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SPLINE COLLOCATION APPROXIMATION TO PERIODIC
SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS"

| ~ Zhang Li-qing
(South China Universily of Technology, Guangzhou, China)

Abstract.

A spline collocation method is proposed to approximate the periodic solu
tion of nonlinear ordinary differential equations. It is proved that the cubic
periodic spline collocation solution has the same error bound O(A*) and super-
convergence of the derivative at collocation points as that of the interpolating
spline function. Finally a numerical example is given to demonstrate the effec-

tiveness of our algorithm.
#

§1. Introduction

The numerical ﬁﬁpfbxinia;tibn to the pkeri'o'dic solution of an autonomous ordi-
nary differential equation system has been brought into consideration for more than
a decade. Many numerical methods like the shooting method, Newton method,
the linear multlstep method etc. have been used in approximating the periodic
solutions! 5] -but hardly any rigorous analysis of the convergence and error esti-
mate of numerical solutions is given. In this paper a spline collocation method is
introduced to approximate the periodic solution of ODEs. It is proved that the cubic
periodic spline collocation solution (including a periodic orbit and its period) has
the same error bound O(k*) and superconvergence of the derivative at collocation
points as that of the interpolating spline function.

Consider an autonomous ordinary differential equation system

dm o - |

= = f(@) _ (11)
I inding a T-periodic solution of (1. 1) is equwa.lent to solving a non-trivial solution
of the fullamng boundary va.lue problem[ﬂ

EE Tf(z), E_O’ | - (1.2)
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p(z) =0, | - (1.3)

own as a pha.sé condition (Refer to

148
~z(0) = z(1),
where p is a functional of C([0,1)), which is kn

3] for further information). Here we choose

P(2(0)) = [ z,(0) — o, if the k-th component of :1:([]) is given,
x e
fr(z(0)}, if the k-th component of :l:(t) takes its extremumn

Suppose {z(t),T) is a solution of (1.2)-(1.3), X (t) and Y (t) are denoted respec-

tively as the resolvents of

(1.5)

‘ff TS0
and |
- ‘;‘f SICOLS (16)

» I-XQ1) f(z(0)
& q lar, then t t T
If the matrix J ( =(0) . O is nonsingular, then the pa.lr (:r:( },T) is a

regular solution of (1.2)-(1.3)[3‘4].

£2. The Cubic Spline Collocation Method

m k= 'jl\f) be a uniform partition of interval [0,1], and

Lt 2% = {t} Lt =
N+l 10 3 cubic B-spline ba,sls on mesh A. A pair (za(t),Th) 1

{qﬁl(t) t=~1
N+1
cubic p‘eriﬁdic spline collocation solution of (1.2)-(1. 3) if a:h(t) Z c;¢;(1) and
| t=-—1
T, meets - . |
{ Fi(Ch) = zh(ti) - Thf(:c;.(ti)) =0, i=1-N, "
Fn41(Ch) = p(z4(0)) = ‘ |
where Cj = (ﬂ;,-* . eNsTh) Cati = C'(I = —-1 0,1), Fp = {FLy ,_FN+1).
Lemma 2.1. If X (1) is a resolvent of (1.5), then
rl '
fao) = X [ XE M aleds (22)

ion of (1 2)—(1 3) f(:r:(t]) satisfies (1.5). So we

| Pmof Since (z(1),T) is a solutl
X(l)f(z([})) .Therefore

have f(a(1)) = X()(2(0)) - Lett = 1, f(a(0)) = F(z(1)) =
x(1) [ X(s)7" fla())ds = X [ Fa(0))ds = X(S(=(0)) = S((O)
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Lemma 2.2. If A(t), f(1) are continuous, and X(t) is a resolvent i:}f
d:::

o Alt)z, . | ' (2.3)
then
N-1 _
Jim 1:[ (F + A(t;)h) = X(1), h = 1/N, - (2.4)
N-1 N-1
Jim 3 TT T+ A@WS@h = XO) [ X f(o)ds. (25)
5 k=0 t=k+1

. .
Proof. Let w(t) = X(t)/ X(s)"'¢(s)ds. It is easy to see w(t) satisfies
0 .

dw(t |
1;5 ) A(t)w(t) + ¢(t), w(0)=0. “ (2.6)
- The Euler difference for (2.6} is
’
wip1 — w; = AL )wih + ¢t )R, t=0,--- N —1. (2.7)
By iteration,
N—1 N-1
wy = > [f (I + A(t:)h)é(ti)h.
k=0 1=k+1

So the relation (2.5) holds for the convergence of the Euler difference solution of
{2.7). And (2.4) holds for the same reason.

