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Abstract |
A new stability inequality for velncity-'pres’sure F.E. approximations of Stokes
(or Navier-Stokes) problems is presented in this paper. It 1s proved that the n-

equality holds if the so-called patch test of rank non-deficiency is passed. As a use
of the new criterion, the stability of various new and old combinations of velocity

interpolations with pres'sure interpolations 1s discussed.

i _
' §1. Introduction

For finite element analysis of incompressible flow of viscous fluids, it is important

that the stability inequality

j; div u - pdf} |
su >C ; e Vi(§2 1.1
vy lule Ipllzz ) IT h($2) (1.1)
hold for F.E. velocity-pressure space Un(€2) X Vi() C (Hg(2))" X Li(5Y).
- Up to now, some efforts have been made for the construction of velocity-pressure
" fnite element spaces and their stability analysis (see [3], [6-9], [11], [15]). In particular,

the following macroelement condition was presented in [7, 9]:
H) (1.1) holds for a regular partition Jj, under the condition that all of the macroele-

ments M, i.e. the union of one or more neighboring elements, forms a new subdivision

My of the domain €, and for each A > 0 and ®" € V4(R),3 uh, € Un(€2) with
ubeloww =0 such that |
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. 1 | A e | |
where &y = ] Ju "dQ. YM € My, dum = (8" — ®)|pm, the constant C is indepen-

dent of i, ®* and uyy.

This condition is local. Stenberg [9] pointed out that it can be used to determine
the stability of various combinations. It is, however, not “primitive”. It seems to have
no more adaptation than the condition of patch type used widely in finite elements
owing to the requirement that the partition be composed of macroelements.

As an improvement of the ma,crﬂelemenf condition H), a new stability condition
is presented in this paper, which is also local and has the same feature of rank non-
deficiency condition used in finite element analysis of solid mechanics, and can reduce
the judgment of the stability condition (1.1) on macroelements to the determination
on element patches; therefore there is no restriction on the partition.

The main result in this paper is the following:

HY If for each p € Vi(€}) and each possible element patch M, (divv, P)my = 0
Vo € Up(M) C (HA(M))" implies plp = constant (i.e. rank non-deficiency), then
there exists a constant C independent of the mesh h of finite element such that

sup L > Cllpllopa: PE Vi | (1.2)

where norms || - ||r.n.a and || - llo,p0, Which will be defined in Section 2, are different
from that in (1.1). Though (1.2) is not identical with (1.1}, it can be proved that the
inequality can play the same role as (1.1). In many cases, we can easily give the proof
for (1.2), but not for (1.1).

On the basis of the new criterion, a new table combination of piecewise linear veloc-
ity and piecewise constant pressure : constructed in Section 4. The same conclusions
are extended to the three-dimensional case, and the stability of various combinations
of velocity-pressure discussed in [6, 9, 15] will be checked one by one in a simple and
unified manner by virtue of the new stability condition.

§2. New Stability Inequality

2.1. New stability inequality J
Let 2 be a convex polygonal domain with the boundary T in R*(r = 2,3). The =

- l':';, L :
Bl et S, o A e e e

stationary Stokes equation is to find u = (ug,uz, - ,tiy,) and p such that -
_uﬁ‘_u +Vp=f in -9,
divu=0  inf, (2.1.1) %
=0 i on I s

where u is the velocity vector, p is the pressure, and f is the body force, The
problem is equivalent to the following variational problem: Ty e
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Find (u,p) € (HI(Q))* x L3(R) such that

V(Ve, Vo) — (dive,p) = (fiv), Vee (HY @), ~  (212)
(divu,q) =0, Vg€ Lg(Q). (2.1.3)

Let Un(S2) C (Hg(Q))", V() C LD(Q) N H2(2). The fcn]luwmg discrete problem is
obtained:
Find (up,pn) € Uh(ﬂ) x Vi(§) such that

o(Vup, Vv) = (dive,pa) = (f,v), Vo € Un(Q), (2.1.4-)
(divug,g) =0, Vg€ V() 3 (2.1.5)

where H)(Q) = {q € L3 (Q) gla: € HY(Q:),UQ; = 0}, {2} is a subdivision of 1.
Now let 73 = {§2;} be another tna.ngulatmn of 2, where intersubdomain boundaries
0Q; and 90 do not generally overlap. U = (_HO (Q)), V = Li(Q) n HY(2). Then the

following norm and semi-norm can be defined in U and V:
2 Bip2, o =Y Va2 q.naes Hhi vy — p_|?ds, VpeV
|P|V(n;)' Iglu,h,_ﬂ. ; il P“o,ﬂinﬂ,v * Jo . unns o0 | p+ — p-|%ds, Vp y
A
el na =D lalona, V€V,
: _
A o
o)1 n0. £ 87 2 Mloll3 000y + Ivlig,, Yo EU,
e

