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RATIONAL INTERPOLATION FOR STIELTJES FUNCTIONS*!)

Xu Guo-liang
(Computing Cenier, Academia Sinica, Besjing, Ching)

Abstract

The continuity conclusions about rational Hermite interpolating functions
are given under some conditions. On that basis, we establish the convergence
results for the paradiagonal sequences of the rational mterpola.nts for Stleltjes
functions and Hamburger functions.

" ' §1. Introduction

| Let {z:}%2, C [a,b] and f € Cla,b] be properly smooth. Given integers m, n,
we consider the following problem Fmd R < Rmn = fu= p]q p€ Hy, g€ Hy}

such that
RO'(z:)= f%(z;), 4=0,1,---,m+n, (1.1)

where H; denotes the class of all polynomials of degree at most / and o; + 1 is the
multiplicity of z; In {mg,:rl, s Relatmg to the above problem, we introduce a
linearized problem as follows. Find (P, Q) € H,. x H, such that

(Qf = P)Nzi)=0, i=0,1,---,m+n. (12) .

Complete results about the sol\?a,bi]ity of the two problems can be found in [5]. For
our purpose in this paper, we ilil;rnduce‘the following conclusions.

- Theorem 1.1 ([5], [6]) (1) Pmblem ( 1 1) is sa!vub!e iff

ra,nk C(m — 1 n = 1 :ru,:cl, | :c,,;_m)

I'&Ilk C(m 1 y 1T w*]- -3:01371: 1_$:—.-lljxi+llf;rf 'Trxﬂ'l.-'_'_ﬂ)!' S
' - (1:3)
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(ii) Let (P*,Q") be a solution of problem (1 2) with minimum degree. Then
JP* = m if and only if the matriz C(m—1,m,20, ** , Tm+n) is nansmgular 8Q" = n
if and only if C(m,n — 1,%0," "+ 1 Tmin) 18 nonsingular.

(iii) The interpolation operator Tmn, for which Tociilzty, < 5 Bmin, J) = LB Q" )

is continuous at (Tg, **, Tmin, f) if and only if (P*,Q") is non-degenerate.
The matrices C(p, g,%g, - -, tx) used in the above theorem are defined as
o ["“"(P*‘?*‘ﬂ)
C(P-JQJO{”I’J.‘:) = 1?""(?:‘2:31) ‘
v (p g k)
where

'U'('p._. q, t) = [1111 e ?Ep,'f(t),tf(t),-' 22 1tqf(t)]
and o; + 1 is the multiplicity of t; in {to,t1,- -+, %}

Let )
- fD,m fl,m fi,m
| formir fim+r 0 fim4d
H(m,i,j,to, s tmag) = [ 7T

[fﬂ,m+,f fl,ni—l*.f- f=m+_7

where f;; is the divided difference of f at t;,¢;41,+--,t;. Then we have
rank C(pyrlor- -1 1x) = p+ 1+ rank H(p+ Lq...k-p'— Litoy-yt).  (L4)

Hence the mnclusmns (1) and (u) in Thenrem 1 1 can be resta,ted as fﬂlloﬁs
(i) Problem (1.1) is solvable if a.nd only lf | |

rank H(m,n - 1,7,Z0," ", Zm4n)

o rankﬂ(m,n = L — 11:01'"1331'-"113!'-]-11”'3;11-1-11)1 A= 0, 1,---,m+ .

(ii) 8(P*) = m = H(m n,M,Zg, ", Tmin) IS Nonsingular; Q") = n
H(m+1,n—1,n— 1,20, - ,Zm4n) is nonsingular.

