A(c) = X;Dmi(c) = Qi(c)Ri(e), 1= 1,--,7, (3.3)
and assume p'ermuta.tioﬁ'ma;ti"iceé ri(c) € C**" are constant matrices in a suffi-
ciently small neighborhood of ¢ for each i. From Theorem 2.1, we can see that n
rrosr Sonat Rt Y |
: el Ri(c)en, i=1,---,n (3.4)

are differentiable at ¢ € C". If‘c.,blutmi' pivoting is performed, then we have
T R)er] > [eFRie)eal 2 -+ 2 |G R(CJeal, i=Lyeomsmy  (359)
or other metﬁods are used such that - |
| TR(Qe] 2 | R(Yeal, G=1,m=L (35b)

Therefore the spectrum of A(c) is A%, if a.nldl only if . o ..
CIR.(C)E“ —_— Bi' ‘i e 1, e, 0. P bRl . o (3.6]
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Hence we introduce

Formulation III. Solve the nonlinear system
el Ri(c)en

h(c) = : = 0. | (3.7)

el Ro(c)ey, | |

It is worth mentioning that because of the non-uniqueness of QRDs k(¢) is not

uniquely determined for any ¢. However we remark that such “flexibility” does not
affect the effectiveness of our algorithms; and this is our main concern (refer to

Lemma 3.2 below).

3.2. Algorithms. The following-algorithm follows straightforwardly from The-
orem 2.1, Formulation IIT and the Newton method.

Algorithm 3.1. Find a solution ¢* € C" to the solvable Problem G.
a) Give an initial approximation c('“) of c*

b) Compute
60) = ALY — NT. imleeem: Al =9 i i
B = Afc ’) I, i=1,-,mn,; A= Bc;,A(c) i k=1,---,n.
¢) Compute QRDs with column pivoting of B4} (i = 1,---,n)
: (ill’) R(' ""')
(10) (i) — Hiw) pliw) (40} — 1
BWWigtd) = QAW RWEL RV = ( , rs:,’.,"))

d) Compute for :,k=1,---,n

A g g : s o A=1 7,
J‘(:] e ETQ{i,F}HAgk:“)ﬂ.(hF]en : e EE@(I,H)HAi":”)ﬂ.{:,u]Iﬂ_IR{?l’) Rgti; )}

and let J&) = (1),

e) Solve linear systems J ) (et —¢l*)) = —b(*), where b} = (rg.’,"), i) W
e C". |

f) If the needed accuracy is attaind, stop; otherwise go to b).

Now we give a rough estimation of the computational requirements of Algorithm
3.1. Since in all Newton type algorithms for solving Problem G, Steps b} and e) are
indispensible, our estimation does not include the computational requirements for
Steps b) and e). Assume that A(c) is dense. It is well-known that the QRDs. ob-

tained by using Householder transformations for each B(""') require approximately

| zn multlphcatmns (see [9]) where QU] is stored in fator forms. Therefore Step

3

c) requlres approximately -g-n multlphca,tmns For Step d), one can eamly ver-
. ify that it requires appraxlma.tely n? multiplications. Thus Algonthm 3.1 requires
approximately -gn“ multiplications per iteration.

_‘ -
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- Carefully examining Algorithm 3.1, we may find that in Step ¢) n QRDs with
column pivoting are performed independently. Since for fixed v matrices BU#). differ
from each other only by a unit matrix multiplied by scalars. It is natural to ask
whether we can reduce the computational requirements in Step c¢) by using some

special ad hoc technique. In the following we shall show this is possible when E‘%A(C)

is sparse. ~ |
Firstly, let’s show how to obtain a QRD of a Hessenberg matrix A = (a;;) € €™
(a;; =0, for j < i+ 1)
| Ar = R, | (3.8)

such that inequality (3.5b) is satisfied, and moreover it requires approximately 4n*

multiplications.