A
lollisas D llvlisa, YveU.
t

We assert that if there is a constant C independent of h such that

div v,
i (divv,q))a)

| . > Cllallosn, Vg € Vi(Q),
vetn  lvlinng

then the theory of existence and uniqueness and convergence of (2.1.4)-(2.1.5) can be

established.
Lemma 2 1.. Them Ly constant C mdependent of h such that

(dive,p) < C |l‘v||1,h,n [Ipllopa, Yo € Un(R),p € Va(2).

Proof. See Lemma 3. 2

Remark 1. Throughuut the paper, C or C; denotes a positive cnnsta.nt possibly
different at/ different occurences, which is mdependent of the mesh para;meter h, hut
may depend on £,v, and other para.meters introduced in the text.

Remark 2. All nutatmns, if not otherwise speuﬁed will be used in the usua.l

meanings. :
2.2. Existence, uniq.u_en'ess and convergence of finite element solution
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we can not stra.ightfnr-

atisfy (Vu, Vu) Z.C““"ih,ﬁi
but we still have the

As the norm ||+ ll1,n,0 may not s
to obtain the error estimate,

wardly use the framework of (2, 3]

following results. -
B _. -
(dive 2)(a) > Cligllo.n0; Yq € V,.(Q) holds, then prob-

vetn@ vlhag
lem (2.1.4)~(2.1.5) has @ unique solution (uh,pn) € Un(€) X Vi(92).

Furthermore, if (us,Ps) € (Hg ()" X H)(Q) is the solution of problem (2.1.2)-
{2.1.3), then the following abstract error estimates hold:

g = unlhia = G | inf fluy —vlhnat eﬁf(n)"m ~ glloal,

UEUh(ﬂ}
s <C| inf e inf (llps — - :
19y — pallona < C[_int e = olhaa + Jofo (lps = dllona + 17 dllog)]-

<olution. We need only to prove
zero. And the proof is very simple.
prllora. We refer to the proof of
llug —unllra and ||p; —Palloso

Proof. (I) The existence and uniquen'ess of the

that, for f = 0, the solution of (2.1.4)-(2.1.5) is only
(I1) The estimates of |lus — ualhn and lps -
" Theorem 1.1 in [6] (Chap. 1I, P59), and the estimates of
can be derived. See also [16].
Theorem 2.2. Assame

div v, -
(dive,0)m) , Cligllora, V9E Vi(§2)-

e

sup .
veUn(@) lvlleg

Then the following error estimate holds:

—pplloq < C| ind & inf -
Ips — palloa < C|[_inf_lluy = vlhuna +_ il IPs dlloa]

where (ug,py) i8 the solution of (2.1.2).
lar to Theorem 2.2 in [16]; See also Theorem

The proof of this theorem is very simi
6.1 in [13]-

 §3. Stability Condition

In this section, let Ux(S2) and Va(2) b';e, finite element spaces such that Un($2) C U,
wrove the new stability inequality under some

Vi(Q) Cc V. For Un(€2), Vi (§2), we will p
That is to say, there exists a constant C independent of h such that

div v,
( div v,9)(a) > Cllpllopas VP E Va(82)-

conditions.

sup

veUn(@ lHvihwa

In order to prove this 1nequa.11ty, we first give some lemmas.
Definition 3.1. A pair of ekﬂlﬂ |

test of rank non-deficiency if for a re

Qedn | '
(diV v,‘p)(nl;) =0V

Ijtsubspaces (Uh,Vh) is said to pass the element

'_ht_i.l:ar triangulation Jy, for each P € Vr(R) and

v € Ui(§}y) implies 1plorg, =0 (e Pp= constant in €2;)
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where Up(2:) = Un(D)la, N (HA(Q:))".