For the Cauchy mterpola,tmn problem, i.e., the interpolation pmnts z; are mu-
tually distinct, the continuity results of the 1nterpola.t10n function p., := R to f
and the conclusions about the posmon of pﬂles of un are obtained by Braess in
[2],[3]. In this paper, we first generalize these results to thie Hermite case by a similar
approach, and then establish convergence results for paradiagonal sequences of the
rational interpolations for Stieltjes functions and Hamburger functmns Fnr Padé
approximants, similar convergence results can be fuund in [1] " |

O
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- §2. The Continuity of the Rational Iriterpolants S

Let {:=m-n+12>0,f€ C"" [a,b]. Set

"'Dﬂ'l—ﬂ-l-lf Dm-—n«l-ﬂf e Dmf
- Do—skde pm-niE .. pEklg
an(msf)zl ?
T - Dmf A 'Dm-l"lf o Dm"l'"'-l.f

where D* f(z) = f(*)(z)/k!. Then we have

Lemina 2.1 If Min(z, f) is definite tn [a, b/, then P 5 |
} ([3], p.121} Q*f — P has at most m + n — 1 zeros in [a b] countmg mulfi-
pf:czt:ee whenever Q € H,_.1\ {0}, P € Hpyr2;, -~ xR
{ii). for an;:g:{:z: }:’:E“ B, b] the matriz H{m n—1,n—=1,20," "+ Zratny) I8
nansmgu!ar . , - 19 Y
(ui) fur uny {:1:t :’_‘j;" C [q,b],;H(m,ﬁ, n-,mg,*-_*,zmqm) or Him + 1,n ~1,n —
l 2o, -, Emen) 18 NONsingular. . : |

Proof. The proof of {i) can be found in (3], p.123. In order to prove (ii), consider
(sz P)u min-1 With P € Hm+n.*2,Q € Hn..1 \ {O} Usmg the fﬂrmula

(f!?)ok—z:f;kgon -: | o " J 0 (2.1)
i=0 - R R F
we ha,ve CE s
ot n-1 " n—=1m4n—-1—1
(fQ P)um+n_1 = Z(f@ .m+n_1czm =%, 3, & ‘+,,Q,+,,m+n_lczﬁ,
=0 i=0 1=0
m+n—-1n-1 |
Z Z fleL m+n-—1Q0: == ﬂlH(m ﬂ; - 1 = 1 Eﬁ, Im.-i;ﬁ-'-'iiﬂ)&g‘:
k=m l"q : — 5 i il
. (2.2)
w'hei'é_' g

oy = :Qm,rﬂ-};n—-lst+-l,m+n—l1:‘I'f1Qﬁ+r1__—l,m+r;|.;-1];
az = [Qoo,Qo1, -+, Qo,n—1]-

Since (fQ? — Plomsn—1 = D™71(fQ? = PY(€) > 0 (see [3], p.124), H(m,n -
l,m — 1,20, +Zm+4n~1) is nonsingular. |

Assume (111) 1s not true. Then (1.4) implies that pmblem (1 2) has two scilutmns
(P1,Q1) and (P2;Q2) with 9P < m - LﬁQl -n, 0P, = m; 3@; < n — 1.. This
contradicts P,Q3 = PoQq(see [5]). ©

Lermima' 2.2 Miki (2, f) is definite in [a,8); thed |
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(i) Q*f — P has at most m + n zeros in (a,b] counting multiplicities, whenever
Q & -Hﬂ-—l \ {0}:P & Hm+n—2: o | | i . _ |

(ii) for any {z:}4" C [e,b], the matriz H(m + 1,7 — 1,7 = 1,20, yZm3n) 18
nonsingular. :

Proof. The proof of the lemma is the same as that of (i) and (ii) of Lemma 2.1.

Lemma 2.3. If {1,3:,*--,mm*l,f(z),:t:f(a:),---,:c“"if(:s)} spans an E-Haar
subspace of Cla,b] on [a,b], then the conclusions (i) and (i1i) of Lemma 2.1 are

irue.

Proof. In this case, C(m — 1,n — 1,2¢,":- Zmen_1) is nonsingular. Then (1.4)-
implies the required conclusion (ii) of Lemma 2.1. Since conclusion (iii) of L.emma
9 1 is derived from (ii), it holds, too.