Lemma 2.3.8 Suppose F € C%{w, R™)(w C R,) and J(u) = F'(u) is nonsin-
gular at u = ug € Q. If there exist positive constants 6 and k(k < 1) such that

(1) 95 = {ulls - woll < 6} €, (2) |(w) ~ J(uo)]| < n/M, Vu 9,
3y —1

1 -« __
where v and M are constants defined by

1Pl <7, 07 wo)ll < M

<4

; -

then there ezists a umque sa!ut:on u=1 a}' equatmn F(u) ~ 0 in Qs and

6~ uol) < M~/(1~x).
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. §3. Existence and Error Estimate -

Suppose | € O RP, R") and z(t) € ¢5({0,1]). Denote |
N+1

in(l) = Y idilt)

t=—1

.s the cubic periodic interpolating spline function of z(t) on mesh A, and Cp =

én.T). Consider the following system
Jh(ch)gh = Pn 3 (3.1)
1€N1 p)'ﬂr ¢'h o (¢(t1) 1¢(tN) T) R.EWI'ItE (3 1) in CDIIIP*DI[EIlt |

: .Ek+'1 — gk#l = Tf;cEk‘I-l T 4§k +.Ek;—,1 o g(tk)1 k = 11 e !N!

£N+1 == glv gN — Eﬂ& S (3.2)
nol&y + 460 + EN 1) B
| 6
where fi = f'(z(le)); 9(1) = pflz(t)) + i)

the first equation:of (3 2) becomes

Eraz \ §k g(tk41)
( ) “Ak( Ck)+Bk (9(tk) ) g

(Eln“'ﬁ

WthE £h & (‘511

T

Do = p(:i:([})) Let CA:+1 fk', Thén

Crt2
where L w
27T 4h '
) (1 +=fih T ) — (1+ ONT f 0 )B
4h 2T 0 o
—:;Tf;i 1+ ‘_—fk -3 Ji
- +O(K®), - . LY -
y - (th- 0 ) e (I!f IN")
E=\ g 2nI)" IjV2 1/V2
Suppose N is an even number, N = 2K. By the iteration of (3.3) we have

(ﬁﬁ)::DN(Eo)-!—pHN-I-EN | (3.4)
(N Co g

where

h—1 K-1 K=l = ° :
' Bl f(z(tzk+1))
- L1 4w, Hy =3 ( 11 AE’) - ( f(z'(tz;)r) ) ’.

. k=0 ' k=0

K-1 { K=1
En= ), ( 11 Az,j) By (j?((i:?)'l) )

k=0 \j=k+1
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From the second equation of (3.2) we have

2 1 ' | o
Po(gfn + §CD +O0(h))=7. (3.5)
Combining (3.4) and (3.5), we have
N e & . f — B W "
e : EN :
Gl (o = ( ), Gy = ( 9 1 ) ,(3.6)
p ) N7 \(Gmtotgmtom) ow)
By lemmas 2.1 and 2.2, we know
P dm Gv=G @D

where the matrix G is defined by.

(e D)o ) B (Heon)
(%po;%m) , B 0

It is easy to see that the matrix G is nonsingular provided the matrices X(1) and
[ — Y(1) are nonsingular. So from (3.7) we deduce that, if G is nonsingular, then
there ensts an Vg, such that for N > Ny, t.he matrix G is nonsingular and its
inverse G is uniformly bounded, i.e. )

R .

IGN'Il < Mo, N > Ny for some constant Mo. (3.8)
From (3.6) and (3.8) we have,

1(&0, €0, 2) oo < Moll(Eny ) |oo- (3.9)

On the other hand, the smoothness of f and the umfﬂrm boundedness of a periodic
K-1

solution imply that H A; (k =0 K — -'1) are umfnrmly bounded. So we have
t=k

“EN”nu < Ml” ¢11 $¢N)T”m :‘; Ml”ti’h"m for some MI > (0.

In summa.ry, i ohtals !

Lemma 3.1. Suppose f € C*(R", R“) If the matriz J and I — Y(l) are nonsin-
gular, then there exisls an Ng, such that for N 5 N, the Jacobian Jh(Ch) = F’(Ch) |
I8 nonsmgu!ar and :is inverse is umformly bounded in N. i.e. ,there ezists a constant

M, > 0, such that e E
Wil Ca)ll € My, N 2 No. (3.10)
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Lemma 3.2. If the conditions of the previous lemma are satisfied, then _thef‘e

exists a constant M, such that |
178(Ch) = Ia(C)lloo € MalICh — Cilloo, (3.11)
for any Ch € s = {Ch = (c1, - en, T)||Ch — Chll £ 6,8 > 0}, |
Proof. 1% is easily proved by use of the bandwidth property of JL(Ch) and the

smoothness of f.