Remark 3. We may extend U,(£;) as zeros in {3\Q;, so we will cnnmder Ur(§i) C
Ur(§2)- e '

Lemma 3.1. There is a constant C mdependent of h such that fnr each Q; € Jh
and v € HY(,), |

ﬁn 02d3 5-' Ch;'_}‘"v"ﬂ,ﬂi(hilﬂll‘ﬂi - "l‘v”ﬂtﬂi)'

For the proof, see [13].
Lemma 3.2. Far any v € Un() and p € Vi(5}), we have

(div v, p),) — '/;Q pv - nds < Clvlling;lplonn; Vi € T,

(div v, p)a) < Cllvlliaalipllosn

Proof. Yv € Up(2),p € Vn(Q2), we ha.ve

i N — ds = f + — P_)v-nds— (v, Vp)in.naz
(dw'ﬂaP)(n‘? ‘Ln PU -G8 = Z " nn*)\aﬂ ) | ( P)(n NQ

< C( 3 rHIVPIGan0; + b - (Py — P_)2ds) (Rl 0,

3(9.‘1’1‘1:]\3(}.‘
h-‘lf v-n)ids
v ammz)\ni)( . )

1/2
< C(Z hHIV P[5 anas + i a(n-nn-)\an-(P + — PR vlG 0

1/2 _ |
+1o2a)) " =Clivlhsailplosa,  (by Lemma3.1).

As v € Uh(ﬂ) ¢ (H (2))*, Plan\on is continuous. Thus E ko nds = 0.

Therefore,

(dW‘v,P)(n) E(ﬂw'ﬂm)(n ) = Z(d”vap)(n y— fﬂ A nds

< c(z: ol h0,)” (2 lplu,h,n.)" ”

=C ||v|l1 A ||Pllu.h.n

Lemma 3.3. For every Q, € T, if p € V() with (divov, Pl = 0 Vv € Up(Q:)
implies |plo,an; = 0 (i.e. p= mt m Q,) then them ea::sts a mnstaﬂt B(€2;) > 0 such

that o

sup (—f‘-l—‘-’-'if—‘?i’i'—_ﬂ(n,)llpllm, V€ A(@).

UEUh(ni) " “11 1 £ -



7HOU TIAN-XIAO, FENG MIN-FU AND XIONG HUA-XIN

i € Vh(ﬂ) such

214

Proof. 1 the above is not true, we- could choose a sequence il o

that

|pmllopq; =1 and Jim ( div v, pm (i) = 0 Vo e Un(S%).

Since a bounded set in the finite dimensional spaée Vi()ln; is compact, there exist a
convergent subsequence {pm} and po € Vi(Q) such that

lim |pm _PlJ'D.h.ﬁi =0 and lpﬁ‘ﬂ.h,ﬁ.‘ = 1.

TTL =+ O

Since Uxn(€:) C (H(2)", by Lemma 3.2, we can easily obtain
(di'\f vy Pm — PO)(Q,) < C""-’I_la,h,ﬂilpm = pﬂlﬂ,h,ﬂi'

Thus
(div v, po)i;) = lim (div v, Pm)(Q;) = 0 Vv e Un(Sh)

m—+00

This is a contradiction to the assumption of the lemma.
Lemma 3.4. Deﬁge the set function:

(dive,P)@)  vo. e T,

¥

Wi} = inf - sl
( l) peVj (1) uEUhI{}n) “‘U“l‘h,ﬂilplﬁ.h,ﬁi
Iplo,h,0; #0 Mely na;#°

If W(8,) is always positive for every Q); € Ty, then thehe exists a constant fo indepen-
dent of h such that W () > Bo V&4 € T | |
~ Proof. For each Q; € Tp, let by = diam(§};), h = max(h;). Since Ty = {Q;} is a

regular triangulation, there exists a family of affine invertible mappings {Fi(y)} such

that
(i) Fi(y) = Br.y + br., (i) z=Fi(y): K S, w= Fi_l(a:)_: Q; =3 K, where BF,

is an n X n matrix, bF; is an 7 X 1 matrix, and K 18 the usual unit reference triangle

(or triangular pyramid). For convenience, we introduce some notations.

JF. = det [g; ' 1 — det(BF,) i.e. the 'dgterminant of Jacobi matrix.