Theorem 2.4. If {1,z,-- 2™l f(z),zf(z),---,2" "' f(x)} spans an E-Haar
subspace of Cla,b] and Mo, 41,(%, f) is definite on la,b], or if Mmn(z, f) ts definite
on [a,b], then for any {z;}E" C [a,b], the solution of problem (1.1) ezxists and 1s -
continuous in [amﬂ,ﬁmnj, where

amﬁ: = .miﬂ.{ﬂig, R 'Im.+ﬂ}1 ﬁmﬂ == IHB.-)({I{], ARy -T"m+ﬂ}-

Proof. 1t follows from Theorem 1.1 and Lemmas 2.1-3 that the solution of
problem (1.1) exists and is non-degenerate for any {z;}™t" C [a,b]. From these
facts the continuity of the solution can be proved (see [3]).

From the proof of Theorem 2.4, we know that in order to have the continuity of
the rational interpolant Umn, it.is sufficient for f to have properties. (i) of Lemma
2.2 and (ii), (iii) of Lemma 2.1. Since property (i) implies (iii), Theorem 2.4 can be
generalized as follows:

Theorem 2.5. Suppose f has the following properties: |

(i) Q*f — P has at most m + n zeros in [a,b] counting multiplicities, whenever
Q€ Hn1\ {0}, P € Hynyn—2- (ii) For any {z;}2t""1 C [a,b], the matriz H(m,n -
l.n— 1,20, " +Zmen—1) is nonsinguler. Then for any {z;}21" C {a,b], the solution
of problem (1.1) exists and is continuous in [Gmn, Bmal-

~ §3. The Position of Poles

ey .ﬁ.ﬁﬁllmﬁ 0 € [ﬂ"' b] '.and n2 1. SEt iy '
R R : ; . ] el ﬂ st
o Eg“.“[aib] - {u(x) i k=;1 Firz p(?).e '.H,‘._h-ak : .0’_ |

“tp € (-b"1,—a" 1),k =1,2,---,n,1; are mutua.lly-distinct,}. v
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Then RY,,la,b] C By and the set has the fﬂlluwmg properties.

Lemma 3.1. (i) u = p/g € R, [a b is ﬂﬂn-degenemte (ie., p and g are
m'educ:ble and Op=m or 8¢ = n) iff ay > 0,k = 1,2, |

(11) If u € RP ﬁL[1:1. b], then M,,,(x,u) is nonnegative deﬁmtf, and My (z,u) s
positive definite iff u is non- degenerate.

(i) sztu-p—l—:r"zl_i_ - Thenak:un(k:l,z---,ﬁ) iff Mpnt1,0(2,5) -
= _

is nonnegatme definite on [a b] arly < O(k = 1,2,---,n) iff Mm41,n(z, u) is positive
definite on [a, b).

(iv) Let {g:}:cd C la,b]. Then

Bfnla,b] = {u(a) = p(a +I1i2 (x_f 2 Z:

1+t;¢

p(:z:) ¢ }:-‘I;"_l.,a;::* CI tk £ (-—b'l —-a 1) are distinct mutua.lly} (3.1)

(v) R 4,1[{1 b] 15 a clased set n Rmﬂ in the sense of Chebyshev norm: |

(Vi) If u € RY,, [a,b] is non-degenerate, then u is an interior point of RE._[a,b],
€., there exists an ¢, such that

(R:|u~R|| < e RERma)C R [a,b]

Proof. (i} If ax = 0 for some %, then u is evidently degenerate. If, on the contrary,
ar # 0 for k = 1,2,---.n, then u s non-degenerate for & # 0,k = 1,2,---,n
If ty = 0 € (—b~1,—a™!) for some k, then the degrees of the numerator and the
‘denorminator of u(z) are m and n—1 respectively. Therefore, u(z) is non-degenerate.