Suppose A is a Hessenberg matrix. We first find n—1 Givens rotations G(1,2),-- -,
G(n —1,7n), such that QA =G(n—-1,n)- G(1,2)A = R, is an upper triangular
matrix, where Givens rotation G(t,7) is defined as

i 3
. ! l
i
1
gt C 3
1
G(i,j) = , I+ 1sl? = 1.
1 :
] ¢

J— -5

It is easy to verify that

where

I
,_ = TREFWE. VP +RET _
Now determine the smallest diagonal element (with respect to its modulus) of Ry =
(r). Assume that |rj,’| < PO, forigli=1+ nll=nletr=1Q=0C
and R = Ry. Thus we get A =QH which satisfies (3.5b). Otherwise let

T = (El,-"- »Cl—1,Cl415" " -,eﬂ;e}) c 15 8 (3.9)_. ;

]
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It follows that

W Al A e R
"'51}1 -1 "ﬂ)l 29 rl(il-)ln .,.‘(i]“
Q{fA:r=R11r = | | ri(}-)l-l "'1(:3 "1(})
_"I(l)uﬂ : 0
"Ellﬁ
r,(,,l,z 0

Now as before, we choose n —{ Givens rotations G(,1+1),---,G(n—1,n) such that

QHQH Ar = G(n-1,n)---G(I,1 + 1)@ Ar
— G(n—1,n)---G(l,l + 1)Ryx = R (3.10)

is an upper triangular matrix. Tt is easily verified that (£ = (Tii))

’ = i), 1<i<i-1,
T ZTE:.)li+1: {<i1<n-1,
51*},1), t=1n

‘Therefore leI Ren] = |Tan]| £ Ie;‘-"Rejl,fdrj =1,---,n—1, which is just (35b) Hence
Q = Q,1Qz, and x and R as shown by (3.9), (3.10) respectively meet our needs.

Algorithm 3.2. Find a solution ¢* € C" to the solvable Problem G.
a) Give an initial approximation c(® of c*.
b) Compute

BG#) = A(cP)) = AL, i=1,---,m,

7,
Alc . k= Ly gm
30}; ()¢=C{"}

k.#) .
AL o

" ¢) Find factorizations U{”)HA(c("))U(”) = HW yW € U,, where H®) are
Hessenberg matrices, and compute Btw) = g — X*I(1"< i < n) which are
also Hessenberg matrices. Use the techniques described above to give QRDs of
BG#) (i=1,-.-,n) : |

(¢.0)

0 Tnn

gt} (sw) - Q(i,v) R(i*-"'_), Rpliv) = ( 11 2 ) |
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d) Compute for s,k =1, -, 7,

and let J) = UE:)) |

e) Solve linear systems JW) (v H1) —c¥h = —p(¥), where_b{“’) = (rg{”), s, r,(;:{"))T
e C".

f) If the needed accuracy is attaind, stop; otherwise go to b).

As to the computational requirements of Algorithm 3.2 we note that Step c) re-
quires approximately O(n®) multiplications and Step d) requires approximately nt
multiplications. Thus generally Algorithm 3.2 is cheaper than Algorithm 3.1. On
the other hand, if Ag""] is sufficiently sparse (e.g. for inverse additive, multiplica-
tive eigenvalue problems), Step d) in Algorithm 3.2 requires approximately only
O(n®) multiplications. At this time Algorithm 3.2 requires approximately O(n®)
multiplications per iteration while Algorithm 3.1 requires O(n*) multiplications.

It seems that generally the convergence domain of Algorithm 3.2 is smaller than
that of Algorithm 3.1x A’heuristic interpretation is that QRDs with column pivoting
often reveal singularity of a matrix better than those without column pivating. Our
numerical examples in §4 also confirm such observation.

3.3. Convergence Analysis. We study first the locally quadratic convergence
of Algorithm 3.1.

Lemma 3.1.12 Suppose the first n — 1 column vectors of matriz C € C™*" are
linearly independent, and C = QiR = Q2R are two QRDs. Then there exrists a
diagonal matriz D € Uy, such that @y = Q2D and R, = DHR,.

Although the QRDs of a given matrix are not unique (neither are matrix J (v)
and vector b} for fixed v in Algorithm 3.1), we have |

Lemma 3.2. In Algorithm 3.1, for any fixed v suppose
B(i,u)w(i,ﬂ] 2 Qii,u)RF.u}J - 1’2 (3'11)

are two (different) QRDs of pGwgliv) (i =1,..-,n), and denote by Ji(""} and bf"')
the two matrices and two vectors obtained by Step d) of Algorithm 3.1 corresponding
io (3.11). Then there exisis a diagonal matriz D € Uy, such that -

JW =pi, =D& (3.12a)

If morever JI(") is invertible, then

JOTH = g8, (3.12b)
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The proof of Lemma 3.2 is a combination of Lemma 3.1 and Step d) in Algorithm
3.1. (8.12a) characterizes the variations of J () and ) with QRDs, and (3.12b)
says that given an approximation ¢ of ¢°, the lmpmved approximation & obtained
by performing one iteration of Algorithm 3.1 is independent of QRDs.