I == (UlmﬂZ) or v = (”11'”21”3);” - (ﬂl,ﬂz) or = (nhnia ﬂ3);
V= (-2— z P the gradient operﬁtor' 5= v(Fi(y)),P= p(Fi(y))-
3$1 : : B:E“ _ s 1,
Then ¥v € Un(f),p € Vi(§2), and we have

E(v,p)a) = ( div v, P)(n)=z( div v, p)(@inaz)

e
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By [Bim;] = [; aim %1’:“ = [g:;] e = (B;,ll)[.gi_;] we can _e:.a.s'ily obtain:

z € 4, (Vep)z) = (B;-,l)?yp Vy € K . The change of variables by T = Fy(y) yields
E(v,p)q.) = /
(0.2} E 3(0:nae )\an.

—E sign (Jr;) f (54 — p-)5 - (AJR(BE)" )dsy ~ / %(Bg, )VyplJF, |d3¢

— p_ ) - ndss; — ] vV pds
;N2

'JF" 3§, (s =509 GBEY s~ [ o(BF)Vp)dy

where T, = F, 1 (8( N Q\IY), K. = F7 (20 Q7), and n is the outward normal to
I'.. Let

E v, )(K) == z / (Ps — )'” (“(hBEI)T)d"y _/ -((hB;il)V,ﬁ)dy. (3.2)

<

Note that there exist constants C, and C; independent of h such that

Cr <R lIpP< Gy Vi=1,2,.--. |  (33)
F
By (3 1)-(3. 3), we get
Cih" 1 E(5, pY k) < E(v:p)ay) < Czh "1 E(%, B)k)- (3.4)

Let us define |
61131y = 1913, + IA(BFV48)[13

171} ey = 2 I B! vmli-. + 11+ — p-Il3 . (3.5)

Usmg the change of variables and (3.3), we obtain that there exist constants CI ,Ca
C,,C5 independent of h such that

(C1h™* 7|8l k) < ol ha: < C2h™ 7 H[8lgxy)s
(C1h™ 2"I*"*t,r'(a:{) < llpllo.a; < C2b™? 1Pllvy)- (3.6)

By (3. 4), (3 6), we get o
LW () < W(K) < B,W (%), (3.7)

where $8; and 3, are 'icﬂns:t?a‘lit'_s independent of h,'andFW(K ) is as follows:

: . o E G
. . ogll
gm0 " IEa( g&u Ul(K) V(K)

U(K) = Up(Q:) o Fi(y), V(K)=Va(@)a; o Fily).
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If {:r.f')} and IE:J denote the vertices of (i = 1,2, -- , ) let EE) = (.?:S:) — mfg)fh'. It is

casy to verify that B, is a function of {mf)_} x and a:io_ such that
he B (=) = BRMED), i=120, - (38)

which implies that the set function W(K) can be regarded as an ordinary function of
variables {E:}:)}, defined over a bounded subset Sp in a finite dimensional Euclidean

space, where

S = {1 112V < 1, |JR| S C)

Thus

1 _ :
min W{{};) > — min W({H). 3.9
miETh ( l) e ﬁ? {;:E:}}kESF ( ) ( )

So far, we need only to prove that W(K) attains its positive infimum on Sp. In fact,
by (3.7), there exists W(K)> 0 V&E}:) € Sg: on the other hand, it is clear that W(K)

is a continuous function of variables {:’r’:}:)}g. Every continuous function defined on a
bounded closed set always attains its infimum on this set. Therefore there is a constant

8 > 0 independent of hsuch that

s, W) 2 Bo-

Theorem 3.1. For (Un(§2), Va(R)), if the element test of rank non-deficiency s
passed, then there exists a constant C independent of h such that

: (divv,p {1 |
sup )@ 5 Cllpllosa, Ve € VA(SR)
veUn(@)  IVl1a0 |
Proof. By the definition of element test of rank non-deficiency, for every ; € T,
and p € Vi(92), if (div U,P)(ﬂi). = 0 Vv € Un(f;), then p = constant in €);. Thus by
Lemma 3.3, there exist constants {8(£;)} such that for {}; € 5 5

div v, P )q.
qup (VNP 5 g plona, VP E Va(®), (3.10)

veUn@)  lI2ll1n0 | -
which implies that W(£;) is always positive for every §2; € Jh- In virtue of Lemma
3.4, there is a positive constant 8, independent of kA and ); such that '

- djvv,'_. o
Sup ( -P)m‘)_zﬁalplo.h,n“ Vp € Vi(Q), Vi € T (3.11)
vetn(@i)y ellpe: = 7 - Sl
3