- (ii) For k > 1,

B o Pl s B _ 3 k—j tf-f
HD“( i ) ='ED";_J(1+II)-1DJII—Z -] L

viel o 2 (L-+ae)r=H ¢ — f)lyt
(=t)k-! -1 (=)
— 1 — - .
(14 tz)k=i41 (_" _+ 1+ t:r) (14 tz)kHL 3
ﬂﬁ'l.{" “"""'_) = f-Hb bt'l by = (11 TR ( ) .
.::iig ﬁ?‘%’lw j}f‘ "-‘:—.!‘J“" (LT ;F) : Ry L 1-{-{_13 1+t¢
Therefmg B e b ﬂ )

T e 11 fag)it1 a0t
-tlf":';‘-: CEET il My feri i -:-:n'l.-;'_-;'! b R k=1 (1 + th) P -'
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From this we get the conclusion (ii).

(iii) Similarly,

—ait
B2k b b

! : -
& >t 7 Z

M"‘“-’“_(m’ 1+ t:r) T Mtz

Hence the conclusion (iii) holds. | | |
(-1
(iv) Let p/q € RE n[a b] nd q(a:) H (1 + tk:n) Since w(:n} ]"[ (z — ;) and

q(:c) are coprime, there exist PPYR=1 | :;1 e i such that

P(ﬂr) = pr(z)w(z) + aa(z)g(2).

Then

PH _gl(z)+ 3 )”ﬁ g-q(mw(ﬂamk

Now we shall prove that a; 2 0. If & > !, it follows from (3.2) that
e e (t)“’ff(l
' _ = + 1y;
pr (2L - Cpuryy  CUT IO
1 + iz (1 + tz)etl (1+ tm)k+1 '

Hence
v on Ok H(1+t:¢y;) |

a=0
mﬂ(za )_E (1_+tk'.r)'+1 b btk

Since Mun{Z,p/q) is nonnegative definite, ax > 0.
On the other hand, we can prove in the same manner

set of the right side of (3.1) belong to RP. .la,b).
(v) Let u,(a:) ¢ RP [a,b] and u; = u" € C[a,b] (“=>" means “converge

uniformly”). We shall show that u* € R, .14, b] Set

that the elements in the

o)
(3.3)

'U-:(I) Pt(""-:) + w(x) E 1+ t(t) -

where w(z) = [1(z—3) snda < gy <o < -+ <y <b. Sinee [lul = may, [u(z)

§=1"
are bounded and pi(y;) = u,(y_,) for j = 1, 2 Lk ||p,|| are bounded Hence there

is an M such that
w(:r.:)
_.i:ﬁ-—-—-l—"

115 49z E, *=12 (3.4)
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Then \19"5' M[|w(0)|. N oiv-ﬂ.fe-ma.y- assume (if necessary, passing to ‘subsequences)

| ;1}:} — n.k;_. m — tk(tk may be Foa); k= 1;2,-,n; and p; = p. (3.5)

Ifty = ~b=% or —a” 1 say —b~!1, then (3.4) implies ay = 0 for {t;| < co. Therefore

b)
(i) | male® 5 Loy, :
- lim a‘." w[(r;:) It + t( g B - ~ (3.6)
'*m1+t _ -
0, F T v B [ﬂ',b).

If &- = I—.b-‘l — --':Z;ﬁl, thé;’t

e _..(._3.1”_23_) {akw(b)>ﬂ z=b=0, an

ceiitda o, xe[a,b)

Since u; = u* € Cla,b), ' wé:;':) l ~ (), Hence
S l+tk x| -
" | #
u(z) = plz) +w(z) 3, e =u' € R%[a,b]

1+ ez

k=12, M
tp&(~b—1,-a"1)

(vi) If the required coﬁglusion does not hold, then there exists a sequence u; =
pi/¢ € (RmaUCla, b))\ RE,,[a,b], such that u; => uw'= p/q. We may assume

' | U e, BESE. - (38)

~ where u = p/§. Since u is non-degenerate and ¢ has at least n — 1 distinct real zeros,

g has at least the same number of zeros and has no zeros in [a, b] for ¢ big enough.
Hence g; has only real zeros and then u; can be expressed as