Lemma 3.3.12. Suppose the first n — 1 column vectors of matriz U € L,
are linearly independent, and C; = Q1 R; is a QRD of C1. Let C3 € C"*", Then
for any € > 0, there exists a QRD Cy = Q2R; such that Q1 — Q2|2 < € and
| Ry — Rall2 < &, if [|C1 - Ca|l2 is sufficiently small.

. Theorem 3.1. In Algorithm 3.1, suppose xliv) = w(‘-*) is independent of v
when ||¢) — ¢*||; is sufficiently small, and J* € C"*" corresponding to QRDs of
B (i) is invertible, where BU*) = A(c*) - A*I(l < i € n). Suppose also A(c) s
second order dtﬂemnuable Then, there exists € > 0 such that when ||c) —c*|l2 < €
we have

let ) — €]l = O(IIC("')‘— c[I2)- (3.13)

Proof. ||c¥) — ¢*||; is sufficiently small, and so is ||A(c(")) A{c*)lj2- Therefore
from Lemma 3.2, Lemma 3.3 and the definition of J®) we know that J (¥} ig invert-

ible and [|J@)~ l||;,; < [1I*2 + f(¢) for sufficiently small ¢, where f(.s:) >0is a
continuous function of ¢ and f(0) = 0. Thus we have -

160+ |lg = [16®) + TNl +D — ) 4+ O(fje+1) - 13 Il |
= O(||et+1) — |2y =.0(l7 7 6®|3) = O(IBL13)- (3.14)

On the other hand, it follows from linear independence of the first ﬂ — 1 column
vectors of each BU#)x(+) (since A7 # A} for i # j) and Theorem 2.1 that

6z = |16° + T*(c® = ¢*) + O(l[c®) = "D lla = O™ - "llz)  (3.15)

and similarly : |
16+l = O(||c¥ ) ~ e*l2), (3.16)

where b* is defined similarly to J*. Combining (3.14)-(3.16) will lead to (3.13).

Before going into the convergence analysis of Algorithm 3.2, we remark that
giving a convergence analysis of Algorithm 3.2 is much more comphcated This is
because of the non-umqueness of factorizations

[

U (c)H A(c)U(c) = upper Hessenberg matrices. | (3.17)

At this time we even have no similar result to Lemma 3.1. In order to give an
analysis, we make the following additional hypothesis. '
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Hypothesis S. In some neighborhood of ¢, the choice of factorizations (3.17) in
Algorithm 3.2 should satisfy that U(c) is determined uniquely by ¢ and is continuous
with respect to ¢. |

Theorem 3.2. In Algorithm 3.2, suppose Hypothesis § is satisfied, w0} =
(") is independent of v when ||c*) — ¢*||2 is sufficiently small, and J* € €"*"
corresponding to c* is tnvertible. Assume also that A(c) is second order differentiable.
Then Algorithm 8.2 is locally guadratically convergent.

Proof. From Hypothesis S and Lemmas 3.1 and 3.2, we know that there exists
€1 > 0 such that if ||c - c*{|l2 < €1, then |

(ci —¢i)+ M,

A = A+ Y o Ale)
- i=1 .

Ml < filele-<lB © (3.18)
and |
| (&) Hlz < 17z + falen), (3.19)

where f;(g1) > 0(i = 142) are continuous functions of £; and f;(0) = 0, and J(c) €
C"*" is obtained by Step d) in Algorithm 3.2 at c€ C".
On the other hand, we note

U(e)? A(e)U(e) = H(e), BY()x(e) = QV()RY (@),
where BU)(c) = H(c) — Af1. Therefore for ¢ € C" close to ¢, we have
(e A@U(e) - X I 9(e) = QIR R(@),

- 7 B9(&) RrE(@)
RO =1 " < [ = s
R\ (¢) = ( " r,ﬂ(&)) . =L i

From Thenféni 2.1, (3..18) and (3.19), it follows that there exist £2 > O and €3 > 0
such that if |jc — ¢*||2 < €2, then

r8 @) = ri(e) + O(Jlé - cll2) + fa(e2,€3)81,
6O < e =cll3, if J|é—cllz <es (3.20)

where f3(52,€3) z Ois a COIltinlIﬂuE funCtiﬂﬂ of (é§j£3) and f3(01 0)= 0. :

K NOW Slip]JOSE "c(p) ool ':m”2 < IIliIl{Ez,E:j}-l' Then fro;n:[ (320) we'ha,ve (nut_e
() = 0) ' '

0 =b0) 4 IO (e~ M)+ falez,e3)d, bl < Hle” - Mz,

i.e.