In virtue of [8], by (3.11), there_éxist two constants C, and C; independent of h such-'f;__'.
that for every p € Vi(2),VQ;: € Tpd v, € Un($2;) such thaj:- u

|
¥
]
e
P

(divva, )@ = Cilplasas  llvadlag £ Calplosn:
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Let v = E_vﬂi € U},(Q) (by Uh(ﬂi) C U;,(Q))..'I_‘hus

L divvpdz = ) L divvg,pdz > C1 ) _Iplong, = Clnlf’“g,{;,m (3.13)
By (3.12), we have |

"”"g,h.ﬂ; - ||"n;||f,h.ni-5 C% |P|§,h,ni,

||”||1,h.n — E ””"ih,ﬁ; < C% E |P|g,h,ﬂi = Cz? \|P||§,h,n.-,
i g

Then o
lvilaa < Callpliona- | (3.14)

By (3.13) and (3.14), we get.

/n divvpdz > C||UI|1,h,ft“‘P||ﬂ.h.9'

Therefore, we obtain

» sup > Clpllopn:, VD E Va(82).

vetn(@) vlliaa;
" From the above discussion, it is not difficult to find out that the element test of
rank non-deficiency has some limitation, and it is not convenient to use Theorem 3.1 for
determining the stability of some combinations of finite element spaces. But it is easy to
see from the following discussion that this shortage can be avoided by introducing the
patch test of rank non-deficiency. That is to say, if the patch test of rank non-deficiency
is passed, the result of Theorem 3.1 is also correct. |
Let us first introduce the definition of “patch” and “patch class , and then give the
appropriate result.
Definition 8.2. For a regular partition T, a union of all elements attached to the
common vertez is said 1o be a “patch”. - 7 =
Definition 3.3. For a regular partition Ty, the set of patches is said to be of the
pateh class Ty, (patch-Ne) if the following conditions are salisfied:
1) For any two Q.0 €Ty (patch-Ne), there emst two sets of elements {Q¥} and
{Q"} such that
Ne Ne
= Uﬁfi Qr =Uﬁ:

i=1 t=1

2) There is a mfereme polygon Kne = U Kne, mdependent of h where K Ne.i (: =

=]
-,Ne) are tmngles mdependent of h. For each M € Th (patch-Ne), thene ezists

5 mﬂppmg Fu : Kne 7 +M satisfying the mnd:twns
- (i) Fum s continuous tmd one-to-one.
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(i) Fum(KnNe) =M, M_, FM(KNE,J) g =1,2, . Ne, are the triangles in M.
(iil) Fmlx = Fu, - %y . where Fpy. and Fi are the affine invertible mappings from
the usual unit reference triangle (or iriangular pyramid) onto M; and Kn., ;. The shape

of a patch is shown in Figure 3.1. 'l
2

Fig. 3.1. A two-dimensional example of patch. Ne = 2,3,5, etc.

Definition 3.1'. A pair (Un, Vi) of element subspaces is said to pass the patch test
of rank non-deficiency if for a regular partition T,,0 < h < 1, there exists a set {Q°}
of different element patches such that |

I)UQ*’_.Q

2) far (€ {Q°} and p € Va(Q), if (div ﬂ,p)(n.,, = 0 Yv € Un(°) implies p =
constant in (., where Uhgﬂ"’) = Ur(Q)|g. N(HI(Q)).

Theorem 3.1'. For (Un, Vi), if the paich test of rank non-deficiency s passed,
then there erists a constant C independent of h such that

( div ‘IJ, P)(ﬂ}
sup

> C||Pllosn, VP € Va(€d).
vetp(@) IViae

Remark 4. Theorem 3.1 can be proved with the same method of proof for Theo-
rem J3.1.

Remark 5. The stability of various combinations of finite element spaces can be

determined with Theorem 3.1 or Theorem 3.1".
Remark 6. For the above results, we have given proofs for 7; being a regular
tna.ngulatlon In fact, these results are also currect for quadrilateral subdivision.