G

u,(:r)—p,:t: +zI
(_) kz_:11+t“

with’i—-'t('} ¢ [a;0), ‘From (3.8), we haveD"m(a:) == D*u(z). Then Mpn(z,u;) =
Myin(Z,u). This lm,ghman(m u; ).is. pasltwe deﬁmte 1f ; is sufficiently large. Hence
u; € {%n[?’ bL a contra ctmn |

’-.E‘i- M pa g | AEE e segidls

-

Theorem 3.2. (1) lf Mmﬂ(:z: f) 18 pos:twe deﬁmte on [amﬂ, ﬂmn] and 0 €
_[q ,Bmnl, the solution ty,, of pmblm (1 1) be!ongs to Rm,,[amn, ,an]

| ?11) Momover, if Mm.|.1 n(z f) :s pas:twe (or negati ve) definite, then all poles of
U8 are contumed ift (Biuins 00) (or (200, am)) | |
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(i) Ifa < amn <0 < Bmn < b and Mm+1_ﬂ+1(:1:,f) is positive in [a; b], then
Upan € R [a,b] and "

(_1)m+ﬂ+1[f(z) —u(z)] >0, =€ [flaamﬂ)v - (3.9)
f(z) - u(z) > 0, € (Bmns ] (3.10)

Proof. (i) Choose a non-degenerate up € RE,[mn; Bmn] and put fy = (1—-A)uo+
Af. Then Mpn(z, fi) is positive definite for A € [0,1]. Therefore the interpolation
function uy(z) to_fy is continuous and nun-'de'genera.te.' Frc_::-in conclusions (v) and
(vi) of Lemma 3.1, and the continuity of uy with respect to A, it follows that ux(z) €.
RP, [Gtmns Bmn] for A € [0,1]. Then (i) is obtained. | -

(ii) Suppose Mp41n(2, f) is positive definite. Choose ug € RP.[&tmny Pmn) such
that Mmi1.(Z,u0) is also positive definite, i.e. all p:ﬂés of ug are in (Omn. oc0). Hence
M1 n(z, f2) 18 positive definite for A € (0,1): Since u, = py/qr € RE,.[0tmn, Bmn]
and &gy = n, all zeros of gy are contained in (Bmn,00) for A € [0,1}.

~ (iii) Since the positive definiteness of Mm+1n+1{Z, f) implies that Mmn(Z, f)
has the same property, thterpolant umn = P/Q to f is In R? _[@mn, Bmn]. From
Lemma 2.1 it follows that gmn = Q*f — PQ has exactly m + n + 1 zeros. Since
pmantlg () >0 for z € [o, b, we can prove by induction that |

(_1)m+ﬂ+1-—kagmn(m) ~ 01 = [ﬂ-gamn):
Prgunle) > 0; 2 € (Bmns bl

Taking k& = 0, we get (3.9) and (3.10), and then Q has no zeros in (@, @mn ) N (Bmns b
Hence P/@Q € RE,.[e,b). |

84. Cbi_ivefgéﬁée for Stlelt_]es Functions

Lem-ma 4.1. Let f(2) be a Stiellges function:

Lo ™ dp(?) |
fa=| 25 (4.)

where p(t) is a bounded, non-decreasing fu-n-:.:tion, taking infinitely many differen
values. Let p(z) € Hy be the polynomial interpolant of f (2) at'zo, %15 » i € [0, 00).
' ] : f‘ Do B IS @ s
Then g(z) = [f(z) — p(z)}/ [1(z; — z) is also a Stieltjes function represented by
LA -l : e

2 A I R
. 4* . if.:cjf.ﬂl;'-'-‘--'.;-,‘;,i.

[ AL
i o I s ; : v :-, -

i=0 -

()= (42)
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t _,Pmﬁ LEt-:" i

ﬂh('z) p(z)-}-Hz—:::,/

i=0 . t']ilg(l + tz.—)(l - t:::).