& = W) — JOTN0Y < fuleg,e)dW TS, (3.21)
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where f4(£2,€3) > 0 is a continuous function of (£2,£3) and f4(ﬁ,0) = 0. (3.21)

together with (3.19) and c(*+1) = ) - g 1) lead to ||c("+}) — ¢*|l2 = O(||c™) -

l12).

§4. Numerical Examples

Before giving our examples, 1t is .necessary to present some perturbation results
which can be used to measure the differences between the spectrum of A* and that
of A(c!?)), where ¢(®) is an accepted approximation to c*.

By factorizations (A(c?) = ArDx?) = QU RUA) §=1,.--,n, we get
eEin")H(A(c(’}) — A1) = rgf}ef?r(""]j‘. | (4.1)

Therefore, if A(c) is Hermitian or weakly normal, then for any ¢ (1 < i < n) there
exists an eigenvalue A of A(c(®)) (see [5]) such that

A= x| < e, (4.2)

Sigce AT # A;, (i # 7), n intervals |2 — Af| < |r£f;1’)| are disjoint from each other if
lrg;f)] is sufficiently small; thus n eigenvalues of A(c(*)) are different from each other

and satisfy ; |
M= A7 < i = 1,000 (4.3)

For general matrices A(c), we are unable to give an estimation of differences be-
tween the spectrum of A(c'®)) and A* just from (4.1), and therefore other information
is needed. One of the compensating methods is that equations

(A = XDpi=7i, |pllz=1, 1<i<a, (44)

‘are also available, and apprnximately. I7ill2 = Ir,f;fll. In fact this is possible since

the smallest singular value of A(el*)) — A?T is less than or equal to |r$::,f}|, and thus
a QRD with column pivoting of (A(e®)) — A;D)H gives (4.4). Suppose now (4.1)
and (4.4) are both available. Then from {15] we know that there exist E; € €™ "
(=1, --,n)with i | |

' B = max{nlla 1521

such that A7 is an eigenvalue of A(c\))—E;. If |r$f.f}| is sufficiently small (so are E;),
then the n eigenvalues of A(cl®)) (A(c!®)) - E;, 1 < i < n) are different from each
other since A} # A} (i # 7). Therefore from 5, p.176] we have that n eigenvalues
A (i=1,.--,n)of A(cl?h satisfy . . e
L ' s m&x{llrsllz,lrffa’"l}) o < Bdiiv
}‘I'=A£+O - ""'T"_ - . 4.5

| (  |eXQU) "] W
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The following tests were conducted on IBM-PC/XT. Double precision arithmetic
was used throughout. The starting points were chosen close to the solution, so that
few iterations were required for convergence. A line search (or trust region strat-
egy) would be essential to make the algorithms convergent in practical applications. |
However, we have not included these features and have concentrated on the local

behavior of the algorithms. |
Example 1{l. This is an inverse additive problem. Here n = 8,

0 4 -1 1 1 °'5 =11

i .0 =1 2 1 “4 ~1 9

1 -1 0 3 1 -3 -1 3
=t T3 1 o1 s MemedEsleed

4 3 2 170 =1 6

1 -1 -1 -1 =1 =t 0 7

1 2 3 4 5 6 1 0

8
CA(c) = Ao+ ) A,

1=1

A* = (10,20, 30,40, 50, 60, 70, 80),
¢* = (11.807876,19.705522, 30.545498, 40.062657,
51.587140, 64.702131, 70.170676, 71.318499).

r

With the starting point ¢® = (10,20,30,40,50,60,70,80), Algorithm 3.2
diverges, while Algorithm 3.1 converges. The computational results of
Algorithm 3.1 are displayed in Table 4.1, where 6c(¥) = (5ng), “o ,5::&,,"’))31 =
C™*" is defined by ¢! = ¥) 4 8c¥), and A&") <. < A-,(f) are n eigenvalues
of A(c(*}). | -