84, The Stability @f Linear-Constant and
Other Finite Element Spaces

In this section, first a new simple combination of piecewise linear velocity and

piecewise constant pressure is constructed. Then, its stability and some other finite

element spaces in [6, 9, 15] are discussed with the theory developed in Sectmn 3.
| 4.1. The hnear-constant elements

Let'Q be a bounded convex polygunal (Gi‘ polyhedral) domain in R*(n =2,3). ..'7:; -

'-lﬁ

{Q }is a regula.r triangulation of €2, and every element ; is divided into n 4+ 1 mi<

crnelements with equal measure. Let {Q:}(t = 1,2,--+,n+1) be these microelemerits. i z

%

.
. - "
s
P
.
' My
P
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n+41 | - _ * 5
Then ; = U ;; (see Fig.4.1) where {Qi}, t = 1,2,---,n + 1, are microelements

i=1 : 1 i :
formed by the connecting lines of barycenter O; to any two (or three) vertices and one

edge (or face) of ;. |
Let 7;* = {Q}} be the dual subdivision of Ty, where Q) denotes a simply connected
subdomain of Q, which consists of two adjacent microelements with one common edge

(or face) which belong to distinct elements respectively.

For example, as shown in Fig.4, @ = { quadrilateral formed by O;P120; P13 for
n = 2 and Q2 = hexahedron formed by I;Pya P13 P14O'} for n = 3. Let

! 4

-

v@) = {v € QP : vla, € B e = 2,2 = 0}

t=1

V() = {q € I}(Q) : gl; = const. 2 € Ty},

where Pn(z) denotes the space of polynomials of degree < m.

For every §); € Ty, take the value of velocity on vertices and barycenter of §); as the
freedoms. Obviously, Yv € Upn(£2), v|g, is uniquely defined by these freedoms.

Let us now check that {U .'(;1](9)1 Vh(u](ﬂ)} passes the element test of rank non-

deficiency, i.e. Vp € Via(Q), VUi € T, / div v - pdQ) = 0 Yv € Ux(§):) implies p =const.
;

in ;. In fact, as p € V() = {g € LX) : gla: = const. §; € T}, we can

let Pla;, = pt, where pi(t = 1,2,---,n + 1) are constants. Then it suffices to prove

Pl =P2 ] -.-pn_i_l_
' divo-pd@ =0, Vv e U()

4
implies - REE
f dive-pd =Y p(divo)la, =0, Vve U()
g/ 1 S

where U(Q:) = U ()], 0 (H3(R:)), and (divv)la(t = 1,2,++-,n + 1) are con-
stants. Choose v € UV(Q) such that
For n = 2,v(px) = 0 (¢ = 1,2,3), and v(0;) = (1,0) or v(o;) = (0,1); |
. For n = 3,v(py =0 (t = 1,2,3,4) and v(o;) = (1,0,0) or v{o;) = (0,1,0) or
v(o;) = (0,0, 1). - :
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ri+1 .
The condition E: p;( div v)lq,,

t=1

m{y® - v + pa(y° — y.l) + pal(yt — y?) = 0, 8
For n =2, 3 | 4.1
or n {p1(-‘1=2 o :1:3) +- pg(z.ﬁ o :1:1) +P3(371 i :1:2) = 0; ( )

py(2? — 2%) + pa(a® = 2*) + pafat ~ 2') + pa(z! - 2%) = 0,
For n=3,4 pu(y? — ¥°) + p2(v® — ¥ +ps(y' — ¥+ pa(y* —9*) =0,

py(22 — 22) + pa(2® — )+ pa(2t —21) + ps(z! — 2%) =0,
2t) for n = 3. From

= 0 yields the fﬂﬂﬂﬁing equations:

(4.2)

where we have written pit = (zt,y*) forn = 2, and Pit = (31, y',

(4.1) and (4.2), we have
 p=pr=pa PL=P2 =P T Pa

Therefore p = const. "in . By Theorem 3.1, {U,E”(Q),V,fu)(ﬂ)} satisfies the new

stability inequality.

4.2. The second-order approximations.
Let X\;(j = 1,---,0 + 1) be the barycentric coordinates of U € Tp, X = span{A; :

| ZiLadI X1 EitgEend 1: A A2 - Ans1} (see Fig. 4.2)
P

{ﬁ}?)(g) ={veE (Ha ()" : vl € X",k € Tn)}s

V(@) = {g € LHQ)NC) : dla, € Pi(z), % € Tn}-

L

Q;

f} }f”gi(_) and for Vél)lﬂi(n)a

Fig 4.2. Degrees of freedom for
. 1 n+1

- _
Qi3 = E(ai:-aj)a 1 S 1<J <n+ 1, @1..n41 = n+1 mzl a;.
For {U f)(ﬂ), th(ﬂ)}, [15] discussed its stability by another but complicated method.
With our method, it is easy 10 know that {ﬁf}(ﬂ), V,En(ﬂ)} is stable. .
In fact, Vp € V()Y€ € Th, by (divo,pla; =0 V0 € 7(K;), we get

(v, VD)) =U, Vv € uA(Q).