Theorem 3.3. Suppose that f € Cz(R"' R™). The pair (z(t),T) is a solution of
(1.2)-(1.3), and z(t) € C°([0,1]). If the matrices J and I — Y (1) are nonsingular,
then there exists an No, such that for N > Ng, there exisis a spline collocation
solution of problem (1.2)~(1.3) and its caqﬁ‘iczent Ch = (€1, ,én,Th) satisfies

ICh — Chlloo < const Be. e (3.12)

Proof. By Lemmas 3.1 and 3.2, there exist a positive iﬁteger Ng and constants
My, Mo and 8o, such that for N > No, 6 € (0, 8],

) 177 H(Cilloe < Ma, | (3.13)
1J4(Ch) = Fn(Cu)l| € M2|ICh = Chlloo- (3.14)

By the superconvergence of the derivative of a cubic periodic spline interpolation
function at interpolation points, we know there exists a constant M3 such that

12°(4:) — #h(t)lloe < Mallzllscoh?s i=1,-++,N. (3.15)
Since zp{1;) = 2(t;) at interpolation points, we have
IFACi)lloo = 124(E:) = T - f(2(t:)loo = 1842} — 2"(2i)lico
< Mslizlis.0 h*, T PR TR, (3.16)

On the other hand,
FN+1(C'}.) = p(Zx{0)) = p(z(0)) =0

So we have

”Fh(éh)“m < M3“$"51mh4- ‘: | (3.17)
Now we choose §; € (0, 8] such that k = M M8, < 1. Then choese h so small that
4
1 —K

Using lemma 2.3, we obtain that equaﬁipn (2.1) h'la_s. a solution C‘h = (€1, ,EN,T;;)'

near Cp, and -
M Mg|lailsooh®

1=k

uéh - éh”m <
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Theorem 3.4. If the conditions in the above theorem are satisfied, then the
cubic pertodic spline collocation solution (2,(t),T4) has the following estimate

||'Dk(:i"rh(t] ~ 2(t))|lee < consthiE, k= Uy ly2, | (3.19)
T, — T < const A*, | (3.20)
Furthermore, we have

25,(t:) - 2'(t:)] < const k. (3.21)

Proof. The estimate (3.20) is included in (3.12). For the parmtmn A umfc}rm,
there exist constants a; (k 0,1,2), such that

N+1
Y | DRgi(t)| < hk, k=012 - (3.22)

g=—1

On the other hand, by use of the standard estimaﬁan_ of cubic periodic interpolation
splinesiﬂ], there exist Ag(k = 0,1,2), such that

I D*(#4(t) ~ z(t)]loo < Akllzllaoh?™®, k=0,1,2. (3.23)
»
Using (3.12),(3.22) and (4.23), we have

ID*( 2a(t) ~ 2())lloo < IID¥(EN(1) = En(t)Mlloo + 1 DR(Z4 (1) — 2(t))loo
< max | %l & = &ND S]] + ID*(Ea2) — ()]l
< {const oy + Ak_||:1:|]4m)h‘*‘_‘°, k=112
This proves (3.19). By definition, |
Zp(ti) =" ()] = | Taf(2n(d:)) = T f(2(t))] S |\ Th (S(Zh(t:)) = F(2(L:))) |
H (T = T)f(2(t:) | < ATuf(€lIZR ) ~ 2(t) | + | (Th — T) f(=(1:)) ]
=0, i=1,:--;N.

where §; is the mean value. So the estimate (3_2-1) holds.

§4.. A Numerical Example

The numerical lmplementa,tmn for the sPhne colloca,tmn methnd is to solve the
nonlinear equation system (3.1). Usually the quaerewtﬂn meth{)d is used to solve
the nonlinear system, ,and the homotopy method is used to tréa.t the initial guess
problem[2h3]:{6}, The numenca.l example given below is alsn cnmputed by the Newtﬂn
method and the homotapy method. | "
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Example. Consider an autonomous sysiem

oy Heaas-w

We use the spline collocation methﬂd to compute the permdm orbit and its
period. Choose N = 20 and p(z(0),y(0)) = —y(0). The diagrams shown below are
the numerical periodic orbits for a = 2.5 and a = 4.5, where T and T3 are their

periods.

.
.
" 8.8
L J

v . B ~2.8 8.8 Z.8 4.9

a =25 T =8.013 -~ a=4.5, T = 10.19:
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