Table 4.1 | -
. Algorithm 3.1 Method I in [1]
No(r) | max{iree’l} | max{jsc”]} | max{IA{"”) —Ar]}
0 64E+00 | 8.5E 400 6.4E +00
1 71E-01 | 12E+400 89E —01
o | 39E-02 4| 10EZ01 | 10EL01
3 44E—-04."° 1.0E—03 |: "27TE—-03 -~ ...
4 47E-08 | 11E-07 | + 28E-06 -
5 6.5E — 15 82E—15 1.7E — 12
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With the starting point ¢'? = (10,20, 30,40, 50, 60, 70, 79), 'Algﬁrithms 3.1
and 3.2 both converge, and their computational results a_ré displayed in
Table 4.2. Here the column corresponding to 6, displays approximately
the maximum of modulus among southeast elements of » upper triangular
matrices obtained by computing QRDs with column pivoting of A(el)) —
AI,i=1,..-,8, in the process of computing with Algorithm 3.2, in order
that we can compare our two algorithms. We see that Algorithm 3.1
converges more rapidly than Algunthm 3.2 in this test. It seems that
this observation is valid all the time. |

Table 4.2

Algnrlthm 3.1 Algorithm 3.2

No.(v) max{{r%e [} | max{[6" [} [ max{lr [} [max{|6c [} 8
0 | 558E+00 | 7.50E +00 | 1.32E+01 | 1.29E 4 01 |5.58E + 00
1 6.28F - 01 | 8.64E - 01 4.f_IBE +00 { 1.O1E 401 {3.47E 4+ 00
9 { 3.67TE—~02 | 8.59E —02 | 9.64E + 00 | 5.50E +.00 |3.36E + 00
3 3.5595' —04 | 822E-04 | 281£+00 | 6.82E - 01 4.13F — 01
4 ['313E-08 | 7.32E 08 | 456E +00 | 6.88E — 02 |4.88E — 02
5 | 7.34E—15 | 8.48E — 15 | 4.08E —03 | 7.46E — 05 |5.11E — 05
5 1.74E — 07 | 2.53E — 09 | 1.87E — 09
7 1.39E — 12 | 2.01E — 14 | 1.63E — 12
Example 2 ([4]). n = 5,
2 —0.08
—003 2  —0.08
Ag = -0.03 2 —0.08  Ap=rrer k=1,---,5
—003 2  -0.08
-003 -2
with 7. € IR® defined by
] 0 -001 -002 0.03.
-0.03 1 0 001 —0.02
R= E rie; =| 002 -003 .1 0  0.0L.|
4=1.- 1 -p01 002 -003 1 0
1  -0.01- 002 -003 .1

and

CAle)= Ao+ ) A, XM =(0+6,1-6,246,3-4,4).

: =1
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Table 4.3 displays the computational results of Algorithms 3.1 a.nd 3.2 with’ the
starting point ¢® = (2,1,0,—1,-2) and 6 = 0.

Table 4.3
Algorithm 3.1 Algorithm 3.2
No.(v)| max{jrex[} [ max{[6c{" [} [ max{|r5a”} | max{léc”} | &
0 | 7.15E —03 | 7.18E — 03 | 4.30E - 02 | 7.18£ — 03 |7.15E — 03
1 | 3768—07 | 3.71E —07 | 1.82E — 03 | 8.89E — 06 {8.87E — 06
2 136E——15 1.37E— 15 | 455E—08 | 7.97E — 11 | 7.96E — 11

— (1.99282, 1.0028, 0.00236, —0.99788, —2.00012)

With the same starting point but é = 0.441, however, Algorithm 3.2 fmls to
converge. Ta.ble 4.4 displays the computational results of Algorithm 3.1

Table 4.4. Algorithm 3.1

ND"(U)..L max{lr(' “N) ma.}c{|¢5c()[}
0 44F — 0l 4.4F — 01
| 228 —02 3.3E - 02
2 3.9F - 03 1.0E — 02
3 6.8E — 04 3.1E — 03
4 1.1E — 04 5.5 — (04
D 3.4F — 06 1.9F — 05
6 | 4.1F —-09 24F — 08
7 58E — 15 36F — 14

& = (1.99510,0.511492,0.49191, —1.43089, —1.56761)

§5. Concluding Remarks

(i) Thmughtaut the paper, we assumed that the problems cons1dered appear in
the complex field. We can find out easily that the complex field can be replaced by
the real field, i.e., all C,C", etc. can be replaced by IR, IR", etc.

(ii) Our algorithms are derived for general matrices, while algorithms in {1} can
only be applied to inverse problems for real. symmetric matrices or Hermitian ma-
trices. (Yet, they can be generalized to inverse problems for general matrices in a

straightforward way.)
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