Choosing v € U }f’-(ﬂ;) such that e |
For i = 2, v{a;) = v(a;;) = 0(1 £ 1<j<3) and v(ay23) = (1,(_)) or v(a123)=

(ﬁ, 1);
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For N = 3, v(a,) = v(ai;) = (1 < ¢ { J £4) and. v(a1234) ="(1,0,0) or

v(a1 234) (0 1 0) or ‘U(ﬂl 234) (ﬂ 0 1)
Then the conditions (v, Vp)q,y =0 and Vplp, = cnnst give Vp = O in ©;. Therefore,

by Theorem 3.1 {U (2](9), ,EU(Q)} satisfies the new stability inequality.
Quadratic-linear elements (Fig. 4.3)

U (Q) = {ve (HAR)? : vla, € [A(2)], VO € Th),
V(@) = {g € LIQ)NC(Q): gln, € Pi(z), Y€ T}

..—..%(a;-l—aj) 1<i<j<3

Fig. 4.3. Degrees of freedom for Uplq,() and for Vi|g;(0)-

Let us check if {U. (2) (Q),V, (I)( )} satisfies rank non- deficiency in triangle and pen-
tagon patches. - F =

Triangle element patch peutagon element patch
Fig. 4.4 |

In order to avoid unnecessary technical details, we only verify that {U} 2)(9,), l](Q)}
satisfies rank non-deficiency in triangle patches. For the pentagon patches, the discus-
sion is similar. - |

Obviously, Vv € U (’)(m) = UB(Q)5, N (H3(@2°))?, v is uniquely defined by the
values v; = v(z;)(i =1,-+-,4). For P | |

ev,f"(sz), By | (div v,p)m,_)=ﬂ VvE Ui

we have

/1.'1 dnw pda: ;ﬁ Vpds—(] 'v‘trE m(ﬂ")

| Chmse v € U,E )(Q") such’ tha.t*’ v(a:“) = v(z%) = v(a."’) = 0 and v(z°) = (1,1). Then
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the condition gives

' meas (Q2)(V)la, + meas (22)(Vp)la; =0 (4.3)
Similarly, we can get -
meas (2)(Vp)la, + meas (2)(VP)a: = (4.4)
' (4.5)

meas (Q3)(Vp)la, + meas (Q)(Vo)la, =0

At last, we choose v € U m(ﬂ‘_) such that
5y = v(z°) = v(z")=0 and o(z?) = (1,1).

v(z

The condition ﬁ vVpds = 0 gives

3 ' i
E meas (ﬂ;)(Vp)hi = 0.
1==1 _
Combining (4.3)—(4.6), we obtain
2
(vp)lﬂi =0, 1% : < 3.

Since p € C(), plge = const.

'4.3. Revisory linear-linear elements.
Let A; = A; (Y1 Lisnyt 1) be the barycentric coordinates of any point z € §l,

with respect to the n + 1 vertices a;,1 <7< n+ 1, of a tnangula:r element §}; € Th.

(see Fig. 4.5)
X = Span{A,,i <i<n+l; )\1);1 ,,,+1}

v (@) = {v € (H(Q)" +ola, e(X')“ Ve € Th},
v(Q) = {g € I}(Q): gla; € Pa(z), W e Tn}-

its stabxhty wﬂ:h another me
1) (@), vI(Q)} is stable. In fact,. il:gyf

For {U(l)(ﬂ), V,f”(n)} [15] also discussed

an our ‘method, it is easy to know that {U;

5 1
: P ) -
; i N ]
FER A . P W
i B PR e b P ol :
T, S CO T e L S A L R S - : &
e e L s we e gl juc x

thod. With
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(div v, p)ay = /n v-Vpdz, Vv € U,E”(Q), pE V,El)(ﬂ') implies that, Vp € V,SI)(Q),
VQ{ - 7};, if (di?,ﬂ,p)(ni) = 0 Vv € if;(ll)(ﬂt), weé 1133’6 ] }.1.1.2,\3"0'de — 0; then
2 i

p = constant in ;. Thefefore,lby Theorem 3.1, {ffﬁl)(ﬁ),V,fl_)(Q)} satisfies the new
stability inequality established in this paper, i.e. {U }EI)(Q),V_,EI](Q)} is stable.
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