From (3.2), we have

D ) = Dm(1(+ £ g (=),

t‘“ ( )H'l H () +2; )d ( ) o (—t)iH -
(1 +t )H—Z N uit) = o (1_+ tz)l+2 dp(t
Hence D"H(f h)(z) — 0 Slnce h(:z:,) = f(:r:‘) fcrr i= 0 1 A, 2] = fl2).,
Lemma 4.2. Let | |

)i+1

. DH“lh(z) = Lm

| R d - *
>
E fo)= [ R20
and _ | |
(-R,>x), R>0,
Xp =
Then . ”

(1) fm G n+ 1> 0 is even, Mpn(z, f) is positive definite for x € XR;
(ii) f m—n+120 is odd, Mma(z, f) is negative definite for z € XRg.

Proof. Since

2 : —_ D™ 4 Th, dut),

FRRDRN . wiuetof e ) R
e g (FR) ()

and u(t) is not %gncentrated ona ﬁml?t__i_?eﬂﬁli’,"t_, j:_he ;rgqui.rgd angllusiqp.s hold.

Theorem 4‘.3.;_,?_1,{:_‘ T e

R R

Lot o )= 4T R>0,

" - 1+ 1z e
"ﬁiii;a oL RN EREN R T i iy -== ;‘}; o ;..u,...q.h-.. : .
4%

and*‘{m;}f;o C Xp, vy = sup ,an < 00. Then for any given [ 2> 0
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(i) the sequence of the interpolants u,_141n to f is uniformly bounded as i —+
o on the domain D(A); | |

(i) the sequence of Un_14i,n 15 €guiconiinuous on D(A),
where D(A) is a bounded region of the compler plane which is at least at a distance
A from (—oo,—R).

Proof. Let
§~1= inf |1412]. (4.3)
tgfo,. RV - |
| zE'Dfé) .
Then 67 > 0. Put ot mn e L
.'%'.-"14:1;&(5 ) P(x} + H(*’-’-’ — I }z 1 t = P(I) + w(z)gn(2),

e + k2

where p(z) € [];-, is the interpolating pulynﬂmla.l of f at zg, -*,%1—1. It follows

from Lemma:4.2 and Theorem 3.2 that a,"> 0,1 € [0, R“l)

(i) Taking > max{0,7}, we have by Theorem 3.2 that

w(r)an(r) = tn-141a(7) = 27 < F(r) = PT)

an(7) < [f(7) = p(T))/w(7) = Mo. (4.4)
It follows that | |
14 8T . 14+ 1ir
U —1+1n{2Z)] < w f < + llw||Mp su
| n—1+!, ( )‘ ”P“ ” “ +tj; |1+tk | ”p” " ” 0 "o RP— . |1+t..‘?..'|
; _ z€D(A)
(4.5)

For R = 0, since

c+ td d |cz - d] | P (er + d)8
114+ tz] |zl ~ |14 tz]|z] — A

where ¢ > 0,d > 0 and r = sup |z], then

c+ td d

% (crj— d)6+d
ll +iz] 2]

!zl' A

c+ td
< sup
1 + 22| °

sup

If R > 0, then

1 +22] — 11 4 tz] a2 d)

Therefore there exists a constant M (c a!), such tha.t

+ td
sup

£ ., .- HELD, R—1] 11+t l
SR O

<". M(c, d) : (4.6)
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Statement (i) follows frem (4.5) and (4 6) by takmg gzl d= T
(it) From the proof of (4.5), we have

T _lqn(le:E-ﬂfaﬂJ(l,TJ-
On the othor hand,: - .

laxt]
n21) T Qnl2 < |z1 — 2
l‘z’ (IJ q ( 2)| 2 2IZ|1+n::31||1+??Jrs:ffr'2|
L+ e
zy —'2
' 1 2'2 +t 'r |1+tz1||1+t22|
|1+ tr) g
< |21 — 22| M su 5U
Il 2] 0 pll | |1+t3|

. Then

[t daildn ) — H-n-1+tn(~z)| < [HP | + MD M(1, TJ(||w||M (0,1) + ||w [I)] !31 — 23|
’ H

Hence conclusion (ii) holds.

''''

Thenrem 4. 4 Let

= >
(z) fﬁ 1+tzdp(t) R_I_O
{2;}325 C XR, and qr = Sup ﬁmn < 00. Then. fﬂr any given | > 0

(i) the sequence of interpolants un_141,n of f converges uniformly on D(A) to
an analytic function fU)(z); |

(i) if —'R " i’s ﬁ'bf'ﬁ limit point of {2;}2,. then f () z) is analytic in the complez
plane cul by (—oo, —R] and fU)(2) = f(z). a

Pmof {1 Sm(;e the sequence {uﬂ_l.,.gn} is uniformly bounded and equicontin-
uous on 'D(ﬁ) it fﬂllﬂws from Arzela’s theorem (see [1], p. 175) that there exists
a subsequence which conyerges. uniformly to a continuous functmn f(2) defined

on D(A). By Y}’e,lersgrass theorem ([4], p- 95), we assert that f(")(z) is analytic on
D(A). From Theorem 3.2, we have, for z > 7,

by o i !-*: “ %t ﬁﬁﬁr&—}i‘f 1\(3) {1&“_}_‘ n+l ' _f(;‘.':), . fﬂl‘ exﬁen L,
REPIROSESIE Saaliy * orodd 1.
Lo oavinivih I i 'Ii*'i}g?n ! ”E( }> uﬂ-+!n+l } f(:":) {}I‘ 0

Hence {un_l.,.; n} converges uniformly to f m(:c) for T > 7. By the uniqueness the-
orem of analytic functmns, we know that {u,_14i,} converges uniformly to f3(2)
on D(A).
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(ii) By the definition, f(z) is an analytic function in the complex plane except on
(—o0, —R]. Since the domain D(A) can be arbitrarily big and A can be arbitrarily -
small, f{)(z) and f(z) have the same analytic structure. If {z:}2, contains only
finite different points, then there exists an z* > —R such that there are 1I1ﬁmtel},r
many z; in {z;}$, coinciding with z*. Hence D* f)(z*) = D*f(z*) for k = 0 1,-
This means that f (2) and f(z) have the same power series expansion at z Then
f U)(z.") f(z) in a ne:ghborhond of z* and furthermore fU)(z) = f(z) for z ¢
(—o0,—R). If {:z:,},___u contains infinitely many different points, then there exists a
subsequence {:z:, } such that a:j.ur are mutually distinct and z;;, — =° > - K. Since

f (”(::t:,F ) = fl=i, Yfor j =0,1,:-- it follows from the umqueness theorem of analytic
functions that f(”(z) = (z) for z ¢ ( cﬂ,-—-R]

§5. Convergence for Hanibufger Functions

Lemma 5.1. Let f(z) be a Hamburger function defined by

R |
f{J') = du(i)ﬂ , ki > 0_, Ko .> 0, (5.1)

where u(t) is a bounded, non-decreasing function taking infinitely many different
values. Then for 2 € (— R, R2) and even integers m —n + 1, the matriz Mpy,.(z, f)
1s posilive definile. '

The proof of the lemma is the same as that of Lemma, 4.2.

Following the proof of Theorem 4.3 and Theorem 4.4, we can establish the fol-
lowing theorem. | | |

. Theorem 5.2. Let f(z) be a Hamburger function defined as (5.1), {z:} C
(— Ry, R2). Suppose 7 = inf amn > ~ R, or 4 = sup ﬁmn < Ry. Then for any given
even integer { > 0,

(i) the sequence of the interpolants un_14i5 to f is un’iformly' bounded as n —
oo on the domain Di(A); - * | | |

(i) the sequence of un_14in iS €quiconlinuous on Di(A);

(iii) the sequence of Un_14in converyes uniformly on ‘Dl(&) to an aﬂulyttc func-
i f“}(z) . . . P

(iv) if [r,7] C (—Ri1, R2), then fU(z) is analytic in the complex plane except
on (—o0, —Ry] U[Ry, ), and fU)(z) = f(2} for z ¢ [-—oa,—-Rl)U [R2,00), where
Di(A) is a bounded region ﬂf the complez plane which is at least at a dzstance A
from (-0, —Ry)U (R2,20). |
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